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Learning using Distributions

We will work with data that come in the form of distributions.

Optimal Transport provides a natural geometry to compare probability
measures.
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Unsupervised Learning

Given distributions µi ∈ P, i = 1, . . . , N discover the underlying
structure or patterns in the data.

Manifold Learning
Find a low-dimensional representation of high-dimensional data that
preserves the underlying structure or geometry of the data.
May require all the pairwise distances d(µi , µj).

We use optimal transport-like maps called no-collision transportation
maps [8] to solve manifold learning tasks.

[8] Nurbekyan L., Iannantuono A., Oberman A., 2020
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Optimal Transport: Monge Formulation

Optimal transport is the general problem finding the most efficient way
to move one distribution of mass to another. (Monge 1781)

Mathematical framework:
Find T : Rd → Rd that minimizes the cost c(x , y) to move µ into ν:

inf
T

{∫
Rd

c(x , T (x))dµ(x) : ν(B) = µ(T −1(B)) ∀ Borel sets B
}

A common choice for the cost is c(x , T (x)) = ∥T (x) − x∥2
2. In this case

the minimum is known as the squared 2-Wasserstein distance, W2.
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Pros and Cons of Optimal Transport Distances

Pros:
W2 defines a distance and Riemannian structure on the space of
probability measures [2].
The OT distance is sensitive to geometric features of the measures
being transported (e.g. the OT map between translated measures
is the translation).
We have a good understanding of theoretical
properties [12, 10, 13].

Cons:
OT maps are expensive to calculate and normally require global
optimization.

[12] Villani, C. 2009, [2] Ambrosio L., Gigli N., Savaré G. 2017 [8] Peyré, G., Cuturi, M. 2019, [13] Villani, C. 2021
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Our Goal
Questions:

1 Can we come up with transport-like maps and distances that are
cheaper to compute but retain advantageous properties of optimal
ones?

2 Can we use these maps in learning tasks [7]?

Prior Work:
Linear Optimal Transport (LOT) [14, 5]
Cumulative Distribution Transform (CDT) [9]
The Radon cumulative distribution transform (Radon-CDT) [6]
No-Collision Transportation maps [8]

[14] Wang W., Slepčev D., Basu S., Ozolek J.A., Rohde G.K. 2013;
[6] Kolouri S., Park S.R., Rohde G.K. 2015;
[7] Kolouri S., Park S.R., Thorpe M., Slepčev D., Rohde G.K. 2016;
[9] Park S.R., Kolouri S., Kundu S., Rohde G.K. 2018;
[8] Nurbekyan L., Iannantuono A., Oberman A., 2020;
[5] Khurana V., Kannan H., Cloninger A., Moosmüller C. 2023
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This Work

Inspired by Wasserstein Isometric Mapping (Wassmap) [4] and by
its linearized version [3, 5], we perform manifold learning using
Multidimensional Scaling (MDS) on no-collision distances.

We prove that no-collision distances accurately capture translations
and dilations of a given probability measure.

In contrast, we prove that OT, LOT and no-collision maps are not
able to capture rotations.

[14] Wang W., Slepčev D., Basu S., Ozolek J.A., Rohde G.K. 2013;
[4] Hamm K., Henscheid N., Shujie K. 2022;
[5] Khurana V., Kannan H., Cloninger A., Moosmüller C., 2023;
[3] Cloninger A., Hamm K., Khurana V., Moosmüller C., 2023
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No-Collision Transport Maps

Assume that X ⊆ Rd , and T : X → Rd .

Definition: We say that T has the no-collision
property if ∀ x1, x2 ∈ X such that x1 ̸= x2:

(1−s)x1 +sT (x1) ̸= (1−s)x2 +sT (x2) ∀s ∈ (0, 1).

