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The electronic Schrödinger equation (neglecting spins)

Consider a system of N electrons subject to an external potential

ri ∈ R3, R3N 3 {ri}Ni=1 7→
N∑
i=1

v(ri ).

The possible states {Ψ`} of the system are described by solutions

to the Schrödinger equation

HΨ` = E`Ψ`

with the Hamiltonian

H := −
N∑
i=1

∆i +
N∑
i=1

v(ri ) +
∑

1≤i<j≤N

1

|ri − rj |
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The Hamiltonian: H = −
∑N

i=1 ∆i +
∑N

i=1 v(ri) +
∑

1≤i<j≤N
1

|ri−rj |

−
N∑
i=1

∆i = kinetic energy,

N∑
i=1

v(ri ) = external potential,

∑
1≤i<j≤N

1

|ri − rj |
= Coulomb potential.

Example.

A molecule is composed of M nuclei at positions {Rα}Mα=1,

Rα ∈ R3, with charges {Zα}Mα=1, and N electrons at positions

{ri}Ni=1, ri ∈ R3.

v(ri ) := −
M∑
α=1

Zα
|ri − Rα|

.
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The ground state energy: E := infΨ〈Ψ,HΨ〉

where

〈Ψ,HΨ〉 =
N∑
i=1

∫
R3N
|∇iΨ(r)|2 dr +

N∑
i=1

∫
R3N

v(ri )|Ψ(r)|2 dr

+
∑

1≤i<j<N

∫
R3N

|Ψ(r)|2

|ri − rj |
dr , r := {ri}Ni=1, ri ∈ R3

and the infimum is taken over all antisymmetric (Pauli exclusion

principle) normalized wave functions of finite kinetic energy.

Problem. Computing E by solving the Schrödinger equation is too

expensive.
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Density functional theory: ρΨ(x) := N
∫
|Ψ(x , r2, . . . , rN)|2 dr2 · · · drN

Recall:

〈Ψ,HΨ〉 =
N∑
i=1

∫
R3N
|∇iΨ(r)|2 dr +

N∑
i=1

∫
R3N

v(ri )|Ψ(r)|2 dr

+
∑

1≤i<j<N

∫
R3N

|Ψ(r)|2

|ri − rj |
dr .

The Levy-Lieb constrained-search functional is

FLL(ρ) :=

 inf
Ψ:ρΨ=ρ

N∑
i=1

∫
R3N
|∇iΨ(r)|2 dr +

∑
1≤i<j<N

∫
R3N

|Ψ(r)|2

|ri − rj |
dr

 ,

and satisfies

E = inf
Ψ
〈Ψ,HΨ〉 = inf

ρ

{
FLL(ρ) +

∫
R3

ρ(x)v(x)dx

}
because, by symmetry,∑N

i=1

∫
R3N v(ri )|Ψ(r)|2 dr =

∫
R3 v(x)ρΨ(x)dx .
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Summary

To compute the ground state energy E it suffices to compute the

minimum of the functional ρ 7→ {FLL(ρ) + 〈v , ρ〉} over the

electron densities ρ, which depend only on x ∈ R3, instead of

computing the minimum of 〈Ψ,HΨ〉 over wave functions Ψ,

which depend on r ∈ R3N .

Problem. We have no description of

FLL(ρ) =

 inf
Ψ:ρΨ=ρ

∫
|∇Ψ(r)|2 dr +

∑
1≤i<j≤N

∫
R3N

|Ψ(r)|2

|ri − rj |
dr

 .
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The adiabatic connection

For λ ≥ 0 let

FλLL(ρ) :=

 inf
Ψ:ρΨ=ρ

∫
|∇Ψ(r)|2 dr + λ

∑
1≤i<j≤N

∫
R3N

|Ψ(r)|2

|ri − rj |
dr

 ,

so Fλ=0
LL (ρ) = infΨ:ρΨ=ρ

∫
|∇Ψ(r)|2 dr (non-interacting electrons),

and Fλ=1
LL (ρ) = FLL(ρ).

