Density functional theory and multi-marginal optimal transport: Introduction

Yair Shenfeld

Brown University

The electronic Schrödinger equation (neglecting spins)

The electronic Schrödinger equation (neglecting spins)

Consider a system of N electrons subject to an external potential

$$
r_{i} \in \mathbb{R}^{3}, \quad \mathbb{R}^{3 N} \ni\left\{r_{i}\right\}_{i=1}^{N} \quad \mapsto \quad \sum_{i=1}^{N} v\left(r_{i}\right)
$$

The electronic Schrödinger equation (neglecting spins)

Consider a system of N electrons subject to an external potential

$$
r_{i} \in \mathbb{R}^{3}, \quad \mathbb{R}^{3 N} \ni\left\{r_{i}\right\}_{i=1}^{N} \quad \mapsto \quad \sum_{i=1}^{N} v\left(r_{i}\right)
$$

The possible states $\left\{\Psi_{\ell}\right\}$ of the system are described by solutions to the Schrödinger equation

$$
H \Psi_{\ell}=E_{\ell} \Psi_{\ell}
$$

with the Hamiltonian

$$
H:=-\sum_{i=1}^{N} \Delta_{i}+\sum_{i=1}^{N} v\left(r_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|r_{i}-r_{j}\right|}
$$

The Hamiltonian: $H=-\sum_{i=1}^{N} \Delta_{i}+\sum_{i=1}^{N} v\left(r_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|r_{i}-r_{j}\right|}$

The Hamiltonian: $H=-\sum_{i=1}^{N} \Delta_{i}+\sum_{i=1}^{N} v\left(r_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|r_{i}-r_{j}\right|}$

$$
-\sum_{i=1}^{N} \Delta_{i}=\text { kinetic energy }
$$

The Hamiltonian: $H=-\sum_{i=1}^{N} \Delta_{i}+\sum_{i=1}^{N} v\left(r_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|r_{i}-r_{j}\right|}$

$$
\begin{gathered}
-\sum_{i=1}^{N} \Delta_{i}=\text { kinetic energy, } \\
\sum_{i=1}^{N} v\left(r_{i}\right)=\text { external potential, }
\end{gathered}
$$

The Hamiltonian: $H=-\sum_{i=1}^{N} \Delta_{i}+\sum_{i=1}^{N} v\left(r_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|r_{i}-r_{j}\right|}$

$$
\begin{gathered}
-\sum_{i=1}^{N} \Delta_{i}=\text { kinetic energy, } \\
\sum_{i=1}^{N} v\left(r_{i}\right)=\text { external potential, } \\
\sum_{1 \leq i<j \leq N} \frac{1}{\left|r_{i}-r_{j}\right|}=\text { Coulomb potential. }
\end{gathered}
$$

The Hamiltonian: $H=-\sum_{i=1}^{N} \Delta_{i}+\sum_{i=1}^{N} v\left(r_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|r_{i}-r_{j}\right|}$

$$
\begin{gathered}
-\sum_{i=1}^{N} \Delta_{i}=\text { kinetic energy, } \\
\sum_{i=1}^{N} v\left(r_{i}\right)=\text { external potential } \\
\sum_{1 \leq i<j \leq N} \frac{1}{\left|r_{i}-r_{j}\right|}=\text { Coulomb potential. }
\end{gathered}
$$

Example.

A molecule is composed of M nuclei at positions $\left\{R_{\alpha}\right\}_{\alpha=1}^{M}$,
$R_{\alpha} \in \mathbb{R}^{3}$, with charges $\left\{Z_{\alpha}\right\}_{\alpha=1}^{M}$, and N electrons at positions $\left\{r_{i}\right\}_{i=1}^{N}, r_{i} \in \mathbb{R}^{3}$.

The Hamiltonian: $H=-\sum_{i=1}^{N} \Delta_{i}+\sum_{i=1}^{N} v\left(r_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|r_{i}-r_{j}\right|}$

$$
\begin{gathered}
-\sum_{i=1}^{N} \Delta_{i}=\text { kinetic energy, } \\
\sum_{i=1}^{N} v\left(r_{i}\right)=\text { external potential } \\
\sum_{1 \leq i<j \leq N} \frac{1}{\left|r_{i}-r_{j}\right|}=\text { Coulomb potential. }
\end{gathered}
$$

Example.

A molecule is composed of M nuclei at positions $\left\{R_{\alpha}\right\}_{\alpha=1}^{M}$,
$R_{\alpha} \in \mathbb{R}^{3}$, with charges $\left\{Z_{\alpha}\right\}_{\alpha=1}^{M}$, and N electrons at positions $\left\{r_{i}\right\}_{i=1}^{N}, r_{i} \in \mathbb{R}^{3}$.

$$
v\left(r_{i}\right):=-\sum_{\alpha=1}^{M} \frac{Z_{\alpha}}{\left|r_{i}-R_{\alpha}\right|}
$$

The ground state energy: $E:=\inf _{\psi}\langle\Psi, H \Psi\rangle$

where

$$
\begin{aligned}
\langle\Psi, H \Psi\rangle & =\sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}}\left|\nabla_{i} \Psi(r)\right|^{2} \mathrm{~d} r+\sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}} v\left(r_{i}\right)|\Psi(r)|^{2} \mathrm{~d} r \\
& +\sum_{1 \leq i<j<N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r, \quad r:=\left\{r_{i}\right\}_{i=1}^{N}, \quad r_{i} \in \mathbb{R}^{3}
\end{aligned}
$$

and the infimum is taken over all antisymmetric (Pauli exclusion principle) normalized wave functions of finite kinetic energy.

The ground state energy: $E:=\inf _{\psi}\langle\Psi, H \Psi\rangle$

where

$$
\begin{aligned}
\langle\Psi, H \Psi\rangle & =\sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}}\left|\nabla_{i} \Psi(r)\right|^{2} \mathrm{~d} r+\sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}} v\left(r_{i}\right)|\Psi(r)|^{2} \mathrm{~d} r \\
& +\sum_{1 \leq i<j<N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r, \quad r:=\left\{r_{i}\right\}_{i=1}^{N}, \quad r_{i} \in \mathbb{R}^{3}
\end{aligned}
$$

and the infimum is taken over all antisymmetric (Pauli exclusion principle) normalized wave functions of finite kinetic energy.

Problem. Computing E by solving the Schrödinger equation is too expensive.

Density functional theory: $\rho_{\psi}(x):=N \int\left|\Psi\left(x, r_{2}, \ldots, r_{N}\right)\right|^{2} \mathrm{~d} r_{2} \cdots \mathrm{~d} r_{N}$

Density functional theory: $\rho_{\psi}(x):=N \int\left|\Psi\left(x, r_{2}, \ldots, r_{N}\right)\right|^{2} \mathrm{~d} r_{2} \cdots \mathrm{~d} r_{N}$

Recall:

$$
\begin{aligned}
\langle\Psi, H \Psi\rangle & =\sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}}\left|\nabla_{i} \Psi(r)\right|^{2} \mathrm{~d} r+\sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}} v\left(r_{i}\right)|\Psi(r)|^{2} \mathrm{~d} r \\
& +\sum_{1 \leq i<j<N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r .
\end{aligned}
$$

Density functional theory: $\rho_{\psi}(x):=N \int\left|\Psi\left(x, r_{2}, \ldots, r_{N}\right)\right|^{2} \mathrm{~d} r_{2} \cdots \mathrm{~d} r_{N}$

Recall:

$$
\begin{aligned}
\langle\Psi, H \Psi\rangle & =\sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}}\left|\nabla_{i} \Psi(r)\right|^{2} \mathrm{~d} r+\sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}} v\left(r_{i}\right)|\Psi(r)|^{2} \mathrm{~d} r \\
& +\sum_{1 \leq i<j<N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r .
\end{aligned}
$$

The Levy-Lieb constrained-search functional is
$F_{\mathrm{LL}}(\rho):=\left\{\inf _{\Psi: \rho_{\psi}=\rho} \sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}}\left|\nabla_{i} \Psi(r)\right|^{2} \mathrm{~d} r+\sum_{1 \leq i<j<N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r\right\}$

Density functional theory: $\rho_{\psi}(x):=N \int\left|\Psi\left(x, r_{2}, \ldots, r_{N}\right)\right|^{2} \mathrm{~d} r_{2} \cdots \mathrm{~d} r_{N}$