Definition: We say that T is half-space
preserving if ∀ x1, x2 ∈ X such that x1 ̸= x2 there
exists v ∈ Rd such that

(x2 − x1) · v ≤ 0, (T (x2) − T (x1)) · v ≤ 0,

and at least one of the inequalities is strict.
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Remark (Ambrosio et al. 2008 [2])
OT maps with c(x , y) = |x − y |p, p > 1 have the no-collision property.

Theorem (Nurbekyan et al. 2020 [8])
T has the no-collision property if and only if it is half-space-preserving.



Motivation and Background No-Collision Transport Maps Theoretical Results Examples Conclusion

No-Collision Transport Maps: the Algorithm
Goal: Build no-collision maps between distributions µ and ν based on
the half-space preserving property.

1. Let µ ∈ P(Ω), define Ω0 = Ω and C0 = {Ω0}
Let ν ∈ P(Ω), define Ω′

0 = Ω and C′
0 = {Ω′

0}



Motivation and Background No-Collision Transport Maps Theoretical Results Examples Conclusion

No-Collision Transport Maps: the Algorithm

Goal: Build no-collision maps between distributions µ and ν based on
the half-space preserving property.

2. Choose a slicing direction s1 ∈ Sd−1 and find an hyperplane that divides
Ω0 into two parts Ω00 and Ω01 such that µ(Ω00) = µ(Ω01) = 1

2 .
Define C1 = {Ω00, Ω01}.
Using the same slicing direction, do the same for ν to obtain
Ω′

00, Ω′
01, C′

1 = {Ω′
00, Ω′

01}
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No-Collision Transport Maps: the Algorithm

Goal: Build no-collision maps between distributions µ and ν based on
the half-space preserving property.

3. Continue this slicing procedure by slicing each set in Ci and C′
i into two

parts with equal masses.
At each step use the same slicing direction for µ and ν.
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No-Collision Transport Maps: the Algorithm

Goal: Build no-collision maps between distributions µ and ν based on
the half-space preserving property.

4. At step N we obtain N + 1 subsets Ci = {Ωb} and C′
i = {Ω′

b} which form
a partition of Ω and for which µ(Ωb) = ν(Ω′

b) = 1
2N
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No-Collision Transport Maps: the Algorithm

Goal: Build no-collision maps between distributions µ and ν based on
the half-space preserving property.

5. In the limit as N → +∞ we define a no-collision map T : Ω → Ω so that
it respects the resulting partitions by matching corresponding leaves in
supp(µ) and supp(ν) that is T (Ωb) ⊂ Ω̃b for all b.
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No-Collision Transport Maps: the Algorithm

Goal: Build no-collision maps between distributions µ and ν based on
the half-space preserving property.

6. In the discrete setting, for each Ωb and Ω′
b we denote by cb and c ′

b their
“center”. In this way we obtain collections C = {cb} and C ′ = {c ′

b} that
represent respectively the features of µ and ν.
T : C → C ′ such that T (cb) = c ′

b, ∀b is an approximation of the
no-collision map.
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Pros and Cons

Pros:
The construction does not involve optimization: only a median
search. [1, 11]
No-collision maps provide comparable results as other optimal
transport based methods using less computational time [4, 5].

Cons:
Since no optimization is involved, these maps are not optimal in
general. In some cases, however, the sub-optimality is not severe.
Some examples later and in [8, Section 4].
It is unclear how to pick the number and direction of the cuts.

[1] M. Ajtai, J. Komlós, G. Tusnády, 1984; [11] N. G. Trillos, D. Slepčev, 2015; [8] Nurbekyan L., Iannantuono A.,
Oberman A., 2020; [4] Hamm, K., Henscheid, N., Kang, S. 2022; [5] Khurana, V., Kannan, H., Cloninger, A., Moosmüller,
C. 2023
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Manifold Learning

Take µ0 the uniform measure on a unit disc and consider its
translations and dilations, get {µ}N

i=1.

