Gradient flows and PDEs

Olga Turanova
Michigan State University

April 17, 2024

Outline

- Goals:
- What are gradient flows (GF) on the space of probability measures?
- How are GFs connected to PDEs?
- Why is this useful?
- Part I:
- GF on \mathbb{R}^{d}.
- GF on space of probability measures.
- Connection to PDEs.
- Following: [AGS] "Gradient Flows in Metric Spaces and in the Space of Probability Measures" by Ambrosio, Gigli, Savaré.
- Part II:
- Recent work on particle methods for nonlinear diffusion equations.
- Joint work with K. Craig, K. Elamvazhuthi, M. Haberland (2022).

Part I

Gradient flows on Euclidean space

- Let $F: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$ be λ-convex, some $\lambda \in \mathbb{R}$.
- This means $F(x)-\frac{\lambda}{2}|x|^{2}$ is convex.
- Let $x_{0} \in \mathbb{R}^{d}$. Gradient flow of F on \mathbb{R}^{d} is a curve $x:[0, T] \rightarrow \mathbb{R}^{d}$ such that

$$
\left\{\begin{array}{l}
x^{\prime}(t)=-\nabla F(x(t)) \quad \text { for } t>0 \tag{ODE}\\
x(0)=x_{0}
\end{array}\right.
$$

- F is λ-convex $\Longrightarrow \nabla F$ is Lipschitz \Longrightarrow ODE has a solution for all $x_{0} \in \mathbb{R}^{d}$.

Subdifferential of λ-convex $F: \mathbb{R}^{d} \rightarrow(-\infty,+\infty]$

- We say $p \in \mathbb{R}^{d}$ is in the subdifferential of F at x, denoted $p \in \partial F(x)$, if

$$
F(y)-F(x) \geq(y-x) \cdot p+\frac{\lambda}{2}|x-y|^{2} \text { for all } y \in \mathbb{R}^{d}
$$

- If x s.t. F is differentiable at x, then $\partial F(x)=\{\nabla F(x)\}$.
- Example $(\lambda=0)$:

- Reformulate (ODE) as,

$$
\begin{cases}x^{\prime}(t) & \in-\partial F(x(t)) \quad \text { for } t>0 \\ x(0) & =x_{0}\end{cases}
$$

GF on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$?

- On Euclidean space: $F \lambda$-convex,

$$
\left\{\begin{array}{l}
x^{\prime}(t) \quad \in-\partial F(x(t)) \quad \text { for } t>0 \\
x(0)=x_{0}
\end{array}\right.
$$

- $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$ (probability measures with finite second moment) equipped with W_{2} distance.
- For $\mu \ll d x$, we denote its density by μ as well.
- Energies $\mathcal{F}: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow(-\infty,+\infty]$ that are proper, lower semicontinous wrt W_{2}, and λ-convex.
- Let $\mathcal{F}: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow(-\infty,+\infty]$ be proper, lower semicontinous wrt W_{2}, and λ-convex.
- To formulate analogous definition in $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, need notions of:
- A curve $\mu(t)$ and its time derivative,
- Subdifferential of \mathcal{F}.

Time derivative of a curve $\mu:[0, T] \rightarrow \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$

- Definition: metric derivative

$$
\left|\mu^{\prime}\right|(t):=\lim _{s \rightarrow t} \frac{W_{2}(\mu(t), \mu(s))}{|t-s|}
$$

- We consider curves $\mu \in A C^{2}\left([0, T] ; \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$; for such curves this limit is well-defined.
- We use $\mu(t)$ to denote $\mu(\cdot, t)$.
- $\left|\mu^{\prime}\right|(t) \in \mathbb{R}$; not quite analogous to $x^{\prime}(t) \in \mathbb{R}^{d}$.
- Theorem [AGS 8.3.1]: $\left|\mu^{\prime}\right|(t)$ is the metric derivative of μ "if and only if"

$$
\partial_{t} \mu+\nabla \cdot(\boldsymbol{v} \mu)=0 \text { weakly on }[0, T] \times \mathbb{R}^{d}
$$

holds for a velocity field $\boldsymbol{v}:[0, T] \times \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}, \boldsymbol{v}(t, \cdot) \in L^{2}\left(\mu(t) ; \mathbb{R}^{d}\right)$, with

$$
\left|\mu^{\prime}(t)\right|=\|\boldsymbol{v}\|_{L^{2}\left(\mu(t) ; \mathbb{R}^{d}\right)} \text { a.e. } t .
$$

- \boldsymbol{v} will be our analogy of x^{\prime}.