Recall:

$$
\begin{aligned}
\langle\Psi, H \Psi\rangle & =\sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}}\left|\nabla_{i} \Psi(r)\right|^{2} \mathrm{~d} r+\sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}} v\left(r_{i}\right)|\Psi(r)|^{2} \mathrm{~d} r \\
& +\sum_{1 \leq i<j<N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r .
\end{aligned}
$$

The Levy-Lieb constrained-search functional is
$F_{\mathrm{LL}}(\rho):=\left\{\inf _{\psi: \rho \psi=\rho} \sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}}\left|\nabla_{i} \psi(r)\right|^{2} \mathrm{~d} r+\sum_{1 \leq i<j<N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r\right\}$,
and satisfies

$$
E=\inf _{\Psi}\langle\Psi, H \Psi\rangle=\inf _{\rho}\left\{F_{\mathrm{LL}}(\rho)+\int_{\mathbb{R}^{3}} \rho(x) v(x) \mathrm{d} x\right\}
$$

because, by symmetry,

$$
\sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}} v\left(r_{i}\right)|\Psi(r)|^{2} \mathrm{~d} r=\int_{\mathbb{R}^{3}} v(x) \rho_{\Psi}(x) \mathrm{d} x
$$

Summary

To compute the ground state energy E it suffices to compute the minimum of the functional $\rho \mapsto\left\{F_{\mathrm{LL}}(\rho)+\langle v, \rho\rangle\right\}$ over the electron densities ρ, which depend only on $x \in \mathbb{R}^{3}$, instead of computing the minimum of $\langle\Psi, H \Psi\rangle$ over wave functions Ψ, which depend on $r \in \mathbb{R}^{3 N}$.

Summary

To compute the ground state energy E it suffices to compute the minimum of the functional $\rho \mapsto\left\{F_{\mathrm{LL}}(\rho)+\langle v, \rho\rangle\right\}$ over the electron densities ρ, which depend only on $x \in \mathbb{R}^{3}$, instead of computing the minimum of $\langle\Psi, H \Psi\rangle$ over wave functions Ψ, which depend on $r \in \mathbb{R}^{3 N}$.

Problem. We have no description of

$$
F_{\mathrm{LL}}(\rho)=\left\{\inf _{\psi: \rho_{\psi}=\rho} \int|\nabla \Psi(r)|^{2} \mathrm{~d} r+\sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r\right\} .
$$

The adiabatic connection

For $\lambda \geq 0$ let
$F_{\text {LL }}^{\lambda}(\rho):=\left\{\inf _{\psi: \rho \psi=\rho} \int|\nabla \psi(r)|^{2} \mathrm{~d} r+\lambda \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r\right\}$,
so $F_{\mathrm{LL}}^{\lambda=0}(\rho)=\inf _{\Psi: \rho \psi}=\rho \int|\nabla \Psi(r)|^{2} \mathrm{dr}$ (non-interacting electrons), and $F_{\mathrm{LL}}^{\lambda=1}(\rho)=F_{\mathrm{LL}}(\rho)$.

The adiabatic connection

For $\lambda \geq 0$ let
$F_{\mathrm{LL}}^{\lambda}(\rho):=\left\{\inf _{\psi: \rho_{\psi}=\rho} \int|\nabla \Psi(r)|^{2} \mathrm{~d} r+\lambda \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r\right\}$,
so $F_{\mathrm{LL}}^{\lambda=0}(\rho)=\inf _{\Psi_{: ~} \rho_{\Psi}=\rho} \int|\nabla \Psi(r)|^{2} \mathrm{~d} r$ (non-interacting electrons), and $F_{\mathrm{LL}}^{\lambda=1}(\rho)=F_{\mathrm{LL}}(\rho)$.

Take $\lambda \rightarrow \infty \quad$ [Seidl (1999); Seidl, Gori-Giorgi, Savin (2007)],

$$
\lim _{\lambda \rightarrow \infty} \frac{F_{\mathrm{LL}}^{\lambda}(\rho)}{\lambda}=\inf _{\Psi: \rho_{\psi}=\rho} \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r=: V^{\mathrm{SCE}^{2}}(\rho) .
$$

DFT and multi-marginal optimal transport

Recall

$$
\lim _{\lambda \rightarrow \infty} \frac{F_{\mathrm{LL}}^{\lambda}(\rho)}{\lambda}=V^{\mathrm{SCE}}(\rho)=\inf _{\Psi: \rho_{\psi}=\rho} \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r .
$$

DFT and multi-marginal optimal transport

Recall

$$
\lim _{\lambda \rightarrow \infty} \frac{F_{\mathrm{LL}}^{\lambda}(\rho)}{\lambda}=V^{\mathrm{SCE}}(\rho)=\inf _{\Psi: \rho_{\psi}=\rho} \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r .
$$

Typically, the infimum in $V^{\operatorname{SCE}}(\rho)$ is not attained.

DFT and multi-marginal optimal transport

Recall

$$
\lim _{\lambda \rightarrow \infty} \frac{F_{\mathrm{LL}}^{\lambda}(\rho)}{\lambda}=V^{\mathrm{SCE}}(\rho)=\inf _{\Psi: \rho_{\psi}=\rho} \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r .
$$

Typically, the infimum in $V^{\operatorname{SCE}}(\rho)$ is not attained.
Relaxation. [Buttazzo, De Pascale, Gori-Giorgi (2012); Cotar, Friesecke, Klïppelberg (2013)]

$$
\inf _{\pi: \pi_{\rho}=\rho} \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{1}{\left|r_{i}-r_{j}\right|} \mathrm{d} \pi(r)
$$

where the infimum is over the set of probability measures π on $\mathbb{R}^{3 N}$ whose marginals on \mathbb{R}^{3} are all equal to ρ.

DFT multi-marginal optimal transport:

$$
\inf _{\pi: \pi_{\rho}=\rho} \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{1}{\left|r_{i}-r_{j}\right|} \mathrm{d} \pi(r) .
$$

DFT multi-marginal optimal transport:

$$
\inf _{\pi: \pi_{\rho}=\rho} \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{1}{\left|r_{i}-r_{j}\right|} \mathrm{d} \pi(r) .
$$

The infimum is always attained,

DFT multi-marginal optimal transport:

$$
\inf _{\pi: \pi_{\rho}=\rho} \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{1}{\left|r_{i}-r_{j}\right|} \mathrm{d} \pi(r) .
$$

The infimum is always attained, and moreover [Cotar, Frisesche, Klippelberg
(2013, 2018); Bindini, De Pascale (2017)],

$$
\begin{aligned}
& \min _{\pi: \pi_{\rho}=\rho} \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{1}{\left|r_{i}-r_{j}\right|} \mathrm{d} \pi(r) \\
& =V^{\mathrm{SCE}}(\rho) \\
& =\inf _{\Psi: \rho_{\psi}=\rho} \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r .
\end{aligned}
$$

The Monge solution

The Monge solution

Solving

$$
\min _{\pi: \pi_{\rho}=\rho} \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{1}{\left|r_{i}-r_{j}\right|} \mathrm{d} \pi(r)
$$

is still computationally difficult.

The Monge solution

Solving

$$
\min _{\pi: \pi_{\rho}=\rho} \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{1}{\left|r_{i}-r_{j}\right|} \mathrm{d} \pi(r)
$$

is still computationally difficult.
A Monge solution (if exists) is of much lower dimension:

$$
\mathrm{d} \pi\left(r_{1}, \ldots, r_{N}\right)=\left[\int_{\mathbb{R}^{3}} \frac{\rho(x)}{N} \prod_{i=1}^{N} \delta\left(r_{i}-f_{i}(x)\right) \mathrm{d} x\right] \mathrm{d} r_{1} \cdots \mathrm{~d} r_{N}
$$

where $f_{1}, \ldots, f_{N}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ are co-motion functions which preserve ρ :

$$
\left(f_{i}\right)_{\sharp} \rho=\rho \quad \forall i=1, \ldots, N .
$$

The Monge solution

Solving

$$
\min _{\pi: \pi_{\rho}=\rho} \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{1}{\left|r_{i}-r_{j}\right|} \mathrm{d} \pi(r)
$$

is still computationally difficult.
A Monge solution (if exists) is of much lower dimension:

$$
\mathrm{d} \pi\left(r_{1}, \ldots, r_{N}\right)=\left[\int_{\mathbb{R}^{3}} \frac{\rho(x)}{N} \prod_{i=1}^{N} \delta\left(r_{i}-f_{i}(x)\right) \mathrm{d} x\right] \mathrm{d} r_{1} \cdots \mathrm{~d} r_{N}
$$

where $f_{1}, \ldots, f_{N}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ are co-motion functions which preserve ρ :

$$
\left(f_{i}\right)_{\sharp \rho}=\rho \quad \forall i=1, \ldots, N .
$$

Note. Consider $f_{1}(x)=x$ to recover the familiar Monge solution.

