### An introduction to optimal transport

### Caroline Moosmüller

#### University of North Carolina at Chapel Hill Department of Mathematics

Women in Optimal Transport, April 17 - 19, 2024



THE UNIVERSITY of NORTH CAROLINA at CHAPEL HILL



### Earth Mover's Distance



"Earth Mover's Distance" by Fana Hagos (Visual Arts undergraduate student, UCSD 2020)

Overview

# **Optimal transport**



Overview

# **Optimal transport**



### Analysis: Monge, Benamou-Brenier

- 2 Geometry: Wasserstein distance, geodesics, tangent space
- 3 Data science/ML: Discrete Kantorovich, Sinkhorn, linearized OT
- Application: Inferring cell trajectories

# Moving mass: The Monge problem



- Move "mass" f to g
- f, g are probability densities  $\int_{\mathbb{D}^n} f(x) \, dx = \int_{\mathbb{D}^n} g(y) \, dy = 1$
- Find map  $T : \mathbb{R}^n \to \mathbb{R}^n$  with mass conservation:

$$\int_A g(y) \, dy = \int_{T^{-1}(A)} f(x) \, dx, \quad A \subseteq \mathbb{R}^n,$$

or equivalently  $g(T(x))|\det(DT(x))| = f(x)$  for  $x \in \mathbb{R}^n$ 

There may be many such maps ... Find one with minimal work

**Monge formulation:** 
$$\min_{T} \int_{\mathbb{R}^n} c(x, T(x)) f(x) dx.$$

### Moving mass: The Monge problem



- More general: Consider **measures**  $\mu$  and  $\nu$
- If µ is absolutely continuous (w.r.t. Lebesgue measure), then it has a density

$$\mu(A) = \int_A f(x) \, dx, \quad A \subseteq \mathbb{R}^n.$$

•  $T : \mathbb{R}^n \to \mathbb{R}^n$  with **mass conservation** becomes

$$u = T_{\sharp}\mu, \quad T_{\sharp}\mu(A) = \mu(T^{-1}(A)), \quad A \subseteq \mathbb{R}^n.$$

• The Monge problem becomes

$$\min_{T:T_{\sharp}\mu=\nu}\int_{\mathbb{R}^n} c(x,T(x)) \, d\mu(x).$$

### Moving mass: The Monge problem

• Question 1: What cost function c?

 $\rightarrow$  depends on the problem. Usually  $c(x, y) = ||x - y||^p$ ,  $p \ge 1$ ; or geodesic distance d(x, y) if measures supported on manifold.

- Question 2: Existence and uniqueness of solution?
  - $\rightarrow$  In general: No and no.



• Example: The choice of cost influences uniqueness



c(x, T(x)) = |x - T(x)| vs.  $|x - T(x)|^2$  (strictly convex)

### Moving mass: Brenier's theorem

### Theorem (Brenier 1987)

Assume

- $\mu, \nu$  be two measures on  $\mathbb{R}^n$  with  $\mu$  absolutely continuous (has density)
- Consider the cost  $c(x, y) = ||x y||^2$

Then

- there exists a **unique map** T with  $T_{\sharp}\mu = \nu$  that solves Monge
- *T* is uniquely defined as the gradient of a convex function φ, i.e. *T* = ∇φ, where φ is the unique (up to constants) function with (∇φ)<sub>μ</sub>μ = ν.
- Generalizations to other cost functions; Riemannian manifolds
- Note that with *T* = ∇φ the mass conservation property becomes the Monge-Ampére equation:

 $g(\nabla \varphi(x)) |\det(D^2 \varphi(x))| = f(x)$ 

Convexity of  $\varphi$  leads to  $D^2\varphi(x) \ge 0$  is necessary for a solution.

### Dynamic formulation

• Instead of looking for a (static) map *T*, we can try to **continuously move** from density *f* to *g*.



• Consider a path  $\rho_t$  with  $\rho_0 = f$  and  $\rho_1 = g$  and its velocity field  $v_t$ . Conservation of mass (continuity equation):

$$\partial_t \rho_t + \operatorname{div}(\rho_t \mathbf{v}_t) = \mathbf{0}$$

• Then find the pair  $(\rho_t, v_t)$  that minimizes the kinetic energy:

dynamic formulation 
$$= \min_{(
ho_t, v_t)} \int_0^1 \int_{\mathbb{R}^n} \|v_t(x)\|^2 \, d
ho_t(x) \, dt$$

• **Benamou-Brenier** (2000): If Monge solution exists, then *dynamic* = *Monge*, i.e.  $\rho_t = ((1 - t) \operatorname{id} + t T)_{\sharp} \rho_0$ .



