

Probabilistic Taken's Embedding through the Wasserstein Tangent Space

April 18, 2024 Women in OT Workshop

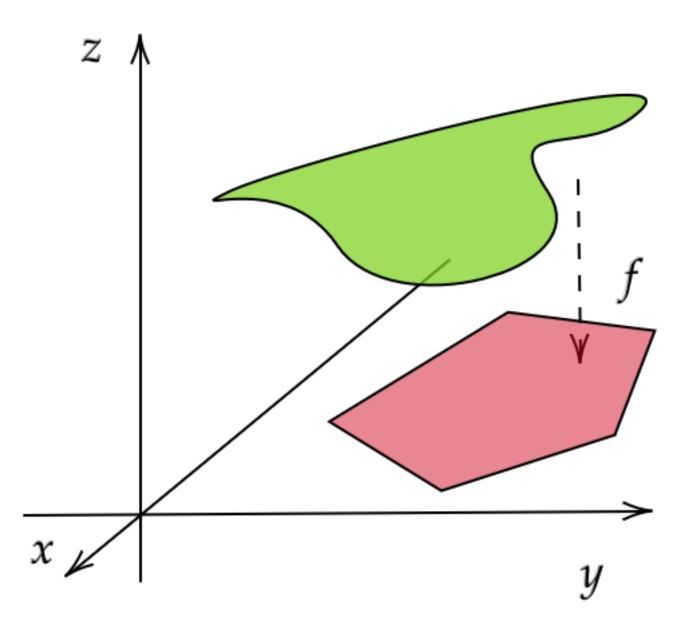
Maria Oprea , Yunan Yang, Jonah Botvinick-Greenhouse

Embeddings

Notion of **"sameness"**

Diffeomorphism that preserves the differential structure

- $f: M \rightarrow N$ is an **embedding** if
 - f is bijective onto f(M)
 - *f* is differentiable
 - Df_x is injective



Takens embedding

 $x = f(x) \text{ with flow } \varphi_t : M \to M$

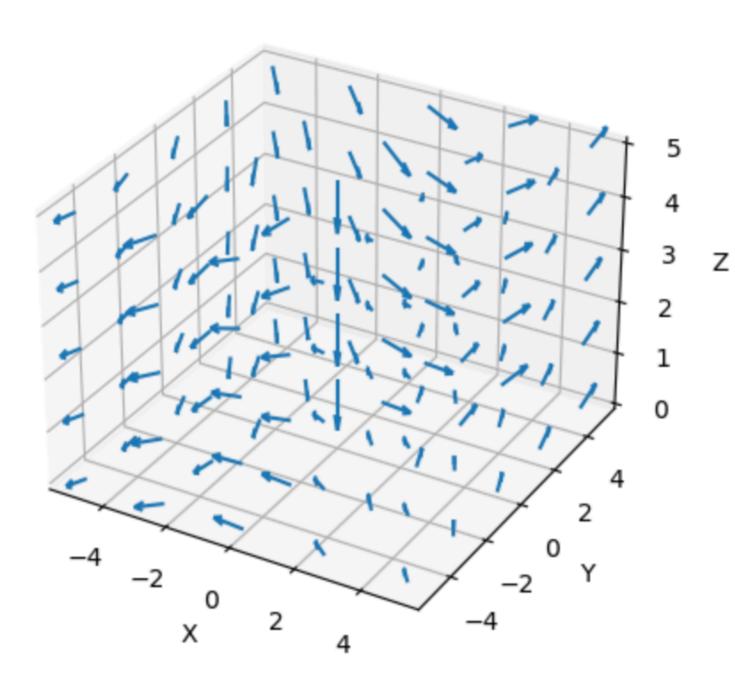
 $h: M \to \mathbb{R}$ is the **observation** function

