

Gromov-Wasserstein Distance Computation

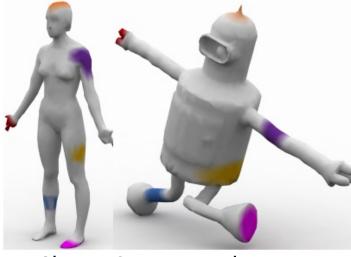
Infeasibility, Efficiency and Accuracy

Jiajin Li (Incoming AP @ UBC Sauder)

Women in Optimal Transport (2024)

Collaborators

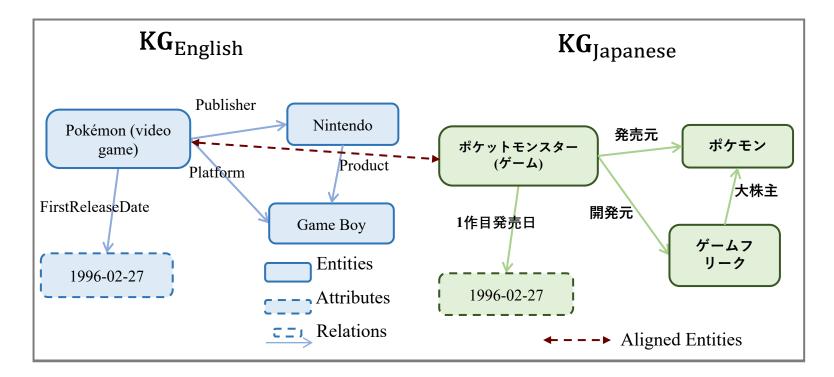
Dataset Matching: Various applications require matching structured datasets.



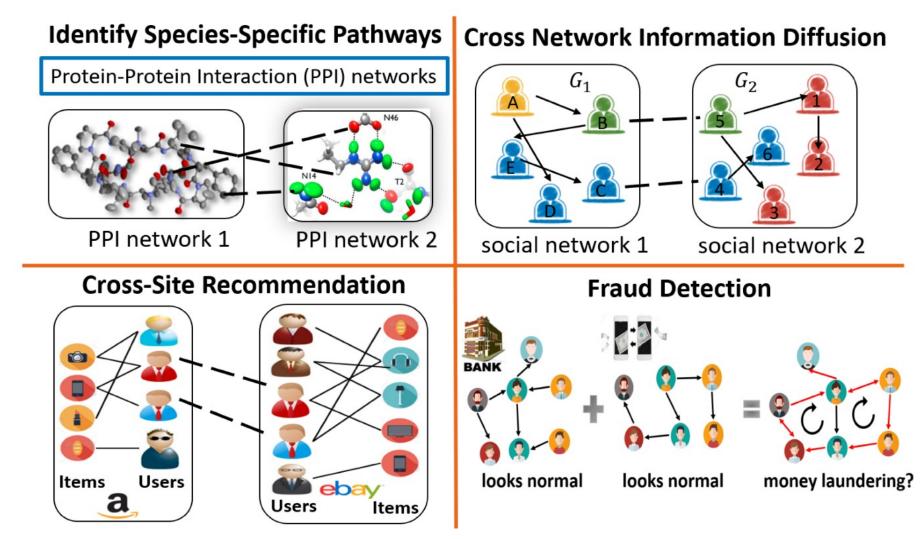
Shape Correspondence

Social Network Alignment

Dataset Matching: Various applications require matching structured datasets.



