
An introduction to optimal transport

Caroline Moosmüller

University of North Carolina at Chapel Hill
Department of Mathematics

Women in Optimal Transport, April 17 – 19, 2024

1 / 27



Earth Mover’s Distance

“Earth Mover’s Distance” by Fana Hagos (Visual Arts undergraduate
student, UCSD 2020)
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Moving mass: The Monge problem

• Move “mass” f to g

• f ,g are probability densities
∫
Rn

f (x)dx =

∫
Rn

g(y)dy = 1

• Find map T : Rn → Rn with mass conservation:∫
A

g(y)dy =

∫
T−1(A)

f (x)dx , A ⊆ Rn,

or equivalently g(T (x))| det(DT (x))| = f (x) for x ∈ Rn

• There may be many such maps ... Find one with minimal work

Monge formulation: min
T

∫
Rn

c(x ,T (x)) f (x)dx .
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Moving mass: The Monge problem

• More general: Consider measures µ and ν
• If µ is absolutely continuous (w.r.t. Lebesgue measure), then it

has a density

µ(A) =
∫

A
f (x)dx , A ⊆ Rn.

• T : Rn → Rn with mass conservation becomes

ν = T]µ, T]µ(A) = µ(T−1(A)), A ⊆ Rn.

• The Monge problem becomes

min
T :T]µ=ν

∫
Rn

c(x ,T (x))dµ(x).
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Moving mass: The Monge problem

• Question 1: What cost function c?
→ depends on the problem. Usually c(x , y) = ‖x − y‖p,p ≥ 1; or
geodesic distance d(x , y) if measures supported on manifold.

• Question 2: Existence and uniqueness of solution?
→ In general: No and no.

• Example: The choice of cost influences uniqueness

c(x ,T (x)) = |x − T (x)| vs. |x − T (x)|2 (strictly convex)
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Moving mass: Brenier’s theorem

Theorem (Brenier 1987)

Assume
• µ, ν be two measures on Rn with µ absolutely continuous (has

density)
• Consider the cost c(x , y) = ‖x − y‖2

Then
• there exists a unique map T with T]µ = ν that solves Monge
• T is uniquely defined as the gradient of a convex function ϕ,

i.e. T = ∇ϕ, where ϕ is the unique (up to constants) function
with (∇ϕ)]µ = ν.

• Generalizations to other cost functions; Riemannian manifolds
• Note that with T = ∇ϕ the mass conservation property becomes

the Monge-Ampére equation:

g(∇ϕ(x))| det(D2ϕ(x))| = f (x)

Convexity of ϕ leads to D2ϕ(x) ≥ 0 is necessary for a solution.
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Dynamic formulation

• Instead of looking for a (static) map T , we can try to
continuously move from density f to g.

• Consider a path ρt with ρ0 = f and ρ1 = g and its velocity field vt .
Conservation of mass (continuity equation):

∂tρt + div(ρtvt) = 0

• Then find the pair (ρt , vt) that minimizes the kinetic energy:

dynamic formulation = min
(ρt ,vt )

∫ 1

0

∫
Rn
‖vt(x)‖2 dρt(x)dt

• Benamou-Brenier (2000): If Monge solution exists, then
dynamic = Monge, i.e. ρt = ((1− t) id+t T )] ρ0.
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Wasserstein distance

• Consider the space of (absolutely continuous) measures with
finite 2-th moment P2(Rn) = {µ :

∫
Rn ‖x‖2 dµ(x) <∞}.

• The Monge/dynamic formulation define a distance on P2(Rn):

W 2
2 (µ, ν) = min

{∫
Rn
‖x − T (x)‖2 dµ(x) : T]µ = ν

}
= min

{∫ 1

0

∫
Rn
‖vt(x)‖2 dρt(x)dt : (ρt , vt) satisfy cont. equ

}

= min

{∫
Rn×Rn

‖x − y‖2 dπ(x , y) : π has marginals µ, ν
}

• This is the 2-Wasserstein distance or the
2-Monge-Kantorovich distance. Also exists for other p ≥ 1.

• The last formulation, is the Kantorovich formulation (more later).
• P2(Rn) has much more geometric structure. One can do (infinite

dimensional) Riemannian-like geometry→ F. Otto.
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Geodesics

• The dynamic path ρt actually defines the geodesic from ρ0 to ρ1:

ρt = ((1− t) id+t T )] ρ0,

where T is the optimal Monge map.
• The geodesic is the “shortest path” in the sense of Riemannian

geometry. It satisfies

W2(ρs, ρt) = |s − t |W2(ρ0, ρ1)

• Wasserstein vs. Euclidean path
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Geodesics

• The dynamic path ρt actually defines the geodesic from ρ0 to ρ1:

ρt = ((1− t) id+t T )] ρ0,

where T is the optimal Monge map.
• The geodesic is the “shortest path” in the sense of Riemannian

geometry. It satisfies

W2(ρs, ρt) = |s − t |W2(ρ0, ρ1)

• Geodesic between shapes
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Tangent space

• Note that the geodesic path is linear interpolation in L2(Rn, ρ0)
between id and T :

ρt = ((1− t) id+t T )] ρ0,

• L2(Rn, ρ0) is the tangent space at ρ0. Monge maps T = ∇ϕ (or
the velocity field v ) are the “tangent vectors”.