It is a **generic** propriety that the **delay** map

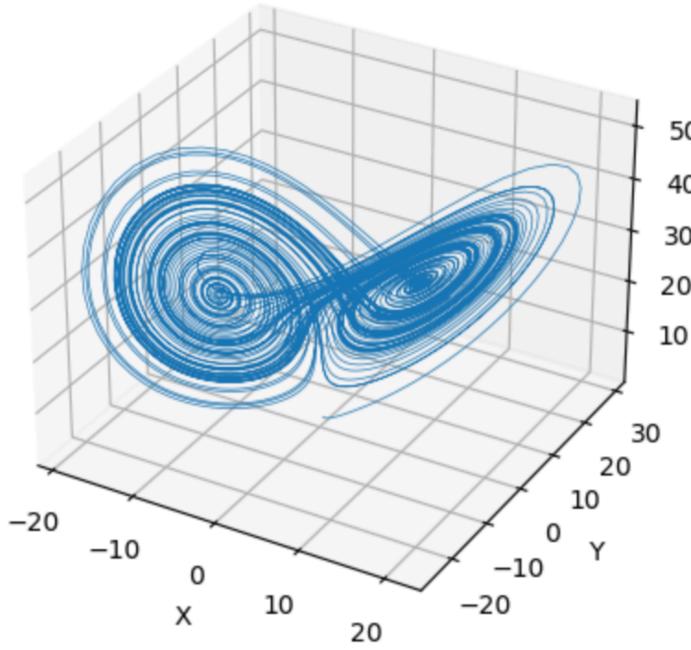
 $\Phi_{h,\varphi_t}(x) = (h(x), h(\varphi_t))$

is an **embedding**

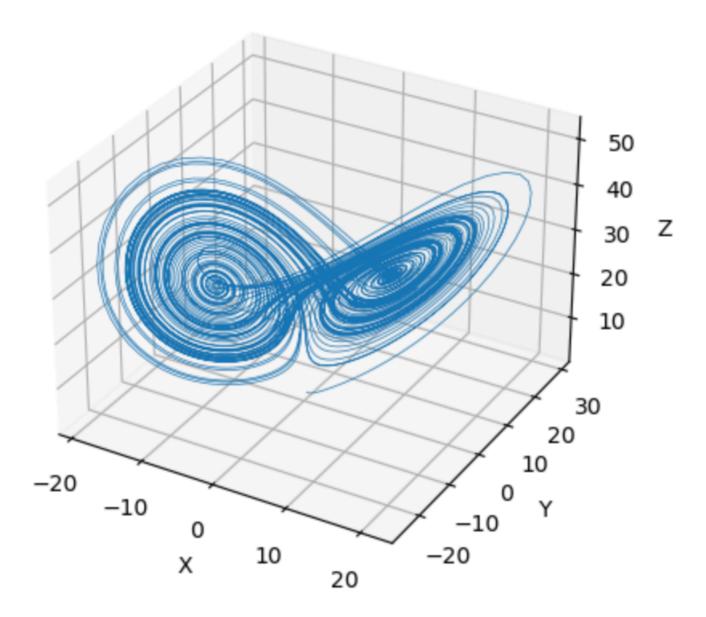
au is called the delay, and d is the dimension

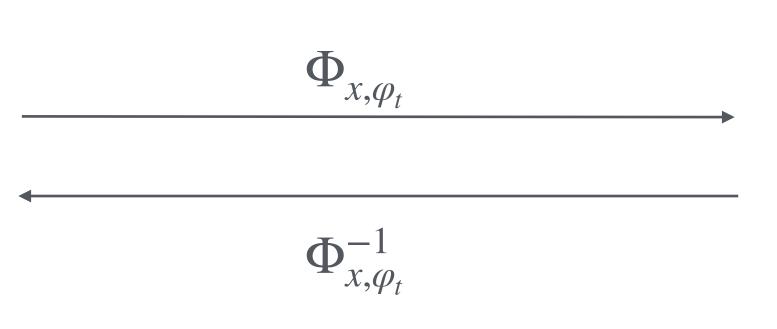


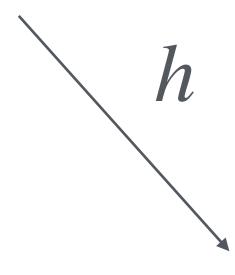
$$(x)), ..., h(\varphi_{(d-1)\tau}(x)))$$