- 2 Geometry: Wasserstein distance, geodesics, tangent space
- 3 Data science/ML: Discrete Kantorovich, Sinkhorn, linearized OT
- Application: Inferring cell trajectories

### Wasserstein distance

- Consider the space of (absolutely continuous) measures with finite 2-th moment P<sub>2</sub>(ℝ<sup>n</sup>) = {μ : ∫<sub>ℝ<sup>n</sup></sub> ||x||<sup>2</sup> dμ(x) < ∞}.</li>
- The Monge/dynamic formulation define a distance on P<sub>2</sub>(ℝ<sup>n</sup>):

$$\begin{split} W_2^2(\mu,\nu) &= \min\left\{\int_{\mathbb{R}^n} \|x - T(x)\|^2 \, d\mu(x) : T_{\sharp}\mu = \nu\right\} \\ &= \min\left\{\int_0^1 \int_{\mathbb{R}^n} \|v_t(x)\|^2 \, d\rho_t(x) \, dt : (\rho_t, v_t) \text{ satisfy cont. equ}\right\} \\ &= \min\left\{\int_{\mathbb{R}^n \times \mathbb{R}^n} \|x - y\|^2 \, d\pi(x,y) : \pi \text{ has marginals } \mu, \nu\right\} \end{split}$$

- This is the 2-Wasserstein distance or the 2-Monge-Kantorovich distance. Also exists for other *p* ≥ 1.
- The last formulation, is the Kantorovich formulation (more later).
- *P*<sub>2</sub>(ℝ<sup>n</sup>) has much more geometric structure. One can do (infinite dimensional) Riemannian-like geometry → F. Otto.

• The dynamic path  $\rho_t$  actually defines the **geodesic** from  $\rho_0$  to  $\rho_1$ :

$$\rho_t = ((1-t)\operatorname{id} + t T)_{\sharp} \rho_0,$$

where T is the optimal Monge map.

• The geodesic is the "shortest path" in the sense of Riemannian geometry. It satisfies

$$W_2(\rho_s, \rho_t) = |s - t| W_2(\rho_0, \rho_1)$$

Wasserstein vs. Euclidean path



• The dynamic path  $\rho_t$  actually defines the geodesic from  $\rho_0$  to  $\rho_1$ :

$$\rho_t = \left( (1-t) \operatorname{id} + t T \right)_{\sharp} \rho_0,$$

where T is the optimal Monge map.

• The geodesic is the "shortest path" in the sense of Riemannian geometry. It satisfies

$$W_2(\rho_s, \rho_t) = |s - t| W_2(\rho_0, \rho_1)$$

Geodesic between shapes



### Tangent space

 Note that the geodesic path is linear interpolation in L<sup>2</sup>(ℝ<sup>n</sup>, ρ<sub>0</sub>) between id and T:

$$\rho_t = \left( (1-t) \operatorname{id} + t T \right)_{\sharp} \rho_0,$$

L<sup>2</sup>(ℝ<sup>n</sup>, ρ<sub>0</sub>) is the tangent space at ρ<sub>0</sub>. Monge maps T = ∇φ (or the velocity field v) are the "tangent vectors".



We will use the tangent space later for linearized OT

🕕 Analysis: Monge, Benamou-Brenier

2 Geometry: Wasserstein distance, geodesics, tangent space

### 3 Data science/ML: Discrete Kantorovich, Sinkhorn, linearized OT



# Data as point-clouds, histograms, densities

Bag-of-words

### Gene expression data

#### Images









• Data: Measures  $\mu_k, k = 1, ..., N$  or points sampled from  $\mu_k$  (point-cloud)

- Compare and classify: e.g. "Cancer" vs. "Healthy"
  - Supervised: Training data  $(\mu_k, y_k)$ , with classes  $y_k \in C$

Learn a function



• Unsupervised: Use  $W_p(\mu_k, \mu_j) \rightarrow \text{computational issues}$ 

### Discrete measures: Kantorovich formulation

• Point-clouds/discrete measures:  $\mu = \sum_{i=1}^{n} a_i \delta_{x_i}, \nu = \sum_{i=1}^{m} b_j \delta_{y_i}$ :



with  $a_i, b_j \ge 0$ ,  $\sum a_i = \sum b_j = 1$  (probability vectors)

- Look for coupling matrix P ∈ ℝ<sup>n×m</sup><sub>+</sub>, where P<sub>ij</sub> is the amount of mass moved from x<sub>i</sub> to y<sub>j</sub>. Mass can split!
- Mass conservation: P1 = a,  $P^T1 = b$ .
- **Kantorovich:** Find coupling matrix that minimizes work with given cost *C<sub>ij</sub>*:

$$\min_{m{P}}\sum_{ij}m{C}_{ij}m{P}_{ij}=\min_{m{P}}raket{C,P}$$

Note this is a *linear* problem with linear constraints.

- **Cost:** Usually  $C_{ij} = ||x_i y_j||^p$
- Existence, Uniqueness: Yes and no.  $P = ab^T$  is feasible.