Take λ→∞ [Seidl (1999); Seidl, Gori-Giorgi, Savin (2007)],

lim
λ→∞

FλLL(ρ)

λ
= inf

Ψ:ρΨ=ρ

∑
1≤i<j≤N

∫
R3N

|Ψ(r)|2

|ri − rj |
dr =: V SCE(ρ).
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DFT and multi-marginal optimal transport

Recall

lim
λ→∞

FλLL(ρ)

λ
= V SCE(ρ) = inf

Ψ:ρΨ=ρ

∑
1≤i<j≤N

∫
R3N

|Ψ(r)|2

|ri − rj |
dr .

Typically, the infimum in V SCE(ρ) is not attained.

Relaxation. [Buttazzo, De Pascale, Gori-Giorgi (2012); Cotar, Friesecke, Klüppelberg (2013)]

inf
π:πρ=ρ

∑
1≤i<j≤N

∫
R3N

1

|ri − rj |
dπ(r),

where the infimum is over the set of probability measures π on

R3N whose marginals on R3 are all equal to ρ.
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DFT multi-marginal optimal transport:

inf
π:πρ=ρ

∑
1≤i<j≤N

∫
R3N

1

|ri − rj |
dπ(r).

The infimum is always attained, and moreover [Cotar, Friesecke, Klüppelberg

(2013, 2018); Bindini, De Pascale (2017)],

min
π:πρ=ρ

∑
1≤i<j≤N

∫
R3N

1

|ri − rj |
dπ(r)

= V SCE(ρ)

= inf
Ψ:ρΨ=ρ

∑
1≤i<j≤N

∫
R3N

|Ψ(r)|2

|ri − rj |
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The Monge solution

Solving

min
π:πρ=ρ

∑
1≤i<j≤N

∫
R3N

1

|ri − rj |
dπ(r)

is still computationally difficult.

A Monge solution (if exists) is of much lower dimension:

dπ(r1, . . . , rN) =

[∫
R3

ρ(x)

N

N∏
i=1

δ(ri − fi (x))dx

]
dr1 · · · drN

where f1, . . . , fN : R3 → R3 are co-motion functions which

preserve ρ:

(fi )]ρ = ρ ∀ i = 1, . . . ,N.

Note. Consider f1(x) = x to recover the familiar Monge solution.

10
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The Monge problem

The DFT optimal transport problem

min
π:πρ=ρ

∑
1≤i<j≤N

∫
R3N

1

|ri − rj |
dπ(r)

becomes the Monge problem

inf
f1,...,fN

∑
1≤i<j≤N

∫
R3

1

|fi (x)− fj(x)|
ρ(x)

N
dx

over all co-motion functions f1, . . . , fN which preserve ρ.
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Results and open problems

1. The infimum in the Monge problem is the same as the

minimum in the DFT optimal transport problem. [Colombo, Marino

(2013)].

2. For N = 2 electrons (in any dimension), the infimum in the

Monge problem is attained and is unique. [Cotar, Friesecke, Klüppelberg

(2013)].

3. In dimension 1, for any N electrons, the infimum in the

Monge problem is attained, and unique (after

symmetrization). [Colombo, De Pascale, Di Marino (2015)].

4. For general dimension (including 3), and general N, the

existence of a solution to the Monge problem is open.
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Remarks

1. Non-smoothness. Even in dimension 1 with N = 2 electrons,

the co-motion functions are discontinuous.

2. Non-uniqueness. In dimension 3 with N = 3 electrons, there

exist solutions to DFT optimal transport which are not Monge

solutions. [Pass (2013)].

Non-Coulombic costs

1. No-solutions. There exist a cost such that in dimension 1

with N = 3 electrons, the Monge problem has no solution.

[Moameni, Pass (2017); Friesecke (2019); Gerolin, Kausamo, Rajala (2019)].

2. See [P15] and [DGN17] for the general theory of

multi-marginal optimal transport.
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The Monge solution in dimension 1

Choose f1(x) := x , f2, . . . , fN : R→ R such that, for each

i = 2, . . . ,N, the amount of ρ-mass between fi (x) and fi+1(x) is

equal to 1:
∫ fi+1(x)
fi (x) ρ(x ′) dx ′ = 1 for all x and i .