Cross-lingual Knowledge Graph Alignment



Other Applications

Identify Species-Specific Pathways Cross Network Information Diffusion

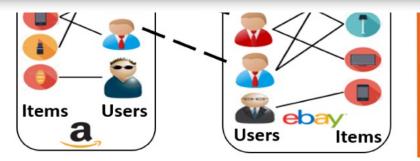
Protein-Protein Interaction (PPI) networks

G_1

looks normal

Goal:

- 1. Compare how similar/different two datasets are?
- 2. Obtain alignment that preserves the geometric (graph) structure



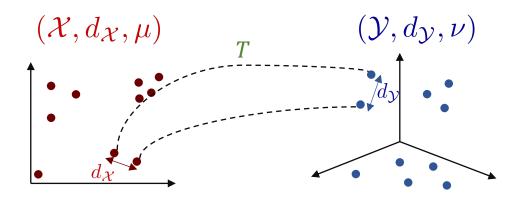
looks normal

Gromov-Wasserstein Distance

Definition(Memoli' 11): The GW distance between two metric measure spaces $(\mathcal{X}, d_{\mathcal{X}}, \mu)$ and $(\mathcal{Y}, d_{\mathcal{Y}}, \nu)$ is $GW(\mu, \nu) := \inf_{\pi \in \Pi(\mu, \nu)} \iint |d_{\mathcal{X}}(x, x') - d_{\mathcal{Y}}(y, y')|^2 d\pi(x, y) d\pi(x', y')$ where $\Pi(\mu, \nu)$ is the set of probabilities whose marginals are μ and ν .

Gromov-Wasserstein Distance

Definition(Memoli' 11): The GW distance between two metric measure spaces $(\mathcal{X}, d_{\mathcal{X}}, \mu)$ and $(\mathcal{Y}, d_{\mathcal{Y}}, \nu)$ is $GW(\mu, \nu) := \inf_{\pi \in \Pi(\mu, \nu)} \iint |d_{\mathcal{X}}(x, x') - d_{\mathcal{Y}}(y, y')|^2 d\pi(x, y) d\pi(x', y')$ where $\Pi(\mu, \nu)$ is the set of probabilities whose marginals are μ and ν .



- > Finding the transport map T: $\mathcal{X} \to \mathcal{Y}$
- Preserve the isometric structure

 $d_{\mathcal{X}}(x, x') \approx d_{\mathcal{Y}}(T(y), T(y'))$

Computational Hardness

$$\min_{\pi \in \mathbb{R}^{n \times m}} -\operatorname{Tr}(D_X \pi D_Y \pi^T)$$

s.t. $\pi \mathbf{1}_m = \hat{\mu}_n, \, \pi^T \mathbf{1}_n = \hat{\nu}_m, \, \pi \ge 0.$
 $\widehat{\nabla}^{\mathcal{L}}$
Birkhoff Polytope (Doubly Stochastic Matrix).

Computational Hardness

$$\min_{\pi \in \mathbb{R}^{n \times m}} -\operatorname{Tr}(D_X \pi D_Y \pi^T)$$

s.t. $\pi \mathbf{1}_m = \hat{\mu}_n, \, \pi^T \mathbf{1}_n = \hat{\nu}_m, \, \pi \ge 0.$

Replace by permutation matrix -> Quadratic Assignment Problem (QAP)

NP Complete [Commander '05]

Computational Hardness

$$\min_{\pi \in \mathbb{R}^{n \times m}} -\operatorname{Tr}(D_X \pi D_Y \pi^T)$$

s.t.
$$\pi \mathbf{1}_m = \hat{\mu}_n, \ \pi^T \mathbf{1}_n = \hat{\nu}_m, \ \pi \ge 0.$$

Converge to local minima?

The main bottleneck: projecting onto the Birkhoff polytope.

The main bottleneck: projecting onto the Birkhoff polytope.

- 1. Double-Loop Iterative Scheme
- 2. Approximation (Relaxation)
- 3. Without any Theoretical Guarantee
- 4. Overlook Task Information

The main bottleneck: projecting onto the Birkhoff polytope.

