Motivation and Background	No-Collision Transport Maps	Theoretical Results	Examples 00000	Conclusio 000

Applications of No-Collision Transportation Maps in Manifold Learning

Elisa Negrini Department of Mathematics, UCLA

Joint with Levon Nurbekyan (Emory University)

Women in OT meeting, UBC Vancouver April 18, 2024

Motivation and Background ●0000	No-Collision Transport Maps	Theoretical Results	Examples 00000	Conclusion
Learning using [Distributions			

We will work with data that come in the form of distributions.

Optimal Transport provides a natural geometry to compare probability measures.

Motivation and Background ○●○○○	No-Collision Transport Maps	Theoretical Results	Examples 00000	Conclusion 000
Unsupervised Le	earning			

Given distributions $\mu_i \in \mathcal{P}, i = 1, ..., N$ discover the underlying structure or patterns in the data.

Manifold Learning

Find a low-dimensional representation of high-dimensional data that preserves the underlying structure or geometry of the data. May require all the pairwise distances $d(\mu_i, \mu_i)$.

Gu, Rui-jun, and Wenbo Xu. "An Improved Manifold Learning Algorithm for Data Visualization."

We use optimal transport-like maps called *no-collision transportation maps* [8] to solve manifold learning tasks.

^[8] Nurbekyan L., Iannantuono A., Oberman A., 2020

Optimal transport is the general problem finding the most efficient way to move one distribution of mass to another. (Monge 1781)

Mathematical framework:

Find $T : \mathbb{R}^d \to \mathbb{R}^d$ that minimizes the cost c(x, y) to move μ into ν :

$$\inf_{T} \left\{ \int_{\mathbb{R}^d} c(x, T(x)) d\mu(x) : \nu(B) = \mu(T^{-1}(B)) \forall \text{ Borel sets } B \right\}$$

A common choice for the cost is $c(x, T(x)) = ||T(x) - x||_2^2$. In this case the minimum is known as the squared **2-Wasserstein distance**, W_2 .

Conclusion 000

Pros and Cons of Optimal Transport Distances

Pros:

- W₂ defines a distance and Riemannian structure on the space of probability measures [2].
- The OT distance is sensitive to geometric features of the measures being transported (e.g. the OT map between translated measures is the translation).
- We have a good understanding of theoretical properties [12, 10, 13].

Cons:

• OT maps are expensive to calculate and normally require global optimization.

^[12] Villani, C. 2009, [2] Ambrosio L., Gigli N., Savaré G. 2017 [8] Peyré, G., Cuturi, M. 2019, [13] Villani, C. 2021

Motivation and Background 0000●	No-Collision Transport Maps	Theoretical Results	Examples 00000	Conclusion
Our Goal				

Questions:

- Can we come up with transport-like maps and distances that are cheaper to compute but retain advantageous properties of optimal ones?
- ② Can we use these maps in learning tasks [7]?

Prior Work:

- Linear Optimal Transport (LOT) [14, 5]
- Cumulative Distribution Transform (CDT) [9]
- The Radon cumulative distribution transform (Radon-CDT) [6]
- No-Collision Transportation maps [8]
- [14] Wang W., Slepčev D., Basu S., Ozolek J.A., Rohde G.K. 2013;
- [6] Kolouri S., Park S.R., Rohde G.K. 2015;
- [7] Kolouri S., Park S.R., Thorpe M., Slepčev D., Rohde G.K. 2016;
- [9] Park S.R., Kolouri S., Kundu S., Rohde G.K. 2018;
- [8] Nurbekyan L., Iannantuono A., Oberman A., 2020;
- 5] Khurana V., Kannan H., Cloninger A., Moosmüller C. 2023

Motivation and Background	No-Collision Transport Maps ●0000	Theoretical Results	Examples 00000	Conclusion 000
This Work				

- Inspired by Wasserstein Isometric Mapping (Wassmap) [4] and by its linearized version [3, 5], we perform manifold learning using Multidimensional Scaling (MDS) on no-collision distances.
- We prove that no-collision distances accurately capture translations and dilations of a given probability measure.
- In contrast, we prove that OT, LOT and no-collision maps are not able to capture rotations.

^[14] Wang W., Slepčev D., Basu S., Ozolek J.A., Rohde G.K. 2013;

^[4] Hamm K., Henscheid N., Shujie K. 2022;

^[5] Khurana V., Kannan H., Cloninger A., Moosmüller C., 2023;

^[3] Cloninger A., Hamm K., Khurana V., Moosmüller C., 2023

Motivation and Background

No-Collision Transport Maps

Theoretical Results

Examples Con 00000 000

No-Collision Transport Maps

Assume that
$$X \subseteq \mathbb{R}^d$$
, and $T : X \to \mathbb{R}^d$.