The Monge problem

The DFT optimal transport problem

$$
\min _{\pi: \pi_{\rho}=\rho} \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3 N}} \frac{1}{\left|r_{i}-r_{j}\right|} \mathrm{d} \pi(r)
$$

becomes the Monge problem

$$
\inf _{f_{1}, \ldots, f_{N}} \sum_{1 \leq i<j \leq N} \int_{\mathbb{R}^{3}} \frac{1}{\left|f_{i}(x)-f_{j}(x)\right|} \frac{\rho(x)}{N} \mathrm{~d} x
$$

over all co-motion functions f_{1}, \ldots, f_{N} which preserve ρ.

Results and open problems

Results and open problems

1. The infimum in the Monge problem is the same as the minimum in the DFT optimal transport problem. [Colombo, Marino (2013)].

Results and open problems

1. The infimum in the Monge problem is the same as the minimum in the DFT optimal transport problem. [Colombo, Marino (2013)].
2. For $N=2$ electrons (in any dimension), the infimum in the Monge problem is attained and is unique. [Cotar, Friesecke, Klïppelberg (2013)].

Results and open problems

1. The infimum in the Monge problem is the same as the minimum in the DFT optimal transport problem. [Colombo, Marino (2013)].
2. For $N=2$ electrons (in any dimension), the infimum in the Monge problem is attained and is unique. [Cotar, Friesecke, Klïppelberg (2013)].
3. In dimension 1, for any N electrons, the infimum in the Monge problem is attained, and unique (after symmetrization). [Colombo, De Pascale, Di Marino (2015)].

Results and open problems

1. The infimum in the Monge problem is the same as the minimum in the DFT optimal transport problem. [Colombo, Marino (2013)].
2. For $N=2$ electrons (in any dimension), the infimum in the Monge problem is attained and is unique. [Cotar, Friesecke, Kliuppelberg (2013)].
3. In dimension 1, for any N electrons, the infimum in the Monge problem is attained, and unique (after symmetrization). [Colombo, De Pascale, Di Marino (2015)].
4. For general dimension (including 3), and general N, the existence of a solution to the Monge problem is open.

Remarks

1. Non-smoothness. Even in dimension 1 with $N=2$ electrons, the co-motion functions are discontinuous.

Remarks

1. Non-smoothness. Even in dimension 1 with $N=2$ electrons, the co-motion functions are discontinuous.
2. Non-uniqueness. In dimension 3 with $N=3$ electrons, there exist solutions to DFT optimal transport which are not Monge solutions. [Pass (2013)].

Remarks

1. Non-smoothness. Even in dimension 1 with $N=2$ electrons, the co-motion functions are discontinuous.
2. Non-uniqueness. In dimension 3 with $N=3$ electrons, there exist solutions to DFT optimal transport which are not Monge solutions. [Pass (2013)].

Non-Coulombic costs

Remarks

1. Non-smoothness. Even in dimension 1 with $N=2$ electrons, the co-motion functions are discontinuous.
2. Non-uniqueness. In dimension 3 with $N=3$ electrons, there exist solutions to DFT optimal transport which are not Monge solutions. [Pass (2013)].

Non-Coulombic costs

1. No-solutions. There exist a cost such that in dimension 1 with $N=3$ electrons, the Monge problem has no solution. [Moameni, Pass (2017); Friesecke (2019); Gerolin, Kausamo, Rajala (2019)].

Remarks

1. Non-smoothness. Even in dimension 1 with $N=2$ electrons, the co-motion functions are discontinuous.
2. Non-uniqueness. In dimension 3 with $N=3$ electrons, there exist solutions to DFT optimal transport which are not Monge solutions. [Pass (2013)].

Non-Coulombic costs

1. No-solutions. There exist a cost such that in dimension 1 with $N=3$ electrons, the Monge problem has no solution. [Moameni, Pass (2017); Friesecke (2019); Gerolin, Kausamo, Rajala (2019)].
2. See [P15] and [DGN17] for the general theory of multi-marginal optimal transport.

The Monge solution in dimension 1

The Monge solution in dimension 1

Choose $f_{1}(x):=x, f_{2}, \ldots, f_{N}: \mathbb{R} \rightarrow \mathbb{R}$ such that, for each $i=2, \ldots, N$, the amount of ρ-mass between $f_{i}(x)$ and $f_{i+1}(x)$ is equal to 1: $\int_{f_{i}(x)}^{f_{i+1}(x)} \rho\left(x^{\prime}\right) \mathrm{d} x^{\prime}=1$ for all x and i.

The Monge solution in dimension 1

Choose $f_{1}(x):=x, f_{2}, \ldots, f_{N}: \mathbb{R} \rightarrow \mathbb{R}$ such that, for each $i=2, \ldots, N$, the amount of ρ-mass between $f_{i}(x)$ and $f_{i+1}(x)$ is equal to 1: $\int_{f_{i}(x)}^{f_{i}+1(x)} \rho\left(x^{\prime}\right) \mathrm{d} x^{\prime}=1$ for all x and i.
In words, if the first electron is at $x_{1} \sim \rho$,

The Monge solution in dimension 1

Choose $f_{1}(x):=x, f_{2}, \ldots, f_{N}: \mathbb{R} \rightarrow \mathbb{R}$ such that, for each $i=2, \ldots, N$, the amount of ρ-mass between $f_{i}(x)$ and $f_{i+1}(x)$ is equal to 1: $\int_{f_{i}(x)}^{f_{i+1}(x)} \rho\left(x^{\prime}\right) \mathrm{d} x^{\prime}=1$ for all x and i.
In words, if the first electron is at $x_{1} \sim \rho$, then the remaining electrons are at $x_{2}=f_{2}\left(x_{1}\right), \ldots, x_{N}=f_{N}\left(x_{1}\right)$

The Monge solution in dimension 1

Choose $f_{1}(x):=x, f_{2}, \ldots, f_{N}: \mathbb{R} \rightarrow \mathbb{R}$ such that, for each $i=2, \ldots, N$, the amount of ρ-mass between $f_{i}(x)$ and $f_{i+1}(x)$ is equal to 1: $\int_{f_{i}(x)}^{f_{i+1}(x)} \rho\left(x^{\prime}\right) \mathrm{d} x^{\prime}=1$ for all x and i.
In words, if the first electron is at $x_{1} \sim \rho$, then the remaining electrons are at $x_{2}=f_{2}\left(x_{1}\right), \ldots, x_{N}=f_{N}\left(x_{1}\right)$ such that each pair of neighbors $\left(x_{i}, x_{i+1}\right)$ are separated by an equal amount of ρ-mass.

The Monge solution in dimension 1

Choose $f_{1}(x):=x, f_{2}, \ldots, f_{N}: \mathbb{R} \rightarrow \mathbb{R}$ such that, for each $i=2, \ldots, N$, the amount of ρ-mass between $f_{i}(x)$ and $f_{i+1}(x)$ is equal to 1: $\int_{f_{i}(x)}^{f_{i+1}(x)} \rho\left(x^{\prime}\right) \mathrm{d} x^{\prime}=1$ for all x and i.
In words, if the first electron is at $x_{1} \sim \rho$, then the remaining electrons are at $x_{2}=f_{2}\left(x_{1}\right), \ldots, x_{N}=f_{N}\left(x_{1}\right)$ such that each pair of neighbors $\left(x_{i}, x_{i+1}\right)$ are separated by an equal amount of ρ-mass.

Explicitly, for $i=2, \ldots, N$,

$$
f_{i}(x)= \begin{cases}F_{\rho}^{-1}\left(F_{\rho}(x)+\frac{i-1}{N}\right) & \text { if } F_{\rho}(x) \leq \frac{N-i+1}{N} \\ F_{\rho}^{-1}\left(F_{\rho}(x)+\frac{i-1}{N}-1\right) & \text { if } F_{\rho}(x)>\frac{N-i+1}{N}\end{cases}
$$

where F_{ρ} is cumulative distribution function of ρ.