 \odot

- 1. Double-Loop Iterative Scheme
- 2. Approximation (Relaxation)
- 3. Without any Theoretical Guarantee
- 4. Overlook Task Information

Entropic Regularization (**eBPG**)

 $\min_{\pi \in \mathbb{R}^{n \times m}} -\operatorname{Tr}(D_X \pi D_Y \pi^T) + \epsilon D_{\mathrm{KL}}(\pi \mid \hat{\mu}_n \otimes \hat{\nu}_m)$

s.t.
$$\pi \mathbf{1}_m = \hat{\mu}_n, \, \pi^T \mathbf{1}_n = \hat{\nu}_m, \, \pi \ge 0.$$

- Sinkhorn -> subroutine
- Sensitive to hyperparameters
- Result in suboptimal performance on

shape correspondence.

Solomon J, Peyré G, Kim V G, et al. Entropic metric alignment for correspondence problems. TOG, 2016.

The main bottleneck: projecting onto the Birkhoff polytope.

 \odot

- 1. Double-Loop Iterative Scheme
- 2. Approximation (Relaxation)
- 3. Without any Theoretical Guarantee
- 4. Overlook Task Information

Bregman Projected Gradient Descent (BPG)

$$\min_{\pi \in \mathbb{R}^{n \times m}} -\operatorname{Tr}(D_X \pi_k D_Y \pi^T) + \eta D_{\mathrm{KL}}(\pi \mid \pi_k)$$

s.t.
$$\pi \mathbf{1}_m = \hat{\mu}_n, \, \pi^T \mathbf{1}_n = \hat{\nu}_m, \, \pi \ge 0.$$

- Sinkhorn -> subroutine
- Result in suboptimal performance on graph alignment/partition.
- Hardness result & spurious stationarity

Xu H, Luo D, Zha H, et al. Gromov-wasserstein learning for graph matching and node embedding, ICML 2019.

The main bottleneck: projecting onto the Birkhoff polytope.

 \odot

- 1. Double-Loop Iterative Scheme
- 2. Approximation (Relaxation)
- 3. Without any Theoretical Guarantee
- 4. Overlook Task Information

(Heuristic) BPG-S

$$\min_{\pi \in \mathbb{R}^{n \times m}} -\operatorname{Tr}(D_X \pi_k D_Y \pi^T) + \eta D_{\mathrm{KL}}(\pi \mid \pi_k)$$

s.t.
$$\pi \mathbf{1}_m = \hat{\mu}_n, \, \pi^T \mathbf{1}_n = \hat{\nu}_m, \, \pi \ge 0.$$

- Sinkhorn -> subroutine (only one step)
- Result in suboptimal performance on

graph alignment/partition.

Xu H, Luo D, Carin L. Scalable gromov-wasserstein learning for graph partitioning and matching. NeurIPS, 2019.

The main bottleneck: projecting onto the Birkhoff polytope.

 \odot

- 1. Double-Loop Iterative Scheme
- 2. Approximation (Relaxation)
- 3. Without any Theoretical Guarantee
- 4. Overlook Task Information

Frank-Wolfe (FW) $\min_{\pi \in \mathbb{R}^{n \times m}} -\operatorname{Tr}(D_X \pi_k D_Y \pi^T)$ s.t. $\pi \mathbf{1}_m = \hat{\mu}_n, \ \pi^T \mathbf{1}_n = \hat{\nu}_m, \ \pi \ge 0.$

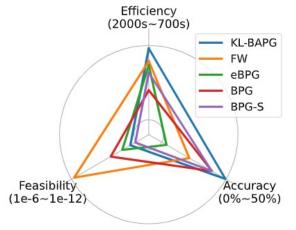
- Linear programming-> subroutine
- > Line search
- Medium size datasets?