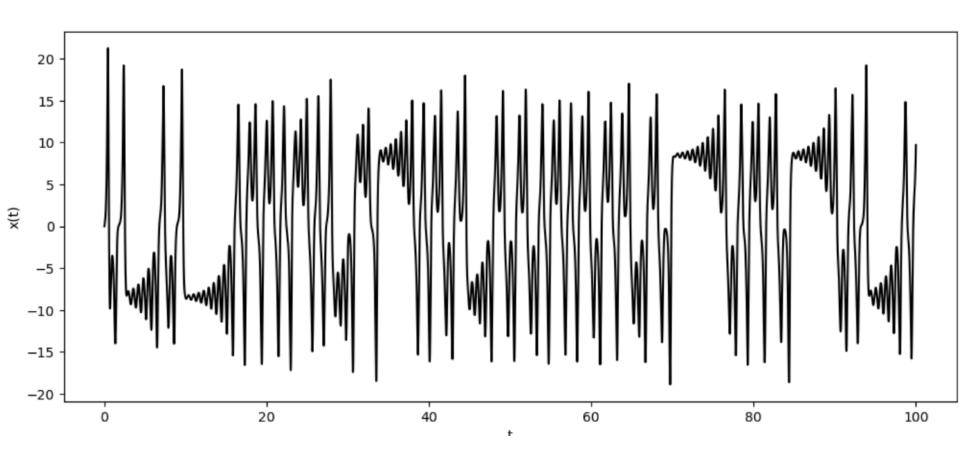


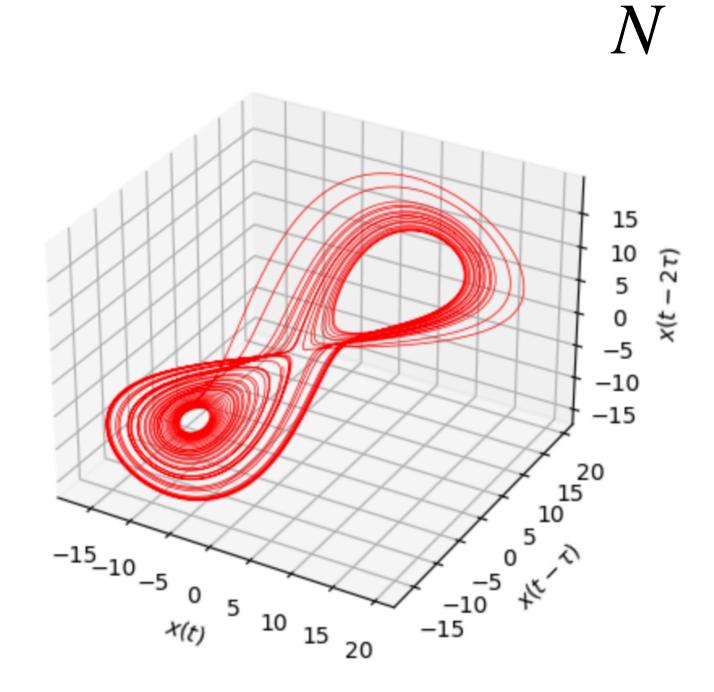
M



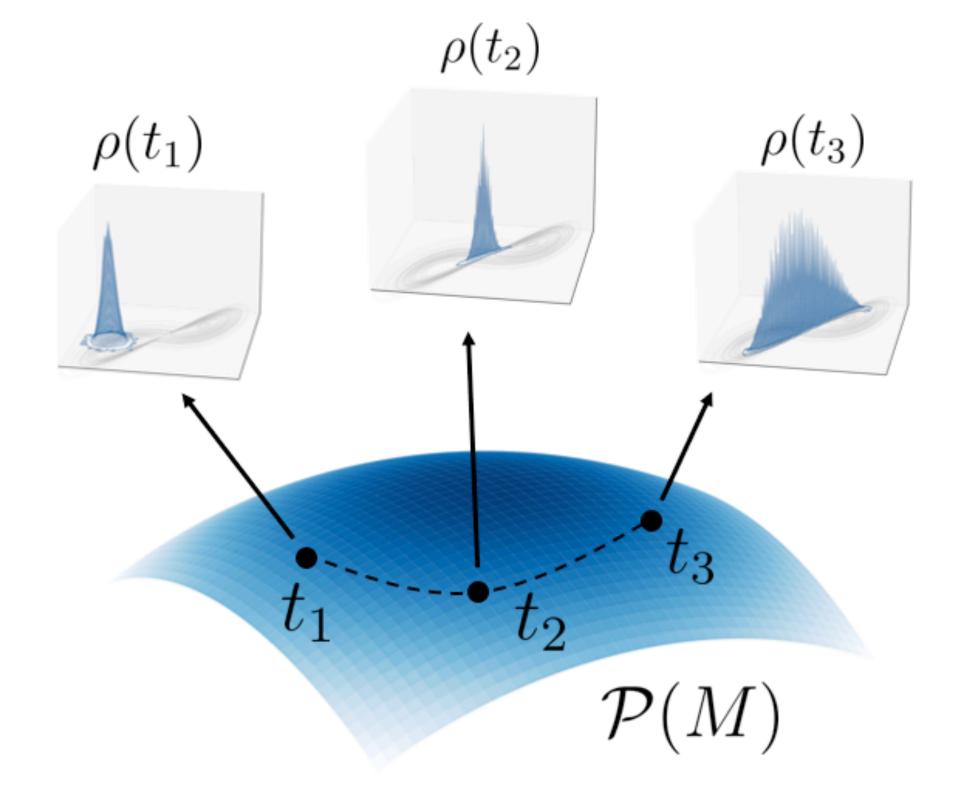


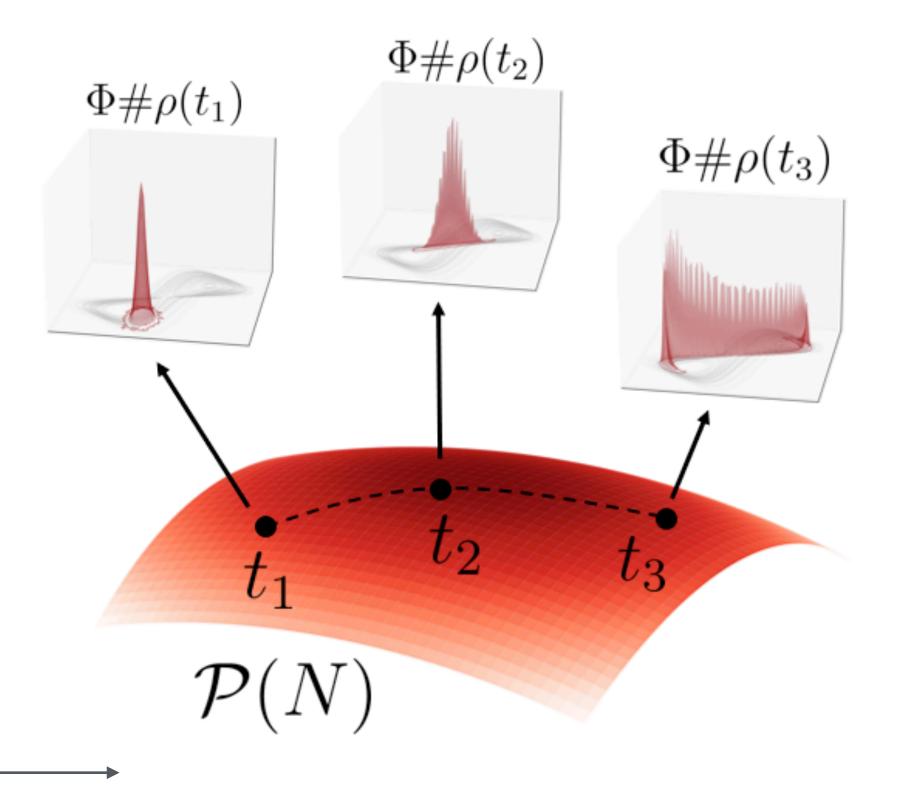






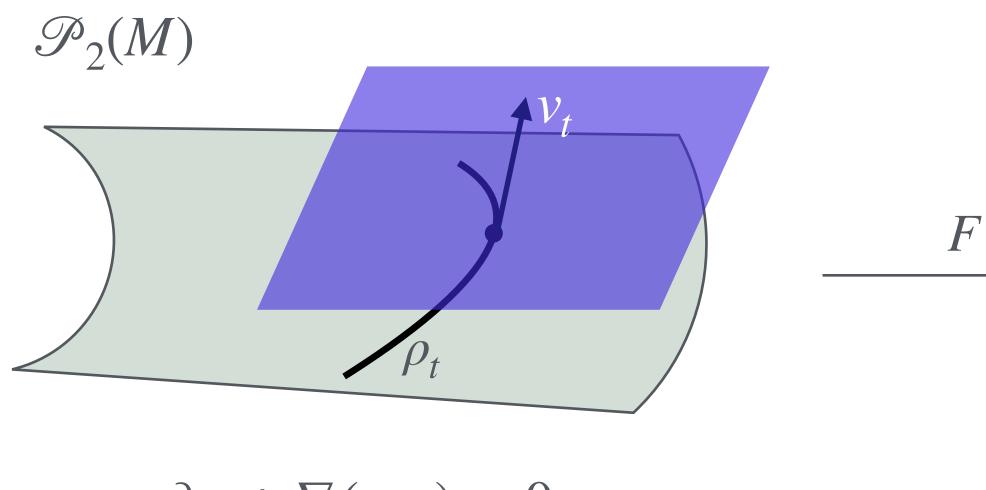
Lifted Takens embedding





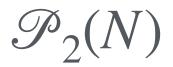
 Φ_{h,φ_t} #

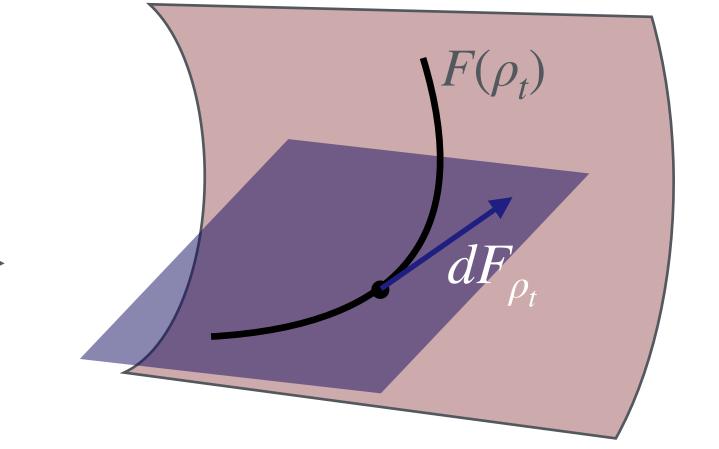
