Introduction	Classical Approach: Langevin Dynamics	The Blob Method	Conclusion
O	O		OO

Women in OT Workshop

Claire Murphy

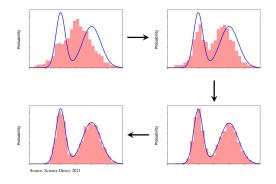
UC Santa Barbara

April 18, 2024

l	ntroduction	Classical Approach: Langevin Dynamics O	The Blob Method	Conclusion OO
	Motivation			
	Setup: Let $\tilde{\rho}$ be	a probability measure on Euclide	an space \mathbb{R}^d .	
	Goal: We seek	$\{x_i\}_{i=1}^n \subset \mathbb{R}^d$ such that the empty	irical measure $\frac{1}{n}\sum_{i=1}^{n}\delta_{x_i}$ conve	rges to $\tilde{ ho}$
	as $n \to \infty$.		<i>i</i> =1	

Introduction	on Classical A O	pproach: Langevin Dynamics	The Blob Method	Conclusion OO
Moti	vation			
	Setup: Let $\tilde{ ho}$ be a probab			
(Goal: We seek $\{x_i\}_{i=1}^n$	\mathbb{R}^d such that the emp	virical measure $\frac{1}{n} \sum_{i=1}^{n} \delta_{x_i}$ con	verges to $\tilde{\rho}$
	as $n \to \infty$.		<i>I</i> =1	

Our definition of "convergence" depends on the context of the problem. For example, we may define convergence in terms of the 2-Wasserstein metric.



Introd	lucti	on

Classical Approach: Langevin Dynamics

Assumption: The target measure $\tilde{\rho}$ is strongly log-concave, i.e. $\tilde{\rho} = e^{-V(x)} dx$ for a λ -convex function $V : \mathbb{R}^d \to \mathbb{R}, \lambda > 0$.

Introd	lucti	on

Classical Approach: Langevin Dynamics

Assumption: The target measure $\tilde{\rho}$ is strongly log-concave, i.e. $\tilde{\rho} = e^{-V(x)} dx$ for a λ -convex function $V : \mathbb{R}^d \to \mathbb{R}, \lambda > 0$.

For any initialization $\{x_{i,0}\}_{i=1}^{n}$, evolving particles by the stochastic differential equation

$$\begin{cases} dx_i(t) = \nabla \log(\tilde{\rho}(x_i))dt + dW_i \\ x_i(0) = x_{i,0}. \end{cases}$$

ensures that $\lim_{t\to\infty}\lim_{n\to\infty}\frac{1}{n}\sum_{i=1}^n\delta_{x_i(t)}=\tilde{\rho}.$

Classical Approach: Langevin Dynamics

Assumption: The target measure $\tilde{\rho}$ is strongly log-concave, i.e. $\tilde{\rho} = e^{-V(x)} dx$ for a λ -convex function $V : \mathbb{R}^d \to \mathbb{R}, \lambda > 0$.

For any initialization $\{x_{i,0}\}_{i=1}^{n}$, evolving particles by the stochastic differential equation

$$\begin{cases} dx_i(t) = \nabla \log(\tilde{\rho}(x_i))dt + dW_i \\ x_i(0) = x_{i,0}. \end{cases}$$

ensures that
$$\lim_{t\to\infty} \lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^n \delta_{x_i(t)} = \tilde{\rho}.$$

Remark (Continuum Perspective)

At time *t*, the particles approximate $\rho(t, x)$, the solution to the Fokker-Planck equation:

$$\begin{cases} \partial_t
ho +
abla \cdot (
ho
abla \log(ilde{
ho})) = \Delta
ho \quad t \geq 0 \
ho(0, x) =
ho_0(x). \end{cases}$$

 $\rho(t, x)$ converges to $\tilde{\rho}$ as $t \to \infty$.

Introduction O	Classical Approach: Langevin Dynamics O	The Blob Method ●O	Conclusion OO
The Nonlinear I	Diffusion Equation		

A drawback of Langevin dynamics is that the target measure $\tilde{\rho}$ must be strongly logconcave, i.e. $\tilde{\rho} = e^{-V(x)} dx$ for a λ -convex function V.

Introduction O	Classical Approach: Langevin Dynamics O	The Blob Method ●O	Conclusion OO
The Nonlin	ear Diffusion Equation		

A drawback of Langevin dynamics is that the target measure $\tilde{\rho}$ must be strongly logconcave, i.e. $\tilde{\rho} = e^{-V(x)} dx$ for a λ -convex function V.