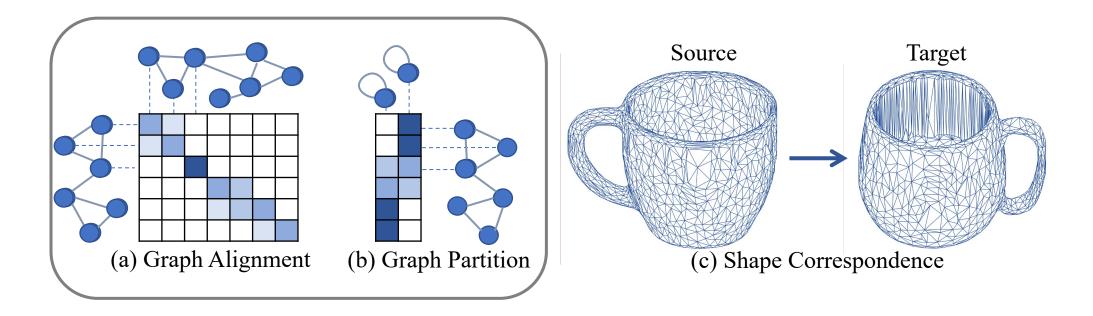
Vayer, Titouan, et al. Optimal Transport for structured data with application on graphs. ICML, 2019.

Our Main Contribution

Develop **two** theoretically solid algorithms **tailored** to different graph learning tasks.

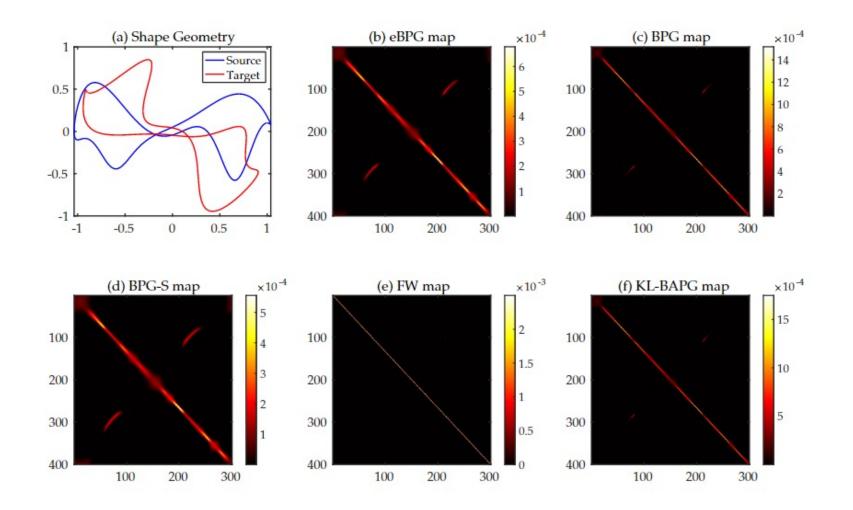
- 1. Bregman Alternating Projected Gradient (BAPG)
 - ✓ **Single-loop** algorithm
 - ✓ Compatibility with **GPU** implementation,
 - Robustness to the step size (the only hyperparameter)
 - ✓ Low memory cost
 - X Infeasible method





Sacrifice some **feasibility** to gain both **efficiency** and **accuracy** !

2D Toy Example



Our Main Contribution

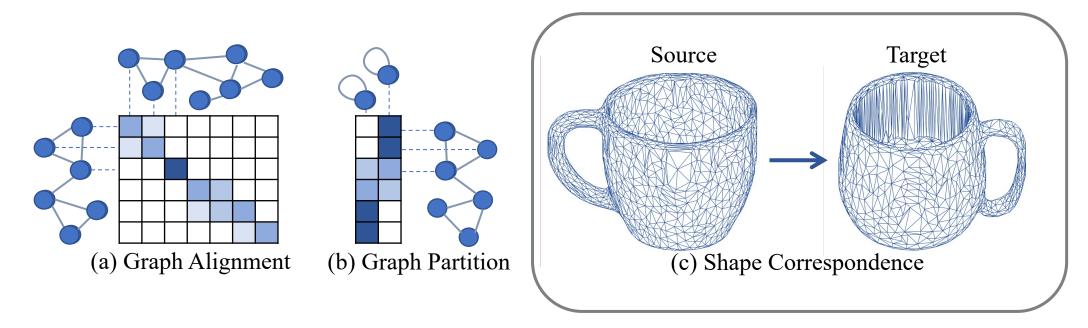
Develop **two** theoretically solid algorithms **tailored** to different graph learning tasks.