### Discrete measures: Kantorovich formulation

- Kantorovich can also be formulated in continuous setting
- Kantorovich recovers Monge function in case it exists



- Computation: min ⟨C, P⟩ is a linear program. Cost: O(n<sup>3</sup> log(n)).
   → may be too slow for large data science problems.
- Regularized version: Provides approximate coupling & distance

$$\min_{\boldsymbol{P}} \langle \boldsymbol{C}, \boldsymbol{P} \rangle - \varepsilon \boldsymbol{H}(\boldsymbol{P})$$

with  $H(P) = -\sum P_{ij}(\log(P_{ij}) - 1)$  the entropy of *P*. This has a **unique solution** and can be solved in  $O(n^2 \log(n))$  matrix scaling algorithms (Sinkhorn).

# Supervised learning: Linear optimal transport (LOT)

Think of transport coupling as a new set of features.

• LOT embedding: Pick a reference measure  $\sigma$ :

$$\begin{aligned} \mathsf{F}_{\sigma} : \quad \mathcal{P}(\mathbb{R}^n) \to \mathsf{L}^2(\mathbb{R}^n, \sigma) \\ \mu \mapsto \mathsf{T}_{\sigma}^{\mu} \end{aligned}$$

• Distance:  $W_2^{LOT}(\mu, \nu)^2 = \int_{\mathbb{R}^n} \|T^{\mu}_{\sigma}(x) - T^{\nu}_{\sigma}(x)\|^2 \, d\sigma(x)$ 



Learning:

 $\begin{aligned} f_{\mu} : \quad \mathcal{P}(\mathbb{R}^n) &\to \mathcal{C} \\ \mu &\mapsto f(T^{\mu}_{\sigma}) \qquad \text{for } f : L^2(\mathbb{R}^n, \sigma) \to \mathcal{C} \end{aligned}$ 

Learn a linear classifier in embedding space

### Numerical example on MNIST

MNIST Classification Between 7's and 9's

### 



#### Theorem (Supervised learning in LOT (M., Cloninger 2023))

Let  $\sigma, \tau_1, \tau_2$  absolutely continuous in  $\mathcal{P}(\mathbb{R}^n)$ ,  $\mathcal{H}$  convex set of  $\varepsilon$ -perturbations of elementary transformations. If

- $\mathcal{H}_{\sharp}\tau_{1}, \mathcal{H}_{\sharp}\tau_{2}$  compact, and
- minimal distance  $W_2(h_{1\#}\tau_1, h_{2\#}\tau_2) > \delta$ ,

then  $F_{\sigma}(\mathcal{H}_{\sharp}\tau_{1})$  and  $F_{\sigma}(\mathcal{H}_{\sharp}\tau_{2})$  are linearly separable in  $L^{2}(\mathbb{R}^{d}, \sigma)$ .

- Elementary transformations: Shifts, scalings, certain shearings
- δ can be given explicitly based on σ, τ<sub>1</sub>, τ<sub>2</sub>, ε.
- First version of this result by Rohde et. al. 2018 for d = 1 and  $\varepsilon = 0$  ( $\delta = 0$  in this case).
- Uses **Hahn-Banach theorem**. Key proof ingredient: Convexity of  $\mathcal{H}$  is preserved via LOT.

- 1 Analysis: Monge, Benamou-Brenier
- 2 Geometry: Wasserstein distance, geodesics, tangent space
- 3 Data science/ML: Discrete Kantorovich, Sinkhorn, linearized OT
- Application: Inferring cell trajectories

# Inferring cell trajectories

 Single cells are modeled as point-clouds in gene-expression space. Their "development" over time can be interpreted as a curve in Wasserstein space.



 Interpolate to e.g. understand development into certain cell types and identify responsible genes (reprogramming)

### Inferring cell trajectories

Schiebinger et. al. original paper (2019): use linear interpolation



- To infer smoother trajectories, spline methods have been proposed.
- New method: spline-like, smooth, fast, intrinsic, and can deal with non-uniform mass and trajectory splitting (on arXiv soon!)

# New method examples



# Thank you! - Questions?

#### **OT** papers

- G. Schiebinger et al. Optimal-Transport Analysis of Single-Cell Gene Expression Identifies Developmental Trajectories in Reprogramming, Cell 2019.
- M. Cuturi, G. Peyre *Computational optimal transport*, Foundations and Trends in Machine Learning, 2019.
- J. Solomon et. al. *Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains*, ACM Transactions on Graphics 2015.
- S. Kolouri et al. Optimal Mass Transport: Signal processing and machine-learning applications. IEEE signal process Mag 2017.
- M. Thorpe, Introduction to Optimal Transport, lecture notes 2018.

#### Our recent papers

- V. Khurana, H. Kannan, A. Cloninger, C. Moosmüller. Learning sheared distributions using linearized optimal transport, Sampling Theory, Signal Processing, and Data Analysis, 2023.
- A. Cloninger, K. Hamm, V. Khurana, C. Moosmüller, *Linearized Wasserstein dimensionality reduction with approximation guarantees*, arXiv 2023.
- C. Moosmüller, A. Cloninger. Linear optimal transport embedding: Provable Wasserstein classification for certain rigid transformations and perturbations, Information and Inference: A Journal of the IMA, 2023.
- S. Li, C. Moosmüller, Measure transfer via stochastic slicing and matching, arXiv 2023.