In words, if the first electron is at x1 ∼ ρ, then the remaining

electrons are at x2 = f2(x1), . . . , xN = fN(x1) such that each pair of

neighbors (xi , xi+1) are separated by an equal amount of ρ-mass.

Explicitly, for i = 2, . . . ,N,

fi (x) =

F−1
ρ

(
Fρ(x) + i−1

N

)
if Fρ(x) ≤ N−i+1

N ,

F−1
ρ

(
Fρ(x) + i−1

N − 1
)

if Fρ(x) > N−i+1
N ,

where Fρ is cumulative distribution function of ρ.

Group law. fi = f2 ◦ · · · ◦ f2︸ ︷︷ ︸
i−1 times

for i = 2, . . . ,N.
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Numerical methods

1. Discretize problem and use linear programming (small N).

2. Duality (small N).

3. Multi-marginal Sinkhorn algorithm/entropic regularization

(small N).

4. Semidefinite convex relaxation (large N).

5. Langevin dynamics with moment constraints (large N).

6. Genetic column generation (large N).

• See Section 3 in [FGG-G22] for more information.

15



Numerical methods

1. Discretize problem and use linear programming (small N).

2. Duality (small N).

3. Multi-marginal Sinkhorn algorithm/entropic regularization

(small N).

4. Semidefinite convex relaxation (large N).

5. Langevin dynamics with moment constraints (large N).

6. Genetic column generation (large N).

• See Section 3 in [FGG-G22] for more information.

15



Numerical methods

1. Discretize problem and use linear programming (small N).

2. Duality (small N).

3. Multi-marginal Sinkhorn algorithm/entropic regularization

(small N).

4. Semidefinite convex relaxation (large N).

5. Langevin dynamics with moment constraints (large N).

6. Genetic column generation (large N).

• See Section 3 in [FGG-G22] for more information.

15



Numerical methods

1. Discretize problem and use linear programming (small N).

2. Duality (small N).

3. Multi-marginal Sinkhorn algorithm/entropic regularization

(small N).

4. Semidefinite convex relaxation (large N).

5. Langevin dynamics with moment constraints (large N).

6. Genetic column generation (large N).

• See Section 3 in [FGG-G22] for more information.

15



Numerical methods

1. Discretize problem and use linear programming (small N).

2. Duality (small N).

3. Multi-marginal Sinkhorn algorithm/entropic regularization

(small N).

4. Semidefinite convex relaxation (large N).

5. Langevin dynamics with moment constraints (large N).

6. Genetic column generation (large N).

• See Section 3 in [FGG-G22] for more information.

15



Numerical methods

1. Discretize problem and use linear programming (small N).

2. Duality (small N).

3. Multi-marginal Sinkhorn algorithm/entropic regularization

(small N).

4. Semidefinite convex relaxation (large N).

5. Langevin dynamics with moment constraints (large N).

6. Genetic column generation (large N).

• See Section 3 in [FGG-G22] for more information.

15



Numerical methods

1. Discretize problem and use linear programming (small N).

2. Duality (small N).

3. Multi-marginal Sinkhorn algorithm/entropic regularization

(small N).

4. Semidefinite convex relaxation (large N).

5. Langevin dynamics with moment constraints (large N).

6. Genetic column generation (large N).

• See Section 3 in [FGG-G22] for more information.

15



Numerical methods

1. Discretize problem and use linear programming (small N).

2. Duality (small N).

3. Multi-marginal Sinkhorn algorithm/entropic regularization

(small N).

4. Semidefinite convex relaxation (large N).

5. Langevin dynamics with moment constraints (large N).

6. Genetic column generation (large N).

• See Section 3 in [FGG-G22] for more information.

15



Quasi-Monge solutions

Monge solution:

dπ(r1, . . . , rN) =

[∫
R3

ρ(x)

N

N∏
i=1

δ(ri − fi (x))dx

]
dr1 · · · drN

with (fi )]ρ = ρ for all i = 1, . . . ,N.