The Monge solution in dimension 1

Choose $f_{1}(x):=x, f_{2}, \ldots, f_{N}: \mathbb{R} \rightarrow \mathbb{R}$ such that, for each $i=2, \ldots, N$, the amount of ρ-mass between $f_{i}(x)$ and $f_{i+1}(x)$ is equal to 1: $\int_{f_{i}(x)}^{f_{i+1}(x)} \rho\left(x^{\prime}\right) \mathrm{d} x^{\prime}=1$ for all x and i.
In words, if the first electron is at $x_{1} \sim \rho$, then the remaining electrons are at $x_{2}=f_{2}\left(x_{1}\right), \ldots, x_{N}=f_{N}\left(x_{1}\right)$ such that each pair of neighbors $\left(x_{i}, x_{i+1}\right)$ are separated by an equal amount of ρ-mass.

Explicitly, for $i=2, \ldots, N$,

$$
f_{i}(x)= \begin{cases}F_{\rho}^{-1}\left(F_{\rho}(x)+\frac{i-1}{N}\right) & \text { if } F_{\rho}(x) \leq \frac{N-i+1}{N} \\ F_{\rho}^{-1}\left(F_{\rho}(x)+\frac{i-1}{N}-1\right) & \text { if } F_{\rho}(x)>\frac{N-i+1}{N}\end{cases}
$$

where F_{ρ} is cumulative distribution function of ρ.
Group law. $f_{i}=\underbrace{f_{2} \circ \cdots \circ f_{2}}_{i-1 \text { times }}$ for $i=2, \ldots, N$.

Numerical methods

Numerical methods

1. Discretize problem and use linear programming (small N).

Numerical methods

1. Discretize problem and use linear programming (small N).
2. Duality (small N).

Numerical methods

1. Discretize problem and use linear programming (small N).
2. Duality (small N).
3. Multi-marginal Sinkhorn algorithm/entropic regularization (small N).

Numerical methods

1. Discretize problem and use linear programming (small N).
2. Duality (small N).
3. Multi-marginal Sinkhorn algorithm/entropic regularization (small N).
4. Semidefinite convex relaxation (large N).

Numerical methods

1. Discretize problem and use linear programming (small N).
2. Duality (small N).
3. Multi-marginal Sinkhorn algorithm/entropic regularization (small N).
4. Semidefinite convex relaxation (large N).
5. Langevin dynamics with moment constraints (large N).

Numerical methods

1. Discretize problem and use linear programming (small N).
2. Duality (small N).
3. Multi-marginal Sinkhorn algorithm/entropic regularization (small N).
4. Semidefinite convex relaxation (large N).
5. Langevin dynamics with moment constraints (large N).
6. Genetic column generation (large N).

Numerical methods

1. Discretize problem and use linear programming (small N).
2. Duality (small N).
3. Multi-marginal Sinkhorn algorithm/entropic regularization (small N).
4. Semidefinite convex relaxation (large N).
5. Langevin dynamics with moment constraints (large N).
6. Genetic column generation (large N).

- See Section 3 in [FGG-G22] for more information.

Quasi-Monge solutions

Quasi-Monge solutions

Monge solution:

$$
\mathrm{d} \pi\left(r_{1}, \ldots, r_{N}\right)=\left[\int_{\mathbb{R}^{3}} \frac{\rho(x)}{N} \prod_{i=1}^{N} \delta\left(r_{i}-f_{i}(x)\right) \mathrm{d} x\right] \mathrm{d} r_{1} \cdots \mathrm{~d} r_{N}
$$

with $\left(f_{i}\right)_{\sharp \rho}=\rho$ for all $i=1, \ldots, N$.

Quasi-Monge solutions

Monge solution:

$$
\mathrm{d} \pi\left(r_{1}, \ldots, r_{N}\right)=\left[\int_{\mathbb{R}^{3}} \frac{\rho(x)}{N} \prod_{i=1}^{N} \delta\left(r_{i}-f_{i}(x)\right) \mathrm{d} x\right] \mathrm{d} r_{1} \cdots \mathrm{~d} r_{N}
$$

with $\left(f_{i}\right)_{\sharp \rho}=\rho$ for all $i=1, \ldots, N$.
Quasi-Monge solution: [Friesecke, Vögler (2018)]

$$
\mathrm{d} \pi\left(r_{1}, \ldots, r_{N}\right)=\left[\int_{\mathbb{R}^{3}} \alpha(x) \prod_{i=1}^{N} \delta\left(r_{i}-f_{i}(x)\right) \mathrm{d} x\right] \mathrm{d} r_{1} \cdots \mathrm{~d} r_{N}
$$

with α any probability measure on \mathbb{R}^{3}, and $f_{1}, \ldots, f_{N}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that

$$
\left(f_{i}\right)_{\sharp} \alpha=\frac{\rho}{N} \quad \forall i=1, \ldots, N .
$$

Quasi-Monge solutions

Monge solution:

$$
\mathrm{d} \pi\left(r_{1}, \ldots, r_{N}\right)=\left[\int_{\mathbb{R}^{3}} \frac{\rho(x)}{N} \prod_{i=1}^{N} \delta\left(r_{i}-f_{i}(x)\right) \mathrm{d} x\right] \mathrm{d} r_{1} \cdots \mathrm{~d} r_{N}
$$

with $\left(f_{i}\right)_{\sharp \rho}=\rho$ for all $i=1, \ldots, N$.
Quasi-Monge solution: [Friesecke, Vögler (2018)]

$$
\mathrm{d} \pi\left(r_{1}, \ldots, r_{N}\right)=\left[\int_{\mathbb{R}^{3}} \alpha(x) \prod_{i=1}^{N} \delta\left(r_{i}-f_{i}(x)\right) \mathrm{d} x\right] \mathrm{d} r_{1} \cdots \mathrm{~d} r_{N}
$$

with α any probability measure on \mathbb{R}^{3}, and $f_{1}, \ldots, f_{N}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that

$$
\left(f_{i}\right)_{\sharp} \alpha=\frac{\rho}{N} \quad \forall i=1, \ldots, N .
$$

Note. If $\alpha=\frac{\rho}{N}$ then quasi-Monge is actually Monge.

Symmetric solutions

Symmetric solutions

The wave function Ψ is antisymmetric so solutions π to the DFT optimal transport problem can be assumed to be symmetric:

$$
\mathrm{d} \pi\left(r_{1}, \ldots, r_{N}\right) \quad \mapsto \quad \frac{1}{N!} \sum_{\sigma} \mathrm{d} \pi\left(\sigma\left(r_{1}\right), \ldots, \sigma\left(r_{N}\right)\right)
$$

where the sum is over all permutations σ of $\{1, \ldots, N\}$.

Symmetric solutions

The wave function Ψ is antisymmetric so solutions π to the DFT optimal transport problem can be assumed to be symmetric:

$$
\mathrm{d} \pi\left(r_{1}, \ldots, r_{N}\right) \quad \mapsto \quad \frac{1}{N!} \sum_{\sigma} \mathrm{d} \pi\left(\sigma\left(r_{1}\right), \ldots, \sigma\left(r_{N}\right)\right)
$$

where the sum is over all permutations σ of $\{1, \ldots, N\}$.
In particular, Monge solutions can be assumed to by symmetric:
$\int_{\mathbb{R}^{3}} \frac{\rho(x)}{N} \prod_{i=1}^{N} \delta\left(r_{i}-f_{i}(x)\right) \mathrm{d} x \mapsto \frac{1}{N!} \sum_{\sigma} \int_{\mathbb{R}^{3}} \frac{\rho(x)}{N} \prod_{i=1}^{N} \delta\left(r_{\sigma(i)}-f_{\sigma(i)}(x)\right) \mathrm{d} x$,
with $\frac{1}{N} \sum_{i=1}^{N}\left(f_{i}\right)_{\sharp} \rho=\rho$ (weaker condition)

Quasi-Monge symmetric solutions

A quasi-Monge solution

$$
\left[\int_{\mathbb{R}^{3}} \alpha(x) \prod_{i=1}^{N} \delta\left(r_{i}-f_{i}(x)\right) \mathrm{d} x\right] \mathrm{d} r_{1} \cdots \mathrm{~d} r_{N}
$$

with α any probability measure on \mathbb{R}^{3}, and $f_{1}, \ldots, f_{N}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that

$$
\left(f_{i}\right)_{\sharp} \alpha=\frac{\rho}{N} \quad \forall i=1, \ldots, N,
$$