2. Hybrid Bregman Gradient Descent (hBPG)

✓ Feasible method

- $\checkmark\,$ Take benefits from both BPG and eBPG
- ✓ Faster local convergence rate
- X Double-loop algorithm

Hybrid BPG



Feasibility is directly connected with task performance.

Algorithm Design

Bregman Alternating Gradient Descent

1. "Operator Splitting" strategy to decouple the Birkhoff polytope:

$$\min_{\substack{\pi, w \in \mathbb{R}^{n \times m}}} -\operatorname{Tr}(D_X \pi D_Y w^T)$$

s.t. $\pi \mathbf{1}_m = \hat{\mu}_n, \pi \ge 0$
 $w^T \mathbf{1}_n = \hat{\nu}_m, w \ge 0$
 $\pi = w.$

2. Alternating projected gradient descent on a new penalized function

$$F_{\rho}(\pi, w) := -\operatorname{Tr}(D_X \pi D_Y w^T) + \rho D_h(\pi, w)$$

KL-BAPG

Choosing h as the relative entropy, we have closed-form update:

 $\pi \leftarrow \pi \odot \exp(D_X \pi D_Y / \rho)$ $\pi \leftarrow \operatorname{diag}(\mu . / \pi \mathbf{1}_m) \pi$ $\pi \leftarrow \pi \odot \exp(D_X \pi D_Y / \rho)$ $\pi \leftarrow \pi \operatorname{diag}(\nu . / \pi^T \mathbf{1}_n).$

- ✓ **Single-loop** algorithm
- ✓ Compatibility with GPU implementation,
- Robustness to the step size (the only hyperparameter)
- ✓ Low memory cost
- X Infeasible method

KL-BAPG

Choosing h as the relative entropy, we have closed-form update:

 $\pi \leftarrow \pi \odot \exp(D_X \pi D_Y / \rho)$ $\pi \leftarrow \operatorname{diag}(\mu . / \pi \mathbf{1}_m) \pi$ $\pi \leftarrow \pi \odot \exp(D_X \pi D_Y / \rho)$ $\pi \leftarrow \pi \operatorname{diag}(\nu . / \pi^T \mathbf{1}_n).$

Incorporated in POT: Python Optimal Transport ot.gromov.BAPG_gromov_Wasserstein(.)

Any Theoretical Guarantee?

Main Technical Tool

$$\min_{\pi \in \mathbb{R}^{n \times m}} -\operatorname{Tr}(D_X \pi D_Y \pi^T)$$

s.t. $\pi \mathbf{1}_m = \hat{\mu}_n, \pi \ge 0$ \boldsymbol{c}_1
 $\pi^T \mathbf{1}_n = \hat{\nu}_m, \pi \ge 0.$ \boldsymbol{c}_2

Proposition (Luo-Tseng Error Bound Condition):

$$\operatorname{dist}(\pi, \mathcal{X}) \le \|\pi - \operatorname{proj}_{C_1 \cap C_2}(\pi + D_X \pi D_Y)\|$$

where \mathcal{X} is the critical point set.

Luo Z Q, Tseng P. Error bound and convergence analysis of matrix splitting algorithms for the affine variational inequality problem. SIAM Journal on Optimization, 1992.

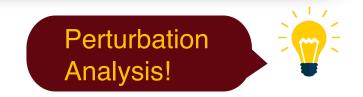
Approximation Bound of BAPG

Theorem: If the point (π^*, w^*) belongs to the fixed-point set of BAPG, then the infeasibility error satisfies