Wasserstein embedding



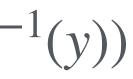
 $\partial \rho_t + \nabla (\rho_t v_t) = 0$

If F = f# then $dF_{\rho_t}(v_t)(y) = P_{F(\rho_t)} df_{f^{-1}(y)} v_t(f^{-1}(y))$

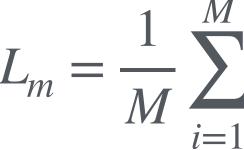




$\partial F(\rho_t) + \nabla (F(\rho_t) dF_{\rho_t}(v_t)) = 0$

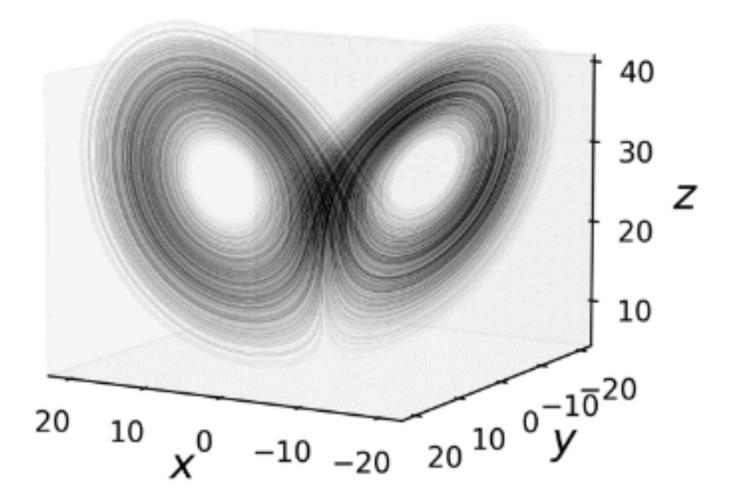