Quasi-Monge symmetric solutions

A quasi-Monge solution

$$
\left[\int_{\mathbb{R}^{3}} \alpha(x) \prod_{i=1}^{N} \delta\left(r_{i}-f_{i}(x)\right) \mathrm{d} x\right] \mathrm{d} r_{1} \cdots \mathrm{~d} r_{N}
$$

with α any probability measure on \mathbb{R}^{3}, and $f_{1}, \ldots, f_{N}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that

$$
\left(f_{i}\right)_{\sharp} \alpha=\frac{\rho}{N} \quad \forall i=1, \ldots, N,
$$

becomes a symmetric quasi-Monge solution:

$$
\frac{1}{N!} \sum_{\sigma}\left[\int_{\mathbb{R}^{3}} \alpha(x) \prod_{i=1}^{N} \delta\left(r_{\sigma(i)}-f_{\sigma(i)}(x)\right) \mathrm{d} x\right] \mathrm{d} r_{1} \cdots \mathrm{~d} r_{N}
$$

with α any probability measure on \mathbb{R}^{3}, and $f_{1}, \ldots, f_{N}: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ such that

$$
\frac{1}{N} \sum_{i=1}^{N}\left(f_{i}\right)_{\sharp} \alpha=\frac{\rho}{N} \quad \text { (weaker condition) }
$$

Discrete DFT multi-marginal optimal transport

Discrete DFT multi-marginal optimal transport

Let ρ be the uniform measure on discrete atoms $\left\{a_{k}\right\}_{k=1}^{\ell} \subseteq \mathbb{R}^{3}$.

Discrete DFT multi-marginal optimal transport

Let ρ be the uniform measure on discrete atoms $\left\{a_{k}\right\}_{k=1}^{\ell} \subseteq \mathbb{R}^{3}$.
A coupling π of N electrons is

$$
\pi=\sum_{i_{1}, \ldots, i_{N}=1}^{\ell} \pi_{i_{1}, \ldots, i_{N}}\left(\delta_{a_{i_{1}}} \otimes \cdots \otimes \delta_{a_{i_{N}}}\right)
$$

satisfying the marginal constraint

$$
\sum_{i_{j}, j \neq m} \pi_{i_{1}, \ldots, i_{N}}=\rho_{m}=\frac{1}{\ell} \quad \forall m \in\{1, \ldots, \ell\} .
$$

Discrete DFT multi-marginal optimal transport

Let ρ be the uniform measure on discrete atoms $\left\{a_{k}\right\}_{k=1}^{\ell} \subseteq \mathbb{R}^{3}$.
A coupling π of N electrons is

$$
\pi=\sum_{i_{1}, \ldots, i_{N}=1}^{\ell} \pi_{i_{1}, \ldots, i_{N}}\left(\delta_{a_{i_{1}}} \otimes \cdots \otimes \delta_{a_{i_{N}}}\right)
$$

satisfying the marginal constraint

$$
\sum_{i_{i}, j \neq m} \pi_{i_{1}, \ldots, i_{N}}=\rho_{m}=\frac{1}{\ell} \quad \forall m \in\{1, \ldots, \ell\} .
$$

The optimization problem is

$$
\min _{\pi} \sum_{i_{1}, \ldots, i_{N}}\left(\sum_{1 \leq k<m \leq N} \frac{1}{\left|a_{i_{k}}-a_{i_{m}}\right|}\right) \pi_{i_{1}, \ldots, i_{N}} .
$$

No optimal Monge solutions

No optimal Monge solutions

Symmetric Monge solution:
$\frac{1}{N!} \sum_{\sigma} \sum_{k=1}^{\ell} \frac{1}{\ell}\left(\delta_{f_{1}\left(a_{\sigma(k)}\right)} \otimes \cdots \otimes \delta_{f_{N}\left(a_{\sigma(k)}\right)}\right)$ where f_{1}, \ldots, f_{N} are permutations of $\left\{a_{1}, \ldots, a_{\ell}\right\}$.

No optimal Monge solutions

Symmetric Monge solution:
$\frac{1}{N!} \sum_{\sigma} \sum_{k=1}^{\ell} \frac{1}{\ell}\left(\delta_{f_{1}\left(a_{\sigma(k)}\right)} \otimes \cdots \otimes \delta_{f_{N}\left(a_{\sigma(k)}\right)}\right)$ where f_{1}, \ldots, f_{N} are permutations of $\left\{a_{1}, \ldots, a_{\ell}\right\}$.

- $N=2$: The Birkhoff-von Neumann theorem shows that there is always an optimal Monge solution.

No optimal Monge solutions

Symmetric Monge solution:

$\frac{1}{N!} \sum_{\sigma} \sum_{k=1}^{\ell} \frac{1}{\ell}\left(\delta_{f_{1}\left(a_{\sigma(k)}\right)} \otimes \cdots \otimes \delta_{f_{N}\left(a_{\sigma(k)}\right)}\right)$ where f_{1}, \ldots, f_{N} are permutations of $\left\{a_{1}, \ldots, a_{\ell}\right\}$.

- $N=2$: The Birkhoff-von Neumann theorem shows that there is always an optimal Monge solution.
- $N=3$: Friesecke (2018) showed that there isn't necessarily an optimal Monge solution (already with $\ell=3$).

Quasi-Monge solutions in discrete multi-marginal optimal transport

Quasi-Monge solutions in discrete multi-marginal optimal transport

Let ρ be any probability measure on discrete atoms $\left\{a_{k}\right\}_{k=1}^{\ell}$.

Quasi-Monge solutions in discrete multi-marginal optimal transport

Let ρ be any probability measure on discrete atoms $\left\{a_{k}\right\}_{k=1}^{\ell}$.
Symmetric quasi-Monge solution:

$$
\frac{1}{N!} \sum_{\sigma} \sum_{k=1}^{\ell} \alpha_{k}\left(\delta_{f_{1}\left(a_{\sigma(k)}\right)} \otimes \cdots \otimes \delta_{f_{N}\left(a_{\sigma(k)}\right)}\right)
$$

where f_{1}, \ldots, f_{N} are permutations of $\left\{a_{1}, \ldots, a_{\ell}\right\}$, and $\left\{\alpha_{k}\right\}_{k=1}^{\ell}$ are nonnegative numbers such that

$$
\sum_{k=1}^{\ell} \alpha_{k}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{f_{i}\left(a_{k}\right)}\right)=\rho
$$

Quasi-Monge solutions in discrete multi-marginal optimal transport

Let ρ be any probability measure on discrete atoms $\left\{a_{k}\right\}_{k=1}^{\ell}$.
Symmetric quasi-Monge solution:

$$
\frac{1}{N!} \sum_{\sigma} \sum_{k=1}^{\ell} \alpha_{k}\left(\delta_{f_{1}\left(a_{\sigma(k)}\right)} \otimes \cdots \otimes \delta_{f_{N}\left(a_{\sigma(k)}\right)}\right)
$$

where f_{1}, \ldots, f_{N} are permutations of $\left\{a_{1}, \ldots, a_{\ell}\right\}$, and $\left\{\alpha_{k}\right\}_{k=1}^{\ell}$ are nonnegative numbers such that

$$
\sum_{k=1}^{\ell} \alpha_{k}\left(\frac{1}{N} \sum_{i=1}^{N} \delta_{f_{i}\left(a_{k}\right)}\right)=\rho
$$

Note. The assumption that ρ is uniform is no longer needed.

Theorem [Friesecke, Vögler (2018)]

Theorem [Friesecke, Vögler (2018)]

Let ρ be any probability measure on discrete atoms $\left\{a_{k}\right\}_{k=1}^{\ell} \subseteq \mathbb{R}^{3}$.

Theorem [Friesecke, Vögler (2018)]

Let ρ be any probability measure on discrete atoms $\left\{a_{k}\right\}_{k=1}^{\ell} \subseteq \mathbb{R}^{3}$. Then, the discrete DFT optimal transport problem always has a quasi-Monge solution:

$$
\frac{1}{N!} \sum_{\sigma} \sum_{k=1}^{\ell} \alpha_{k}\left(\delta_{f_{1}\left(a_{\sigma(k)}\right)} \otimes \cdots \otimes \delta_{f_{N}\left(a_{\sigma(k)}\right)}\right) .
$$

Theorem [Friesecke, Vögler (2018)]

Let ρ be any probability measure on discrete atoms $\left\{a_{k}\right\}_{k=1}^{\ell} \subseteq \mathbb{R}^{3}$. Then, the discrete DFT optimal transport problem always has a quasi-Monge solution:
$\frac{1}{N!} \sum_{\sigma} \sum_{k=1}^{\ell} \alpha_{k}\left(\delta_{f_{1}\left(a_{\sigma(k)}\right)} \otimes \cdots \otimes \delta_{f_{N}\left(a_{\sigma(k)}\right)}\right)$.