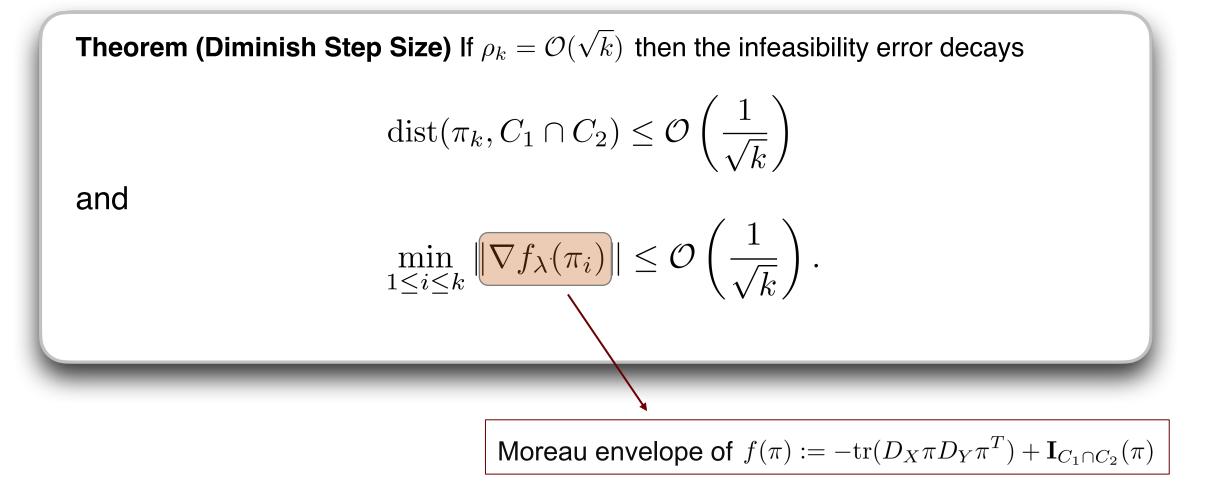
$$\|\pi^{\star} - w^{\star}\| \le \frac{\tau_1}{\rho}$$

and

dist
$$\left(\frac{\pi^* + w^*}{2}, \mathcal{X}\right) \leq \frac{\tau_1}{\rho}.$$



Convergence Results for BAPG



Convergence Results for hBPG

Theorem (Local Linear Convergence Rate) Suppose that the sequence $\{\pi_k\}_{k\geq 0}$ has <u>an element-wise lower bound ϵ </u>, i.e., the sequence of solutions $\{\pi_k\}_{k\geq 0}$ generated by BPG converges R-linearly to an element in the critical point set.

. Sufficient decrease property

$$F\left(\pi^{k+1}\right) - F\left(\pi^{k}\right) \leq -\kappa_1 \left\|\pi^{k+1} - \pi^{k}\right\|^2$$

II. Cost-to-Go estimate

$$F\left(\pi^{k+1}\right) - F\left(\pi^{\star}\right) \le -\kappa_2 \left(\operatorname{dist}^2(\pi^k, \mathcal{X}) + \left\|\pi^{k+1} - \pi^k\right\|^2\right)$$

III. Safyguard property

$$\|\pi^{k} - \operatorname{Proj}_{C_{1} \cap C_{2}}(\pi^{k} - \nabla f(\pi^{k}))\| \leq -\kappa_{3} \|\pi^{k+1} - \pi^{k}\|^{2}.$$

Spurious Stationary Point & Hardness

1. In all Bregman proximal-type (such as mirror descent), **spurious stationary points** may exist, even in convex problems.

 (Hardness) Bregman proximal-type algorithms are unable to escape from a spurious stationary point in finite steps when the initial point is around the spurious stationary points.

(Recent) He Chen*, Jiajin Li*, Anthony Man-Cho So*. Spurious Stationarity and Hardness Results for Mirror Descent <u>http://arxiv.org/abs/2404.08073</u>

Graph Alignment

Graph alignment aims to identify the node correspondence between two graphs possibly with different topology structures.