Quasi-Monge solution: [Friesecke, Vögler (2018)]

dπ(r1, . . . , rN) =

[∫
R3

α(x)
N∏
i=1

δ(ri − fi (x))dx

]
dr1 · · · drN ,

with α any probability measure on R3, and f1, . . . , fN : R3 → R3

such that

(fi )]α =
ρ

N
∀ i = 1, . . . ,N.

Note. If α = ρ
N then quasi-Monge is actually Monge.
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Symmetric solutions

The wave function Ψ is antisymmetric so solutions π to the DFT

optimal transport problem can be assumed to be symmetric:

dπ(r1, . . . , rN) 7→ 1

N!

∑
σ

dπ(σ(r1), . . . , σ(rN)),

where the sum is over all permutations σ of {1, . . . ,N}.

In particular, Monge solutions can be assumed to by symmetric:∫
R3

ρ(x)

N

N∏
i=1

δ(ri−fi (x))dx 7→ 1

N!

∑
σ

∫
R3

ρ(x)

N

N∏
i=1

δ(rσ(i)−fσ(i)(x))dx ,

with 1
N

∑N
i=1(fi )]ρ = ρ (weaker condition)
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Quasi-Monge symmetric solutions

A quasi-Monge solution[∫
R3
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N
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Discrete DFT multi-marginal optimal transport

Let ρ be the uniform measure on discrete atoms {ak}`k=1 ⊆ R3.

A coupling π of N electrons is

π =
∑̀

i1,...,iN=1

πi1,...,iN

(
δai1 ⊗ · · · ⊗ δaiN

)
satisfying the marginal constraint∑

ij ,j 6=m

πi1,...,iN = ρm =
1

`
∀ m ∈ {1, . . . , `}.

The optimization problem is

min
π

∑
i1,...,iN

 ∑
1≤k<m≤N

1

|aik − aim |

πi1,...,iN .
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No optimal Monge solutions

Symmetric Monge solution:
1
N!

∑
σ

∑`
k=1

1
`

(
δf1(aσ(k)) ⊗ · · · ⊗ δfN(aσ(k))

)
where f1, . . . , fN are

permutations of {a1, . . . , a`}.

• N = 2: The Birkhoff-von Neumann theorem shows that there

is always an optimal Monge solution.

• N = 3: Friesecke (2018) showed that there isn’t necessarily an

optimal Monge solution (already with ` = 3).
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Quasi-Monge solutions in discrete multi-marginal optimal trans-

port

Let ρ be any probability measure on discrete atoms {ak}`k=1.

Symmetric quasi-Monge solution:

1

N!

∑
σ

∑̀
k=1

αk

(
δf1(aσ(k)) ⊗ · · · ⊗ δfN(aσ(k))

)
,

where f1, . . . , fN are permutations of {a1, . . . , a`}, and {αk}`k=1 are

nonnegative numbers such that

∑̀
k=1

αk

(
1

N

N∑
i=1

δfi (ak )

)
= ρ.

Note. The assumption that ρ is uniform is no longer needed.
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Theorem [Friesecke, Vögler (2018)]

Let ρ be any probability measure on discrete atoms {ak}`k=1 ⊆ R3.

Then, the discrete DFT optimal transport problem always has

a quasi-Monge solution:
1
N!

∑
σ

∑`
k=1 αk

(
δf1(aσ(k)) ⊗ · · · ⊗ δfN(aσ(k))

)
.

Note. The dimension of general measures supported on

{a1, . . . , a`}N is `N , but the dimension of quasi-Monge measures is

only ` · (N + 1), because there are ` variables for {αk}`k=1, and for

each k = 1, . . . , `, there are N variables f1(ak), . . . , fN(ak).

There is more to the story...

22



Theorem [Friesecke, Vögler (2018)]
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Proof sketch

• The space of symmetric couplings
1
N!

∑
σ

∑`
i1,...,iN=1 πiσ(1),...,iσ(N)

(
δaiσ(1)

⊗ · · · ⊗ δaiσ(N)

)
forms a

polytope.