Note. The dimension of general measures supported on $\left\{a_{1}, \ldots, a_{\ell}\right\}^{N}$ is ℓ^{N},

Theorem [Friesecke, Vögler (2018)]

Let ρ be any probability measure on discrete atoms $\left\{a_{k}\right\}_{k=1}^{\ell} \subseteq \mathbb{R}^{3}$. Then, the discrete DFT optimal transport problem always has a quasi-Monge solution:
$\frac{1}{N!} \sum_{\sigma} \sum_{k=1}^{\ell} \alpha_{k}\left(\delta_{f_{1}\left(a_{\sigma(k)}\right)} \otimes \cdots \otimes \delta_{f_{N}\left(a_{\sigma(k)}\right)}\right)$.

Note. The dimension of general measures supported on $\left\{a_{1}, \ldots, a_{\ell}\right\}^{N}$ is ℓ^{N}, but the dimension of quasi-Monge measures is only $\ell \cdot(N+1)$,

Theorem [Friesecke, Vögler (2018)]

Let ρ be any probability measure on discrete atoms $\left\{a_{k}\right\}_{k=1}^{\ell} \subseteq \mathbb{R}^{3}$. Then, the discrete DFT optimal transport problem always has a quasi-Monge solution:
$\frac{1}{N!} \sum_{\sigma} \sum_{k=1}^{\ell} \alpha_{k}\left(\delta_{f_{1}\left(a_{\sigma(k)}\right)} \otimes \cdots \otimes \delta_{f_{N}\left(a_{\sigma(k)}\right)}\right)$.

Note. The dimension of general measures supported on $\left\{a_{1}, \ldots, a_{\ell}\right\}^{N}$ is ℓ^{N}, but the dimension of quasi-Monge measures is only $\ell \cdot(N+1)$, because there are ℓ variables for $\left\{\alpha_{k}\right\}_{k=1}^{\ell}$,

Theorem [Friesecke, Vögler (2018)]

Let ρ be any probability measure on discrete atoms $\left\{a_{k}\right\}_{k=1}^{\ell} \subseteq \mathbb{R}^{3}$. Then, the discrete DFT optimal transport problem always has a quasi-Monge solution:
$\frac{1}{N!} \sum_{\sigma} \sum_{k=1}^{\ell} \alpha_{k}\left(\delta_{f_{1}\left(a_{\sigma(k)}\right)} \otimes \cdots \otimes \delta_{f_{N}\left(a_{\sigma(k)}\right)}\right)$.

Note. The dimension of general measures supported on $\left\{a_{1}, \ldots, a_{\ell}\right\}^{N}$ is ℓ^{N}, but the dimension of quasi-Monge measures is only $\ell \cdot(N+1)$, because there are ℓ variables for $\left\{\alpha_{k}\right\}_{k=1}^{\ell}$, and for each $k=1, \ldots, \ell$, there are N variables $f_{1}\left(a_{k}\right), \ldots, f_{N}\left(a_{k}\right)$.

Theorem [Friesecke, Vögler (2018)]

Let ρ be any probability measure on discrete atoms $\left\{a_{k}\right\}_{k=1}^{\ell} \subseteq \mathbb{R}^{3}$. Then, the discrete DFT optimal transport problem always has a quasi-Monge solution:
$\frac{1}{N!} \sum_{\sigma} \sum_{k=1}^{\ell} \alpha_{k}\left(\delta_{f_{1}\left(a_{\sigma(k)}\right)} \otimes \cdots \otimes \delta_{f_{N}\left(a_{\sigma(k)}\right)}\right)$.

Note. The dimension of general measures supported on $\left\{a_{1}, \ldots, a_{\ell}\right\}^{N}$ is ℓ^{N}, but the dimension of quasi-Monge measures is only $\ell \cdot(N+1)$, because there are ℓ variables for $\left\{\alpha_{k}\right\}_{k=1}^{\ell}$, and for each $k=1, \ldots, \ell$, there are N variables $f_{1}\left(a_{k}\right), \ldots, f_{N}\left(a_{k}\right)$.

There is more to the story...

Proof sketch

- The space of symmetric couplings
$\frac{1}{N!} \sum_{\sigma} \sum_{i_{1}, \ldots, i_{N}=1}^{\ell} \pi_{i_{\sigma(1)}, \ldots, i_{\sigma(N)}}\left(\delta_{a_{\sigma(1)}} \otimes \cdots \otimes \delta_{a_{i_{\sigma(N)}}}\right)$ forms a polytope.

Proof sketch

- The space of symmetric couplings
$\frac{1}{N!} \sum_{\sigma} \sum_{i_{1}, \ldots, i_{N}=1}^{\ell} \pi_{i_{\sigma(1)}, \ldots, i_{\sigma(N)}}\left(\delta_{a_{\sigma(1)}} \otimes \cdots \otimes \delta_{a_{\sigma(N)}}\right)$ forms a polytope.
- The extreme points are symmetric Monge couplings $\frac{1}{N!} \sum_{\sigma}\left(\delta_{a_{\sigma(1)}} \otimes \cdots \otimes \delta_{a_{i_{(N)}}}\right)$.

Proof sketch

- The space of symmetric couplings
$\frac{1}{N!} \sum_{\sigma} \sum_{i_{1}, \ldots, i_{N}=1}^{\ell} \pi_{i_{\sigma(1)}, \ldots, i_{\sigma(N)}}\left(\delta_{a_{\sigma(1)}} \otimes \cdots \otimes \delta_{a_{i_{\sigma(N)}}}\right)$ forms a polytope.
- The extreme points are symmetric Monge couplings $\frac{1}{N!} \sum_{\sigma}\left(\delta_{a_{i_{\sigma(1)}}} \otimes \cdots \otimes \delta_{a_{i_{\sigma(N)}}}\right)$.
- The marginal constraints
$\frac{1}{N!} \sum_{\sigma} \sum_{i_{j}, j \neq m} \pi_{i_{\sigma(1), \ldots, i_{\sigma(N)}}}=\rho_{m} \forall m \in\{1, \ldots, \ell\}$ correspond to intersecting the polytope with $(\ell-1)$ hyperplanes.

Proof sketch

- The space of symmetric couplings
$\frac{1}{N!} \sum_{\sigma} \sum_{i_{1}, \ldots, i_{N}=1}^{\ell} \pi_{i_{\sigma(1)}, \ldots, i_{\sigma(N)}}\left(\delta_{a_{i_{\sigma(1)}}} \otimes \cdots \otimes \delta_{a_{i_{\sigma(N)}}}\right)$ forms a polytope.
- The extreme points are symmetric Monge couplings

$$
\frac{1}{N!} \sum_{\sigma}\left(\delta_{a_{i_{\sigma(1)}}} \otimes \cdots \otimes \delta_{a_{i_{\sigma(N)}}}\right) .
$$

- The marginal constraints
$\frac{1}{N!} \sum_{\sigma} \sum_{i_{j}, j \neq m} \pi_{i_{\sigma(1)}, \ldots, i_{\sigma(N)}}=\rho_{m} \forall m \in\{1, \ldots, \ell\}$ correspond to intersecting the polytope with $(\ell-1)$ hyperplanes.
- Every extreme point in the intersected polytope can be written as a convex combination of just ℓ symmetric Monge coupling, so it is a symmetric quasi-Monge coupling $\frac{1}{N!} \sum_{\sigma} \sum_{k=1}^{\ell} \alpha_{k}\left(\delta_{a_{\sigma(1)}^{k}} \otimes \cdots \otimes \delta_{a_{i, k}(N)}\right)$.