A new approach allows us to consider target measures of the form

$$\tilde{\rho} = ((f')^{-1}(Z - V(x)))_+ dx,$$

where

- Z is a normalizing constant.
- $V : \mathbb{R}^d \to \mathbb{R}$ and $f : [0, \infty) \to \mathbb{R}$ are smooth.
- V is λ -convex for some $\lambda > 0$.
- *f* is convex and $s \mapsto s^d f(s^{-d})$ is convex and nonincreasing on $(0, \infty)$.

Introduction O	Classical Approach: Langevin Dynamics O	The Blob Method ●O	Conclusion OO
The Nonlin	ear Diffusion Equation		

A drawback of Langevin dynamics is that the target measure $\tilde{\rho}$ must be strongly logconcave, i.e. $\tilde{\rho} = e^{-V(x)} dx$ for a λ -convex function V.

A new approach allows us to consider target measures of the form

$$\tilde{\rho} = ((f')^{-1}(Z - V(x)))_+ dx,$$

where

- Z is a normalizing constant.
- $V : \mathbb{R}^d \to \mathbb{R}$ and $f : [0, \infty) \to \mathbb{R}$ are smooth.
- V is λ -convex for some $\lambda > 0$.
- *f* is convex and $s \mapsto s^d f(s^{-d})$ is convex and nonincreasing on $(0, \infty)$.

Key idea: If $\rho(t, x)$ is a solution to the Generalized Fokker-Planck equation:

$$\begin{cases} \partial_t \rho - \nabla \cdot (\rho \nabla V) = \nabla \cdot (\rho \nabla f'(\rho)) & t \ge 0\\ \rho(0, x) = \rho_0(x), \end{cases}$$

then $\rho(t, x)$ still converges to $\tilde{\rho}$ as $t \to \infty$.

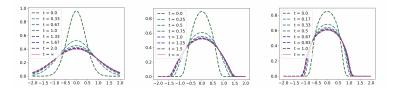
Introduction	Classical Approach: Langevin Dynamics	The Blob Method	Conclusion
O	O	O●	00

Goal: Develop a stochastic particle method to approximate $\rho(t, x)$, the solution to the Generalized Fokker-Planck equation.

Introduction	Classical Approach: Langevin Dynamics	The Blob Method	Conclusion
O	O	○●	OO

Goal: Develop a stochastic particle method to approximate $\rho(t, x)$, the solution to the Generalized Fokker-Planck equation.

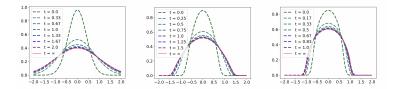
Preliminary results:



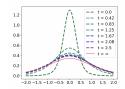
Introduction	Classical Approach: Langevin Dynamics	The Blob Method	Conclusion
O	O	O●	OO

Goal: Develop a stochastic particle method to approximate $\rho(t, x)$, the solution to the Generalized Fokker-Planck equation.

Preliminary results:



Trouble case:



References

- Craig, Katy, Karthik Elamvazhuthi, Matt Haberland, and Olga Turanova. "A blob method for inhomogeneous diffusion with applications to multi-agent control and sampling." Mathematics of Computation (2023).
- Craig, Katy, Matt Jacobs, and Olga Turanova. "A blob method for general nonlinear diffusion." In preparation.
- Jin, Shi, Lei Li, and Jian-Guo Liu. "Random batch methods (RBM) for interacting particle systems." Journal of Computational Physics (2020).

A Particle Method for Generalized Fokker-Planck Equation

For simplicity, assume that *f* is of the form

$$f(x) = \begin{cases} \frac{x^m}{m-1} & m > 1\\ x \log(x) & m = 1. \end{cases}$$

This function is associated with the diffusion equation. Then our particles flow according to the following ODE:

$$\begin{cases} \partial_t x_i(t) = -\nabla V(x_i(t)) - \sum_{j=1}^n & \left(\left(\sum_{k=1}^n (\nabla \varphi(x_k - x_j)m_k)^{m-2} + \left(\sum_{k=1}^n \varphi(x_i - x_k)m_k \right)^{m-2} \right) \\ & \nabla \varphi(x_j - x_i)m_j. \end{cases}$$

$$x_i(0) = x_i^0.$$

Here, $\{m_i\}_{i=1}^n$ are defined by $m_i = \frac{\rho_0(x_i)}{n^d}$. φ is a mollifier.