Dataset	# Samples	Ave. Nodes	Ave. Edges
Synthetic	300	1500	56579
Proteins	1113	39.06	72.82
Enzymes	600	32.63	62.14
Reddit	500	375.9	449.3

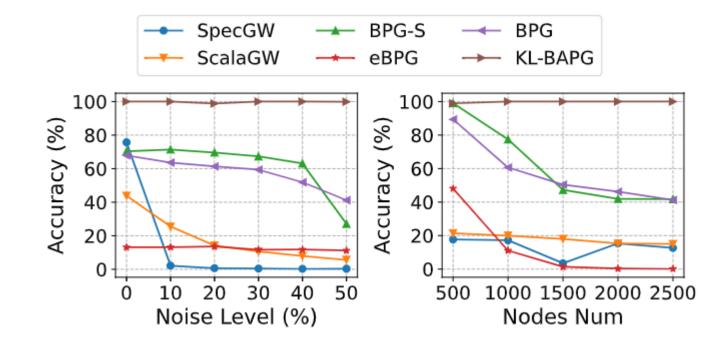
Table 2: Statistics of databases for graph alignment.

Table 3: Comparison of the matching accuracy (%) and wall-clock time (seconds) on graph alignment. For BAPG, we also report the time of GPU implementation.

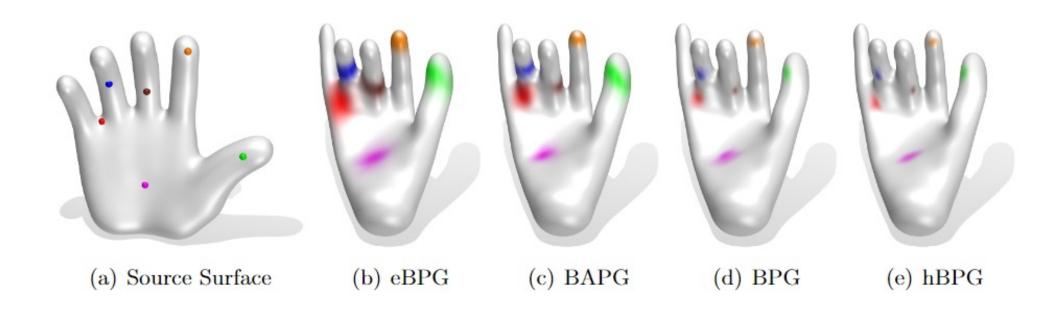
Method	Synthetic		Proteins			Enzymes			Reddit		
	Acc	Time	Raw	Noisy	Time	Raw	Noisy	Time	Raw	Noisy	Time
IPFP	-	-	43.84	29.89	87.0	40.37	27.39	23.7	-	-	-
RRWM	-	-	71.79	33.92	239.3	60.56	30.51	114.1	-	-	-
$\operatorname{SpecMethod}$	-	-	72.40	22.92	40.5	71.43	21.39	9.6	-	-	-
FW	24.50	8182	29.96	20.24	54.2	32.17	22.80	10.8	21.51	17.17	1121
ScalaGW	17.93	12002	16.37	16.05	372.2	12.72	11.46	213.0	0.54	0.70	1109
SpecGW	13.27	1462	78.11	19.31	30.7	79.07	21.14	6.7	50.71	19.66	1074
eBPG	34.33	9502	67.48	45.85	208.2	78.25	60.46	499.7	3.76	3.34	1234
BPG	57.56	22600	71.99	52.46	130.4	79.19	62.32	73.1	39.04	36.68	1907
BPG-S	61.48	18587	71.74	52.74	40.4	79.25	62.21	13.4	39.04	36.68	1431
hBPG	51.57	13279	70.07	49.01	245.9	78.57	62.26	560.0	47.15	45.58	1447
BAPG	99.79	9024	78.18	57.16	59.1	79.66	62.85	14.8	50.93	49.45	780
BAPG-GPU	-	1253	-	-	75.4	-	-	21.8	-	-	115