Proof sketch

- The space of symmetric couplings
$\frac{1}{N!} \sum_{\sigma} \sum_{i_{1}, \ldots, i_{N}=1}^{\ell} \pi_{i_{\sigma(1)}, \ldots, i_{\sigma(N)}}\left(\delta_{a_{i_{\sigma(1)}}} \otimes \cdots \otimes \delta_{a_{\sigma(N)}}\right)$ forms a polytope.
- The extreme points are symmetric Monge couplings

$$
\frac{1}{N!} \sum_{\sigma}\left(\delta_{a_{i_{\sigma(1)}}} \otimes \cdots \otimes \delta_{a_{i_{\sigma(N)}}}\right) .
$$

- The marginal constraints
$\frac{1}{N!} \sum_{\sigma} \sum_{i_{j}, j \neq m} \pi_{i_{\sigma(1)}, \ldots, i_{\sigma(N)}}=\rho_{m} \forall m \in\{1, \ldots, \ell\}$ correspond to intersecting the polytope with $(\ell-1)$ hyperplanes.
- Every extreme point in the intersected polytope can be written as a convex combination of just ℓ symmetric Monge coupling, so it is a symmetric quasi-Monge coupling $\frac{1}{N!} \sum_{\sigma} \sum_{k=1}^{\ell} \alpha_{k}\left(\delta_{a_{i j} k(1)} \otimes \cdots \otimes \delta_{a_{i k} k}\right)$.
- Optimal values of linear objectives are attained at extreme points.

References

[DGN17] Simone Di Marino , Augusto Gerolin and Luca Nenna. Optimal transportation theory with repulsive costs, From the book
Topological Optimization and Optimal Transport (2017).
[FGG-G22] Gero Friesecke, Augusto Gerolin, Paola Gori-Giorgi. The Strong-Interaction Limit of Density Functional Theory, Density Functional Theory, pages 183266, Springer (2022).
[HT22] Trygve Helgaker, Andrew M. Teale. Lieb variation principle in density-functional theory. The physics and mathematics of Elliott Lieb-the 90th anniversary. Vol. I, 527559. EMS Press, Berlin, (2022).
[P15] Brendan Pass. Multi-marginal optimal transport: theory and applications, ESAIM: Math. Model. Numer. Anal. 49 (2015)
1771-1790. (Special issue on "Optimal transport in applied mathematics.")

Some mathematical

 aspects of density functional theoryFoundations of DFT

Foundations of DFT

The map

$$
v \mapsto H(v):=-\sum_{i=1}^{N} \Delta_{i}+\sum_{i=1}^{N} v\left(r_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|r_{i}-r_{j}\right|}
$$

is injective.

Foundations of DFT

The map

$$
v \mapsto H(v):=-\sum_{i=1}^{N} \Delta_{i}+\sum_{i=1}^{N} v\left(r_{i}\right)+\sum_{1 \leq i<j \leq N} \frac{1}{\left|r_{i}-r_{j}\right|}
$$

is injective.
Hohenberg-Kohn (1964): The map $v \mapsto \rho_{v}$ is injective, where

$$
\rho_{v}(x):=\rho_{\Psi}(x):=\int\left|\Psi\left(x, r_{2}, \ldots, r_{N}\right)\right|^{2} \mathrm{~d} r_{2} \cdots \mathrm{~d} r_{N}
$$

with Ψ the ground state of $H(v)$.

The Hohenberg-Kohn Theorem

If ρ is ground state representable, then
$\rho \mapsto v_{\rho} \mapsto H\left(v_{\rho}\right) \mapsto \Psi_{\rho} \quad$ where Ψ_{ρ} is the ground state of $H\left(v_{\rho}\right)$.
In words: The one-electron marginal ρ uniquely determines the multi-electron ground state Ψ.

The Hohenberg-Kohn Theorem

If ρ is ground state representable, then
$\rho \mapsto v_{\rho} \mapsto H\left(v_{\rho}\right) \mapsto \Psi_{\rho} \quad$ where Ψ_{ρ} is the ground state of $H\left(v_{\rho}\right)$.
In words: The one-electron marginal ρ uniquely determines the multi-electron ground state Ψ.

In particular, $E=\inf _{\psi}\langle\Psi, H \Psi\rangle$ is a function of just ρ.

The Hohenberg-Kohn variational principle

Let ρ be ground state representable and define the universal functional

$$
F_{\mathrm{HK}}(\rho):=E\left(v_{\rho}\right)-\left\langle\rho, v_{\rho}\right\rangle \quad \text { where } \quad\left\langle\rho, v_{\rho}\right\rangle:=\int v_{\rho}(x) \mathrm{d} \rho(x)
$$

The Hohenberg-Kohn variational principle

Let ρ be ground state representable and define the universal functional

$$
F_{\mathrm{HK}}(\rho):=E\left(v_{\rho}\right)-\left\langle\rho, v_{\rho}\right\rangle \quad \text { where } \quad\left\langle\rho, v_{\rho}\right\rangle:=\int v_{\rho}(x) \mathrm{d} \rho(x)
$$

Then, for any v such that $H(v)$ has a ground state, $E(v)=\inf \left\{F_{\mathrm{HK}}(\rho)+\langle\rho, v\rangle: \rho\right.$ is ground state representable $\}$.

The Hohenberg-Kohn variational principle

Let ρ be ground state representable and define the universal functional

$$
F_{\mathrm{HK}}(\rho):=E\left(v_{\rho}\right)-\left\langle\rho, v_{\rho}\right\rangle \quad \text { where } \quad\left\langle\rho, v_{\rho}\right\rangle:=\int v_{\rho}(x) \mathrm{d} \rho(x)
$$

Then, for any v such that $H(v)$ has a ground state,

$$
E(v)=\inf \left\{F_{\mathrm{HK}}(\rho)+\langle\rho, v\rangle: \rho \text { is ground state representable }\right\} .
$$

Problem 1. The form of F_{HK} is unknown, and F_{HK} is non-convex.

The Hohenberg-Kohn variational principle

Let ρ be ground state representable and define the universal functional

$$
F_{\mathrm{HK}}(\rho):=E\left(v_{\rho}\right)-\left\langle\rho, v_{\rho}\right\rangle \quad \text { where } \quad\left\langle\rho, v_{\rho}\right\rangle:=\int v_{\rho}(x) \mathrm{d} \rho(x)
$$

Then, for any v such that $H(v)$ has a ground state,

$$
E(v)=\inf \left\{F_{\mathrm{HK}}(\rho)+\langle\rho, v\rangle: \rho \text { is ground state representable }\right\} .
$$

Problem 1. The form of F_{HK} is unknown, and F_{HK} is non-convex.
Problem 2. The form of the (non convex) space of ground state representable densities is unknown.

The Hohenberg-Kohn variational principle

Let ρ be ground state representable and define the universal functional

$$
F_{\mathrm{HK}}(\rho):=E\left(v_{\rho}\right)-\left\langle\rho, v_{\rho}\right\rangle \quad \text { where } \quad\left\langle\rho, v_{\rho}\right\rangle:=\int v_{\rho}(x) \mathrm{d} \rho(x)
$$

Then, for any v such that $H(v)$ has a ground state,

$$
E(v)=\inf \left\{F_{\mathrm{HK}}(\rho)+\langle\rho, v\rangle: \rho \text { is ground state representable }\right\} .
$$

Problem 1. The form of F_{HK} is unknown, and F_{HK} is non-convex.
Problem 2. The form of the (non convex) space of ground state representable densities is unknown.

Problem 3. The form of the space of potentials whose corresponding Hamiltonian has a ground state is unknown.

Levy-Lieb constrained-search functional and variational principle

Levy-Lieb constrained-search functional and variational princi-

 pleLet
$F_{\mathrm{LL}}(\rho):=\left\{\inf _{\psi: \rho_{\psi}=\rho} \sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}}\left|\nabla_{i} \Psi(r)\right|^{2} \mathrm{~d} r+\sum_{1 \leq i<j<N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r\right\}$

Levy-Lieb constrained-search functional and variational princi-

 pleLet
$F_{\mathrm{LL}}(\rho):=\left\{\inf _{\psi: \rho_{\psi}=\rho} \sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}}\left|\nabla_{i} \Psi(r)\right|^{2} \mathrm{~d} r+\sum_{1 \leq i<j<N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r\right\}$
Then, for any $v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$,

$$
E(v)=\inf \left\{F_{\mathrm{LL}}(\rho)+\langle\rho, v\rangle: \rho=\rho_{\Psi} \text { for some } \Psi\right\}
$$

Levy-Lieb constrained-search functional and variational princi-

 pleLet
$F_{\mathrm{LL}}(\rho):=\left\{\inf _{\psi: \rho_{\psi}=\rho} \sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}}\left|\nabla_{i} \Psi(r)\right|^{2} \mathrm{~d} r+\sum_{1 \leq i<j<N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r\right\}$
Then, for any $v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$,

$$
E(v)=\inf \left\{F_{\mathrm{LL}}(\rho)+\langle\rho, v\rangle: \rho=\rho_{\Psi} \text { for some } \Psi\right\}
$$

Problem 1. The form of F_{LL} is unknown, and F_{LL} is non-convex.