Definition: We say that *T* has the *no-collision* property if $\forall x_1, x_2 \in X$ such that $x_1 \neq x_2$: $(1-s)x_1+sT(x_1) \neq (1-s)x_2+sT(x_2) \ \forall s \in (0,1).$

Definition: We say that *T* is *half-space* preserving if $\forall x_1, x_2 \in X$ such that $x_1 \neq x_2$ there exists $v \in \mathbb{R}^d$ such that

$$(x_2 - x_1) \cdot v \leq 0, \quad (T(x_2) - T(x_1)) \cdot v \leq 0,$$

and at least one of the inequalities is strict.

Motivation and Background	No-Collision Transport Maps	Theoretical Results	Examples	Conclusion
	00●00	000	00000	000

Remark (Ambrosio et al. 2008 [2])

OT maps with $c(x, y) = |x - y|^p$, p > 1 have the no-collision property.

Theorem (Nurbekyan et al. 2020 [8])

T has the no-collision property if and only if it is half-space-preserving.

No-Collision Transport Maps: the Algorithm

Goal: Build no-collision maps between distributions μ and ν based on the half-space preserving property.

1. Let
$$\mu \in \mathcal{P}(\Omega)$$
, define $\Omega_0 = \Omega$ and $\mathcal{C}_0 = {\Omega_0}$

Let $\nu \in \mathcal{P}(\Omega)$, define $\Omega'_0 = \Omega$ and $\mathcal{C}'_0 = \{\Omega'_0\}$

2. Choose a slicing direction $s_1 \in \mathbb{S}^{d-1}$ and find an hyperplane that divides Ω_0 into two parts Ω_{00} and Ω_{01} such that $\mu(\Omega_{00}) = \mu(\Omega_{01}) = \frac{1}{2}$. Define $\mathcal{C}_1 = \{\Omega_{00}, \Omega_{01}\}$.

Using the same slicing direction, do the same for ν to obtain $\Omega_{00}',~\Omega_{01}',~\mathcal{C}_1'=\{\Omega_{00}',\Omega_{01}'\}$

3. Continue this slicing procedure by slicing each set in C_i and C'_i into two parts with equal masses.

At each step use the same slicing direction for μ and ν .

3. Continue this slicing procedure by slicing each set in C_i and C'_i into two parts with equal masses.

0.010

0.008

0.006

0.004

0.002

0.000

At each step use the same slicing direction for μ and ν .

4. At step N we obtain N + 1 subsets $C_i = \{\Omega_b\}$ and $C'_i = \{\Omega'_b\}$ which form a partition of Ω and for which $\mu(\Omega_b) = \nu(\Omega'_b) = \frac{1}{2^N}$

5. In the limit as $N \to +\infty$ we define a no-collision map $T : \Omega \to \Omega$ so that it respects the resulting partitions by matching corresponding leaves in $supp(\mu)$ and $supp(\nu)$ that is $T(\Omega_b) \subset \tilde{\Omega}_b$ for all b.

6. In the discrete setting, for each Ω_b and Ω'_b we denote by c_b and c'_b their "center". In this way we obtain collections $C = \{c_b\}$ and $C' = \{c'_b\}$ that represent respectively the features of μ and ν .

 $T: C \to C'$ such that $T(c_b) = c'_b$, $\forall b$ is an approximation of the no-collision map.

Motivation and Background	No-Collision Transport Maps 0000●	Theoretical Results	Examples 00000	Conclusion
Pros and Cons				

Pros:

- The construction does not involve optimization: only a median search. [1, 11]
- No-collision maps provide comparable results as other optimal transport based methods using less computational time [4, 5].

Cons:

- Since no optimization is involved, these maps are not optimal in general. In some cases, however, the sub-optimality is not severe. Some examples later and in [8, Section 4].
- It is unclear how to pick the number and direction of the cuts.

M. Ajtai, J. Komlós, G. Tusnády, 1984; [11] N. G. Trillos, D. Slepčev, 2015; [8] Nurbekyan L., Iannantuono A., Oberman A., 2020; [4] Hamm, K., Henscheid, N., Kang, S. 2022; [5] Khurana, V., Kannan, H., Cloninger, A., Moosmüller, C. 2023

Motivation and Background	No-Collision Transport Maps	Theoretical Results ●00	Examples 00000	Conclusion
Manifold Learnir	ıg			

• Take μ_0 the uniform measure on a unit disc and consider its translations and dilations, get $\{\mu\}_{i=1}^N$.