Graph Alignment

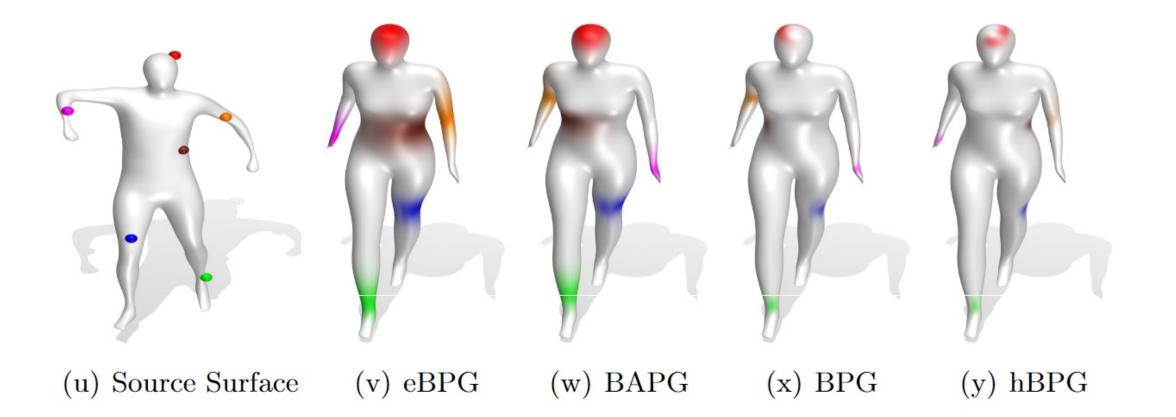
Graph alignment aims to identify the node correspondence between two graphs possibly with different topology structures.



Shape Correspondence



Shape Correspondence



Shape Correspondence

Table 5: Comparison of the infeasibility error (i.e., $\frac{\|\pi^T \mathbf{1}_n - \nu\|}{m} + \frac{\|\pi \mathbf{1}_m - \mu\|}{n}$) and CPU wall-clock time.

Method	Hand		Octopus		Mug		Chair		Human	
	Error	Time	Error	Time	Error	Time	Error	Time	Error	Time
eBPG	2.95e-10	9.37	7.21e-10	12.08	6.41e-10	27.86	1.77e-10	12.87	5.52e-10	11.46
BPG	3.00e-07	389.72	2.00e-07	32.55	3.50e-07	196.93	4.00e-07	304.98	2.53e-07	93.27
hBPG	3.00e-07	193.85	2.00e-07	23.14	3.50e-07	90.59	4.00e-07	189.41	2.53e-07	53.29
BAPG	4.54e-06	61.77	2.14e-05	6.19	6.62e-05	30.83	2.13e-05	127.78	5.62e-05	8.26
BAPG-GPU	-	3.10	-	1.28	-	1.39	-	3.22	-	0.78

Take Home Message

GW distance: A powerful tool for aligning distinct structured datasets.

- When the sharpness of coupling does not matter, we can sacrifice some feasibility to gain both efficiency and accuracy – choose BAPG.
- When coupling feasibility affects task performance directly, consider using hBPG as an alternative.
- Local error bound: A useful technical tool for perturbation analysis to facilitate analysis.

Reference

1. Jiajin Li, Jianheng Tang, Lemin Kong, Huikang Liu, Jia Li, Anthony Man-Cho So, Jose Blanchet. *A Convergent Single-Loop Algorithm for Relaxation of Gromov-Wasserstein in Graph Data,* International Conference on Learning Representation (**ICLR**), 2023.

2. Jiajin Li, Jianheng Tang, Lemin Kong, Huikang Liu, Jia Li, Anthony Man-Cho So, Jose Blanchet. *Fast Provably Convergent Algorithms for Gromov-Wasserstein in Graph Data*, <u>arXiv:2205.08115</u>

3. Jianheng Tang, Weiqi Zhang, **Jiajin Li**, Kangfei Zhao, Fugee Tsung, Jia Li. *Robust Attributed Graph Alignment via Joint Structure Learning and Optimal Transport,* International Conference on Data Engineering (**ICDE**), 2023.

4. (Recent) He Chen*, **Jiajin Li***, Anthony Man-Cho So*. *Spurious Stationarity and Hardness Results for Mirror Descent* <u>http://arxiv.org/abs/2404.08073</u>