Levy-Lieb constrained-search functional and variational principle

Let
$F_{\mathrm{LL}}(\rho):=\left\{\inf _{\psi: \rho_{\psi}=\rho} \sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}}\left|\nabla_{i} \Psi(r)\right|^{2} \mathrm{~d} r+\sum_{1 \leq i<j<N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r\right\}$
Then, for any $v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$,

$$
E(v)=\inf \left\{F_{\mathrm{LL}}(\rho)+\langle\rho, v\rangle: \rho=\rho_{\Psi} \text { for some } \Psi\right\}
$$

Problem 1. The form of F_{LL} is unknown, and F_{LL} is non-convex.
No problem 2. The space $\left\{\rho=\rho_{\Psi}\right.$ for some $\left.\Psi\right\}$ is convex and easy to describe.

Levy-Lieb constrained-search functional and variational principle

Let
$F_{\mathrm{LL}}(\rho):=\left\{\inf _{\psi: \rho_{\psi}=\rho} \sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}}\left|\nabla_{i} \Psi(r)\right|^{2} \mathrm{~d} r+\sum_{1 \leq i<j<N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r\right\}$
Then, for any $v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$,

$$
E(v)=\inf \left\{F_{\mathrm{LL}}(\rho)+\langle\rho, v\rangle: \rho=\rho_{\Psi} \text { for some } \Psi\right\}
$$

Problem 1. The form of F_{LL} is unknown, and F_{LL} is non-convex.
No problem 2. The space $\left\{\rho=\rho_{\Psi}\right.$ for some $\left.\psi\right\}$ is convex and easy to describe.

No problem 3. The space $L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$ is easy to describe.

Levy-Lieb constrained-search functional and variational principle

Let
$F_{\mathrm{LL}}(\rho):=\left\{\inf _{\psi: \rho_{\psi}=\rho} \sum_{i=1}^{N} \int_{\mathbb{R}^{3 N}}\left|\nabla_{i} \Psi(r)\right|^{2} \mathrm{~d} r+\sum_{1 \leq i<j<N} \int_{\mathbb{R}^{3 N}} \frac{|\Psi(r)|^{2}}{\left|r_{i}-r_{j}\right|} \mathrm{d} r\right\}$
Then, for any $v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$,

$$
E(v)=\inf \left\{F_{\mathrm{LL}}(\rho)+\langle\rho, v\rangle: \rho=\rho_{\Psi} \text { for some } \Psi\right\}
$$

Problem 1. The form of F_{LL} is unknown, and F_{LL} is non-convex.
No problem 2. The space $\left\{\rho=\rho_{\Psi}\right.$ for some $\left.\psi\right\}$ is convex and easy to describe.

No problem 3. The space $L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$ is easy to describe.
Note. When ρ is ground state representable, $F_{\mathrm{LL}}(\rho)=F_{\mathrm{HK}}(\rho)$.

The Lieb functional and variational principle

The Lieb functional and variational principle

Observation. The map $L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right) \ni v \mapsto E(v)$ is strictly concave.

The Lieb functional and variational principle

Observation. The map $L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right) \ni v \mapsto E(v)$ is strictly concave.
[Proof of HK Theorem. Observation + the fact $\nabla E(v)=\rho_{\Psi}$.]

The Lieb functional and variational principle

Observation. The map $L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right) \ni v \mapsto E(v)$ is strictly concave.
[Proof of HK Theorem. Observation + the fact $\nabla E(v)=\rho_{\Psi}$.]
Define, by duality,

$$
F_{\mathrm{L}}(\rho):=\sup \left\{E(v)-\langle v, \rho\rangle: v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)\right\} .
$$

The Lieb functional and variational principle

Observation. The map $L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right) \ni v \mapsto E(v)$ is strictly concave.
[Proof of HK Theorem. Observation + the fact $\nabla E(v)=\rho_{\Psi}$.]
Define, by duality,

$$
F_{\mathrm{L}}(\rho):=\sup \left\{E(v)-\langle v, \rho\rangle: v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)\right\} .
$$

Then,

$$
E(v)=\inf \left\{F_{\mathrm{L}}(\rho)+\langle\rho, v\rangle: \rho \in L^{3}\left(\mathbb{R}^{3}\right) \cap L^{1}\left(\mathbb{R}^{3}\right)\right\} .
$$

The Lieb functional and variational principle

Observation. The map $L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right) \ni v \mapsto E(v)$ is strictly concave.
[Proof of HK Theorem. Observation + the fact $\nabla E(v)=\rho_{\psi}$.] Define, by duality,

$$
F_{L}(\rho):=\sup \left\{E(v)-\langle v, \rho\rangle: v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)\right\} .
$$

Then,

$$
E(v)=\inf \left\{F_{\mathrm{L}}(\rho)+\langle\rho, v\rangle: \rho \in L^{3}\left(\mathbb{R}^{3}\right) \cap L^{1}\left(\mathbb{R}^{3}\right)\right\}
$$

Problem 1. The form of F_{L} is still unknown, but F_{L} is convex.

The Lieb functional and variational principle

Observation. The map $L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right) \ni v \mapsto E(v)$ is strictly concave.
[Proof of HK Theorem. Observation + the fact $\nabla E(v)=\rho_{\Psi}$.] Define, by duality,

$$
F_{\mathrm{L}}(\rho):=\sup \left\{E(v)-\langle v, \rho\rangle: v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)\right\} .
$$

Then,

$$
E(v)=\inf \left\{F_{L}(\rho)+\langle\rho, v\rangle: \rho \in L^{3}\left(\mathbb{R}^{3}\right) \cap L^{1}\left(\mathbb{R}^{3}\right)\right\} .
$$

Problem 1. The form of F_{L} is still unknown, but F_{L} is convex.
No problem 2. The space $L^{3}\left(\mathbb{R}^{3}\right) \cap L^{1}\left(\mathbb{R}^{3}\right)$ is easy to describe.

The Lieb functional and variational principle

Observation. The map $L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right) \ni v \mapsto E(v)$ is strictly concave.
[Proof of HK Theorem. Observation + the fact $\nabla E(v)=\rho_{\Psi}$.]
Define, by duality,

$$
F_{\mathrm{L}}(\rho):=\sup \left\{E(v)-\langle v, \rho\rangle: v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)\right\} .
$$

Then,

$$
E(v)=\inf \left\{F_{\mathrm{L}}(\rho)+\langle\rho, v\rangle: \rho \in L^{3}\left(\mathbb{R}^{3}\right) \cap L^{1}\left(\mathbb{R}^{3}\right)\right\} .
$$

Problem 1. The form of F_{L} is still unknown, but F_{L} is convex.
No problem 2. The space $L^{3}\left(\mathbb{R}^{3}\right) \cap L^{1}\left(\mathbb{R}^{3}\right)$ is easy to describe.
No problem 3. The space $L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$ is easy to describe.

The Lieb functional and variational principle

Observation. The map $L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right) \ni v \mapsto E(v)$ is strictly concave.
[Proof of HK Theorem. Observation + the fact $\nabla E(v)=\rho_{\Psi}$.]
Define, by duality,

$$
F_{\mathrm{L}}(\rho):=\sup \left\{E(v)-\langle v, \rho\rangle: v \in L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)\right\} .
$$

Then,

$$
E(v)=\inf \left\{F_{\mathrm{L}}(\rho)+\langle\rho, v\rangle: \rho \in L^{3}\left(\mathbb{R}^{3}\right) \cap L^{1}\left(\mathbb{R}^{3}\right)\right\} .
$$

Problem 1. The form of F_{L} is still unknown, but F_{L} is convex.
No problem 2. The space $L^{3}\left(\mathbb{R}^{3}\right) \cap L^{1}\left(\mathbb{R}^{3}\right)$ is easy to describe.
No problem 3. The space $L^{3 / 2}\left(\mathbb{R}^{3}\right)+L^{\infty}\left(\mathbb{R}^{3}\right)$ is easy to describe.
Note. When $\rho=\rho_{\Psi}$ for some $\psi, F_{\mathrm{L}}(\rho)=F_{\mathrm{LL}}(\rho)$.