• We will use the tangent space later for linearized OT
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Data as point-clouds, histograms, densities
Bag-of-words Gene expression data Images

• Data: Measures µk , k = 1, . . . ,N or points sampled from µk (point-cloud)

• Compare and classify: e.g. “Cancer” vs. “Healthy”
• Supervised: Training data (µk , yk ), with classes yk ∈ C

Learn a function
f

• Unsupervised: Use Wp(µk , µj)→ computational issues
17 / 27



Discrete measures: Kantorovich formulation

• Point-clouds/discrete measures: µ =
∑n

i=1 aiδxi , ν =
∑m

j=1 bjδyj :

with ai ,bj ≥ 0,
∑

ai =
∑

bj = 1 (probability vectors)
• Look for coupling matrix P ∈ Rn×m

+ , where Pij is the amount of
mass moved from xi to yj . Mass can split!

• Mass conservation: P1 = a, PT 1 = b.
• Kantorovich: Find coupling matrix that minimizes work with

given cost Cij :
min

P

∑
ij

CijPij = min
P
〈C,P〉

Note this is a linear problem with linear constraints.
• Cost: Usually Cij = ‖xi − yj‖p

• Existence, Uniqueness: Yes and no. P = abT is feasible.
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Discrete measures: Kantorovich formulation

• Kantorovich can also be formulated in continuous setting
• Kantorovich recovers Monge function in case it exists

• Computation: min
P
〈C,P〉 is a linear program. Cost: O(n3 log(n)).

→ may be too slow for large data science problems.
• Regularized version: Provides approximate coupling & distance

min
P
〈C,P〉 − εH(P)

with H(P) = −
∑

Pij(log(Pij)− 1) the entropy of P. This has a
unique solution and can be solved in O(n2 log(n)) matrix
scaling algorithms (Sinkhorn).
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Supervised learning: Linear optimal transport (LOT)

Think of transport coupling as a new set of features.
• LOT embedding: Pick a reference measure σ:

Fσ : P(Rn)→ L2(Rn, σ)

µ 7→ Tµ
σ

• Distance: W LOT
2 (µ, ν)2 =

∫
Rn ‖Tµ

σ (x)− T ν
σ (x)‖2 dσ(x)

• Learning:

fµ : P(Rn)→ C
µ 7→ f (Tµ

σ ) for f : L2(Rn, σ)→ C

Learn a linear classifier in embedding space
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Numerical example on MNIST

MNIST Classification Between 7’s and 9’s
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Learning in LOT embedding space

Theorem (Supervised learning in LOT (M., Cloninger 2023))

Let σ, τ1, τ2 absolutely continuous in P(Rn), H convex set of
ε-perturbations of elementary transformations. If
• H]τ1, H]τ2 compact, and
• minimal distance W2(h1#τ1,h2#τ2) > δ,

then Fσ(H]τ1) and Fσ(H]τ2) are linearly separable in L2(Rd , σ).

• Elementary transformations: Shifts, scalings, certain shearings
• δ can be given explicitly based on σ, τ1, τ2, ε.
• First version of this result by Rohde et. al. 2018 for d = 1 and
ε = 0 (δ = 0 in this case).

• Uses Hahn-Banach theorem. Key proof ingredient: Convexity of
H is preserved via LOT.
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Inferring cell trajectories

• Single cells are modeled as point-clouds in gene-expression
space. Their “development” over time can be interpreted as a
curve in Wasserstein space.

• Interpolate to e.g. understand development into certain cell types
and identify responsible genes (reprogramming)
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Inferring cell trajectories

• Schiebinger et. al. original paper (2019): use linear
interpolation

• To infer smoother trajectories, spline methods have been
proposed.

• New method: spline-like, smooth, fast, intrinsic, and can deal
with non-uniform mass and trajectory splitting (on arXiv soon!)
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New method examples
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Thank you! - Questions?
OT papers

• G. Schiebinger et al. Optimal-Transport Analysis of Single-Cell Gene Expression
Identifies Developmental Trajectories in Reprogramming, Cell 2019.

• M. Cuturi, G. Peyre Computational optimal transport, Foundations and Trends in
Machine Learning, 2019.

• J. Solomon et. al. Convolutional Wasserstein Distances: Efficient Optimal
Transportation on Geometric Domains, ACM Transactions on Graphics 2015.

• S. Kolouri et al. Optimal Mass Transport: Signal processing and
machine-learning applications. IEEE signal process Mag 2017.

• M. Thorpe, Introduction to Optimal Transport, lecture notes 2018.

Our recent papers
• V. Khurana, H. Kannan, A. Cloninger, C. Moosmüller. Learning sheared

distributions using linearized optimal transport, Sampling Theory, Signal
Processing, and Data Analysis, 2023.

• A. Cloninger, K. Hamm, V. Khurana, C. Moosmüller, Linearized Wasserstein
dimensionality reduction with approximation guarantees, arXiv 2023.

• C. Moosmüller, A. Cloninger. Linear optimal transport embedding: Provable
Wasserstein classification for certain rigid transformations and perturbations,
Information and Inference: A Journal of the IMA, 2023.

• S. Li, C. Moosmüller, Measure transfer via stochastic slicing and matching, arXiv
2023.
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