• The extreme points are symmetric Monge couplings
1
N!

∑
σ

(
δaiσ(1)

⊗ · · · ⊗ δaiσ(N)

)
.

• The marginal constraints
1
N!

∑
σ

∑
ij ,j 6=m πiσ(1),...,iσ(N)

= ρm ∀ m ∈ {1, . . . , `} correspond

to intersecting the polytope with (`− 1) hyperplanes.

• Every extreme point in the intersected polytope can be

written as a convex combination of just ` symmetric Monge

coupling, so it is a symmetric quasi-Monge coupling

1
N!

∑
σ

∑`
k=1 αk

(
δa

ik
σ(1)

⊗ · · · ⊗ δa
ik
σ(N)

)
.

• Optimal values of linear objectives are attained at extreme

points.
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Some mathematical

aspects of density

functional theory
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Foundations of DFT

The map

v 7→ H(v) := −
N∑
i=1

∆i +
N∑
i=1

v(ri ) +
∑

1≤i<j≤N

1

|ri − rj |

is injective.

Hohenberg-Kohn (1964): The map v 7→ ρv is injective, where

ρv (x) := ρΨ(x) :=

∫
|Ψ(x , r2, . . . , rN)|2 dr2 · · · drN ,

with Ψ the ground state of H(v).
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The Hohenberg-Kohn Theorem

If ρ is ground state representable, then

ρ 7→ vρ 7→ H(vρ) 7→ Ψρ where Ψρ is the ground state of H(vρ).

In words: The one-electron marginal ρ uniquely determines

the multi-electron ground state Ψ.

In particular, E = infΨ〈Ψ,HΨ〉 is a function of just ρ.
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The Hohenberg-Kohn variational principle

Let ρ be ground state representable and define the universal

functional

FHK(ρ) := E (vρ)− 〈ρ, vρ〉 where 〈ρ, vρ〉 :=

∫
vρ(x) dρ(x).

Then, for any v such that H(v) has a ground state,

E (v) = inf {FHK(ρ) + 〈ρ, v〉 : ρ is ground state representable} .

Problem 1. The form of FHK is unknown, and FHK is non-convex.

Problem 2. The form of the (non convex) space of ground state

representable densities is unknown.

Problem 3. The form of the space of potentials whose

corresponding Hamiltonian has a ground state is unknown.
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Levy-Lieb constrained-search functional and variational princi-

ple

Let

FLL(ρ) :=

 inf
Ψ:ρΨ=ρ

N∑
i=1

∫
R3N
|∇iΨ(r)|2 dr +

∑
1≤i<j<N

∫
R3N

|Ψ(r)|2

|ri − rj |
dr

 .

Then, for any v ∈ L3/2(R3) + L∞(R3),

E (v) = inf {FLL(ρ) + 〈ρ, v〉 : ρ = ρΨ for some Ψ}

Problem 1. The form of FLL is unknown, and FLL is non-convex.

No problem 2. The space {ρ = ρΨ for some Ψ} is convex and

easy to describe.

No problem 3. The space L3/2(R3) + L∞(R3) is easy to describe.

Note. When ρ is ground state representable, FLL(ρ) = FHK(ρ).
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The Lieb functional and variational principle

Observation. The map L3/2(R3) + L∞(R3) 3 v 7→ E (v) is strictly

concave.

[Proof of HK Theorem. Observation + the fact ∇E (v) = ρΨ.]

Define, by duality,

FL(ρ) := sup{E (v)− 〈v , ρ〉 : v ∈ L3/2(R3) + L∞(R3)}.

Then,

E (v) = inf
{
FL(ρ) + 〈ρ, v〉 : ρ ∈ L3(R3) ∩ L1(R3)

}
.

Problem 1. The form of FL is still unknown, but FL is convex.

No problem 2. The space L3(R3) ∩ L1(R3) is easy to describe.

No problem 3. The space L3/2(R3) + L∞(R3) is easy to describe.

Note. When ρ = ρΨ for some Ψ, FL(ρ) = FLL(ρ).
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