Motivation and Background	No-Collision Transport Maps	Theoretical Results ●00	Examples 00000	Conclusion 000
Manifold Learning				

- Take μ₀ the uniform measure on a unit disc and consider its translations and dilations, get {μ}^N_{i=1}.
- Take μ_0 the uniform measure on an ellipse and consider its rotations, get $\{\mu\}_{i=1}^N$.

Motivation and Background	No-Collision Transport Maps	Theoretical Results ●00	Examples 00000	Conclusion 000
Manifold Learning				

- Take μ₀ the uniform measure on a unit disc and consider its translations and dilations, get {μ}^N_{i=1}.
- Take μ_0 the uniform measure on an ellipse and consider its rotations, get $\{\mu\}_{i=1}^N$.
- Given $\{\mu\}_{i=1}^{N}$ choose a distance and build a distance matrix $D = (d(\mu_i, \mu_j))_{i,j=1}^{N}$

Motivation and Background	No-Collision Transport Maps	Theoretical Results ●00	Examples 00000	Conclusion 000
Manifold Learnin	ng			

- Take μ₀ the uniform measure on a unit disc and consider its translations and dilations, get {μ}^N_{i=1}.
- Take μ_0 the uniform measure on an ellipse and consider its rotations, get $\{\mu\}_{i=1}^N$.
- Given $\{\mu\}_{i=1}^{N}$ choose a distance and build a distance matrix $D = (d(\mu_i, \mu_j))_{i,j=1}^{N}$
- Run a manifold learning algorithm such as MDS on D.

Let $\mathcal{P}_{ac}(\mathbb{R}^d)$ the set of Borel probability measures over \mathbb{R}^d that are absolutely continuous with respect to the Lebesgue measure.

Theorem (Translation Manifold (Negrini-Nurbekyan'23))

Assume that $\mu_0 \in \mathcal{P}_{ac}(\mathbb{R}^d)$. Let $\mu_{\theta} = (x + \theta) \sharp \mu_0$ for $\theta \in \mathbb{R}^d$. Then for every slicing schedule S we have that

$$W_{\mathbb{S},p}(\mu_{\theta},\mu_{\theta'}) = |\theta - \theta'|, \quad \forall \theta, \theta' \in \mathbb{R}^d, \ p \ge 1.$$

In particular, $(\{\mu_{\theta}\}, W_{S,p})$ is isometric to $(\Theta, |\cdot|)$.

A similar result can be proven for Dilations.

Motivation and Background	No-Collision Transport Maps	Theoretical Results	Examples	Conclusion
	00000	00●	00000	000
Theoretical R	esults: Rotations			

Denote by R_t the counter-clockwise rotation by angle t around the origin; that is, $R_t x = (x_1 \cos t - x_2 \sin t, x_1 \sin t + x_2 \cos t)$.

Theorem (Rotation Manifold (Nurbekyan, Negrini '23))

Assume that μ_0 is a uniform measure over an elliptical domain

$$\mathcal{E} = \left\{ (x_1, x_2) \in \mathbb{R}^2 \; : \; rac{(x_1 - u_1)^2}{a^2} + rac{(x_2 - u_2)^2}{b^2} \leq 1
ight\},$$

where $u = (u_1, u_2) \neq 0$, and a, b > 0. Furthermore, assume that $\mu_t = (R_t x) \sharp \mu_0$, and S is a slicing schedule. Then $(\{\mu_t\}_{t \in [0,2\pi]}, W_{S,2})$ is isometric to a circle if and only if a = b.

Similar results hold if one uses OT or LOT distances.

Motivation and Background	No-Collision Transport Maps	Theoretical Results	Examples ●0000	Conclusion
Manifold Learnin	ng: Translation			

Goal: Reconstruct the underlying grid governing a translation manifold using MDS on OT, LOT, no-collision (with 2 cuts) and Euclidean distances.

Theoretical Results

Examples •0000 Conclusion

Manifold Learning: Translation

Goal: Reconstruct the underlying grid governing a translation manifold using MDS on OT, LOT, no-collision (with 2 cuts) and Euclidean distances.

• How well do LOT and no-collision approximate OT distance?

• How fast are the different distance matrix computations?

Motivation and Background	No-Collision Transport Maps	Theoretical Results	Examples 00●00	Conclusion 000
Manifold Learnin	ng: Translation			

• How good is the manifold reconstruction?

Motivation and Background	No-Collision Transport Maps	Theoretical Results	Examples 000€0	Conclusion
Manifold Learnin	ng: Rotation			

In general we have no isometry in the case of rotations...