Take µ0 the uniform measure on an ellipse and consider its
rotations, get {µ}N

i=1.
Given {µ}N

i=1 choose a distance and build a distance matrix
D = (d(µi , µj))N

i ,j=1
Run a manifold learning algorithm such as MDS on D.

[4] Hamm K., Henscheid N., Shujie K. 2022;
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Theoretical Results: Translations

Let Pac(Rd) the set of Borel probability measures over Rd that are
absolutely continuous with respect to the Lebesgue measure.

Theorem (Translation Manifold (Negrini-Nurbekyan’23))
Assume that µ0 ∈ Pac(Rd). Let µθ = (x + θ)♯µ0 for θ ∈ Rd . Then for
every slicing schedule S we have that

WS,p(µθ, µθ′) = |θ − θ′|, ∀θ, θ′ ∈ Rd , p ≥ 1.

In particular, ({µθ}, WS,p) is isometric to (Θ, | · |).

A similar result can be proven for Dilations.



Motivation and Background No-Collision Transport Maps Theoretical Results Examples Conclusion

Theoretical Results: Rotations

Denote by Rt the counter-clockwise rotation by angle t around the
origin; that is, Rtx = (x1 cos t − x2 sin t, x1 sin t + x2 cos t).

Theorem (Rotation Manifold (Nurbekyan, Negrini ’23))
Assume that µ0 is a uniform measure over an elliptical domain

E =
{

(x1, x2) ∈ R2 : (x1 − u1)2

a2 + (x2 − u2)2

b2 ≤ 1
}

,

where u = (u1, u2) ̸= 0, and a, b > 0. Furthermore, assume that
µt = (Rtx)♯µ0, and S is a slicing schedule. Then

(
{µt}t∈[0,2π], WS,2

)
is

isometric to a circle if and only if a = b.

Similar results hold if one uses OT or LOT distances.
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Manifold Learning: Translation
Goal: Reconstruct the underlying grid governing a translation manifold using
MDS on OT, LOT, no-collision (with 2 cuts) and Euclidean distances.

How well do LOT and no-collision approximate OT distance?
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Manifold Learning: Translation

How fast are the different distance matrix computations?
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Manifold Learning: Translation

How good is the manifold reconstruction?
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Manifold Learning: Rotation

In general we have no isometry in the case of rotations...
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Manifold Learning: Rotation

... Unless we are rotating a circular domain
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Conclusion:
No-collision maps are fast to compute and in certain cases attain
nearly optimal costs.
They attain similar results on manifold learning tasks as other
optimal transport based methods, but require less computational
time and in some cases attain better OT distance approximations

Future Work:
Use different cut directions (choose angles randomly at each step).
Optimize cut directions to minimize transportation cost.
Explore other learning problems such as classification and
clustering using no-collision distances
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Manifold Learning: Dilation
Goal: Reconstruct the underlying grid governing a dilation manifold.

We compare the embeddings given by Wassmap, Multidimensional Scaling
(MDS) on pixels, on LOT features and on the no-collision features for 3 cuts.



Clustering: MNIST digits

We randomly sample 300 handwritten 0s and 1s from MNIST and
compare 2D embeddings for Wassmap, ISOMAP on pixels and LOT
and no-collision features for 5 no-collision cuts.



Clustering: MNIST digits

The points are colored according to their class label.

We also compare the computational time for the different methods:

Method Wassmap LOT
1 Gaussian Reference

No-collision
N = 5

Time (s) 443.3 8.4 9.5



Clustering: Sheared MNIST digits

We randomly sample 300 sheared 0s and 1s from MNIST and compare
2D embeddings for Wassmap, ISOMAP on pixels and LOT and
no-collision features for 8 no-collision cuts.



Clustering: Sheared MNIST digits

The points are colored according to their class label.

We also compare the computational time for the different methods:

Method Wassmap LOT
5 Gaussian References

No-collision
N = 8

Time (s) 443.3 18.3 71.7
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