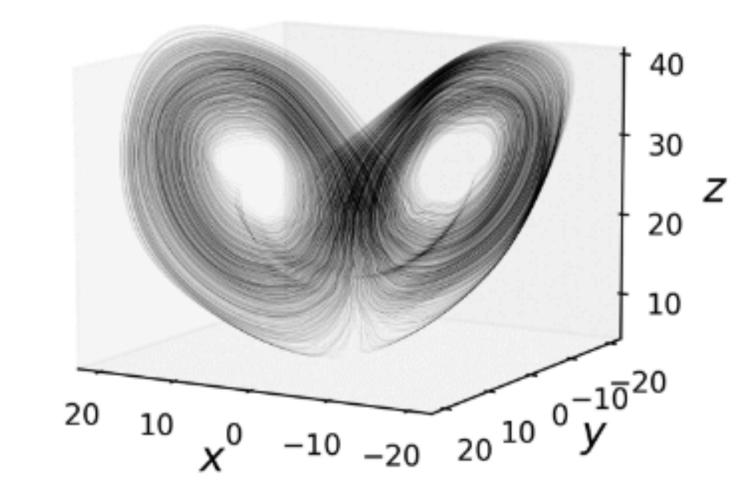
Numerical result



Ground Truth

Measure-Based Reconstruction





0.11 noise

Reconstruction map

 $L_m = \frac{1}{M} \sum_{i=1}^{M} D(\mu_i, R_{\theta} \# \Phi \# \mu_i) \qquad \qquad L_{pw} = \frac{1}{N} \sum_{i=1}^{n} \|x_i - R_{\theta}(\Phi(x_i))\|^2$

Pointwise Reconstruction