Motivation and Background	No-Collision Transport Maps	Theoretical Results	Examples 0000●	Conclusion 000
Manifold Learnin	ng: Rotation			

... Unless we are rotating a circular domain

Motivation and Background	No-Collision Transport Maps	Theoretical Results 000	Examples 00000	Conclusion ●00

Conclusion:

- No-collision maps are fast to compute and in certain cases attain nearly optimal costs.
- They attain similar results on manifold learning tasks as other optimal transport based methods, but require less computational time and in some cases attain better OT distance approximations

Future Work:

- Use different cut directions (choose angles randomly at each step).
- Optimize cut directions to minimize transportation cost.
- Explore other learning problems such as classification and clustering using no-collision distances

Motivation and Background	No-Collision Transport Maps	Theoretical Results	Examples 00000	Conclusion ○●●
References I				

- Miklós Ajtai, János Komlós, and Gábor Tusnády. On optimal matchings. *Combinatorica*, 4:259–264, 1984.
- [2] Luigi Ambrosio, Nicola Gigli, and Giuseppe Savaré. Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel, second edition, 2008.
- [3] Alexander Cloninger, Keaton Hamm, Varun Khurana, and Caroline Moosmüller. Linearized wasserstein dimensionality reduction with approximation guarantees. arXiv preprint arXiv:2302.07373, 2023.
- Keaton Hamm, Nick Henscheid, and Shujie Kang. Wassmap: Wasserstein isometric mapping for image manifold learning, 2022.
- [5] Varun Khurana, Harish Kannan, Alexander Cloninger, and Caroline Moosmüller. Supervised learning of sheared distributions using linearized optimal transport. Sampling Theory, Signal Processing, and Data Analysis, 21(1):1-51, 2023.
- [6] Soheil Kolouri, Se Rim Park, and Gustavo K Rohde. The radon cumulative distribution transform and its application to image classification. *IEEE transactions on image processing*, 25(2):920–934, 2015.
- [7] Soheil Kolouri, Serim Park, Matthew Thorpe, Dejan Slepčev, and Gustavo K Rohde. Transport-based analysis, modeling, and learning from signal and data distributions. arXiv preprint arXiv:1609.04767, 2016.
- [8] Levon Nurbekyan, Alexander lannantuono, and Adam M. Oberman. No-collision transportation maps. Journal of Scientific Computing, 82(2):45, 2020.

|--|

References II

- [9] Se Rim Park, Soheil Kolouri, Shinjini Kundu, and Gustavo K Rohde. The cumulative distribution transform and linear pattern classification. *Applied and computational harmonic analysis*, 45(3):616–641, 2018.
- [10] Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data science. Foundations and Trends® in Machine Learning, 11(5-6):355-607, 2019.
- [11] Nicolás Garcia Trillos and Dejan Slepčev. On the rate of convergence of empirical measures in *infty*-transportation distance. *Canadian Journal of Mathematics*, 67(6):1358–1383, 2015.
- [12] Cédric Villani. Optimal transport: old and new, volume 338. Springer, 2009.
- [13] Cédric Villani. Topics in optimal transportation, volume 58. American Mathematical Soc., 2021.
- [14] Wei Wang, Dejan Slepčev, Saurav Basu, John A. Ozolek, and Gustavo K. Rohde. A linear optimal transportation framework for quantifying and visualizing variations in sets of images. *International Journal of Computer Vision*, 101(2):254–269, 2013.

Manifold Learning: Dilation

Goal: Reconstruct the underlying grid governing a dilation manifold.

We compare the embeddings given by Wassmap, Multidimensional Scaling (MDS) on pixels, on LOT features and on the no-collision features for 3 cuts.

We randomly sample 300 handwritten 0s and 1s from MNIST and compare 2D embeddings for Wassmap, ISOMAP on pixels and LOT and no-collision features for 5 no-collision cuts.

The points are colored according to their class label.

We also compare the computational time for the different methods:

Mathad	14/2000000	LOT	No-collision
wiethoa	vvassmap	1 Gaussian Reference	N = 5
Time (s)	443.3	8.4	9.5

Clustering: Sheared MNIST digits

We randomly sample 300 sheared 0s and 1s from MNIST and compare 2D embeddings for Wassmap, ISOMAP on pixels and LOT and no-collision features for 8 no-collision cuts.

The points are colored according to their class label.

We also compare the computational time for the different methods:

Mathad Magaman		LOT	No-collision	
wiethod	vvassmap	5 Gaussian References	N = 8	
Time (s)	443.3	18.3	71.7	