Subdifferential of λ-convex \mathcal{F}

- Definition: Let $\mu \in D(\mathcal{F})$. We say $\boldsymbol{\xi}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$ with $\boldsymbol{\xi} \in L^{2}\left(\mu ; \mathbb{R}^{d}\right)$ is in the subdifferential of \mathcal{F} at μ if for all $\nu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$,

$$
\mathcal{F}(\nu)-\mathcal{F}(\mu) \geq \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}}\langle\boldsymbol{\xi}(x), y-x\rangle d \gamma(x, y)+\frac{\lambda}{2} W_{2}^{2}(\mu, \nu)
$$

for all $\boldsymbol{\gamma} \in \Gamma_{0}(\mu, \nu)$. We write $\boldsymbol{\xi} \in \partial \mathcal{F}(\mu)$.

- Attempt 1: Let $\boldsymbol{v} \in L^{2}\left(\mu ; \mathbb{R}^{d}\right)$ be "time derivate of μ " as on previous slide. How about

$$
\boldsymbol{v}(t) \in-\partial \mathcal{F}(\mu(t)) ?
$$

- Not quite: there could be tons of stuff in the subdifferential.
- Theorem [AGS 10.1.5]: For "nice" $\mu \in \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$, the subdifferential $\partial \mathcal{F}(\mu)$ has an element of minimal norm $\left(\|\cdot\|_{L^{2}\left(\mu ; \mathbb{R}^{d}\right)}\right)$. This element is denoted $\partial^{\circ} \mathcal{F}(\mu)$.

GF of λ-convex \mathcal{F}

- Definition [AGS 11.1.1]: We say $\mu \in A C^{2}\left([0, T], \mathcal{P}_{2}\left(\mathbb{R}^{d}\right)\right)$ is a gradient flow of \mathcal{F} if $\mu(t)$ solves

$$
\begin{equation*}
\partial_{t} \mu+\nabla \cdot(\boldsymbol{v} \mu)=0, \tag{1}
\end{equation*}
$$

and,

$$
\boldsymbol{v}(t)=-\partial^{\circ} \mathcal{F}(\mu(t)) \text { a.e. } t \in[0, T] .
$$

- Theorem [AGS 11.2.1]: Suppose $\mathcal{F}: \mathcal{P}_{2}\left(\mathbb{R}^{d}\right) \rightarrow(-\infty,+\infty]$ is proper, Isc, and λ-convex, and $\mu^{0} \in \overline{D(\mathcal{F})}$.
Then, there exists a unique gradient flow $\mu(t)$ of \mathcal{F} with initial condition μ^{0}.
- The continuity equation (1) will connect GF to PDEs, once we characterize $-\partial^{\circ} \mathcal{F}(\mu(t))$ explicitly.

$\partial^{\circ} \mathcal{F}(\mu)$ and PDEs

- Formally (for twice differentiable μ, nice \mathcal{F}):

$$
\mathcal{F}(\mu)=\int F(x, \mu(x), \nabla \mu(x)) d x \Longrightarrow \partial^{\circ} \mathcal{F}(\mu)=\nabla \frac{\delta \mathcal{F}}{\delta \mu}
$$

where $\frac{\delta \mathcal{F}}{\delta x}$ is the first variation of \mathcal{F}.

- More generally: V convex, W convex and even, f convex (and more):

\mathcal{F}	$\partial^{\circ} \mathcal{F}(\mu)$	PDE
$\mathcal{V}(\mu)=\int V(x) d \mu$	∇V	$\partial_{t} \mu-\operatorname{div}(\mu \nabla V)=0$
$\mathcal{W}(\mu)=\int W(x-y) d \mu(x) d \mu(y)$	$\nabla W * \mu$	$\partial_{t} \mu-\operatorname{div}(\mu \nabla W * \mu)=0$
$\mathcal{E}(\mu)=\int f(\mu) d x$	$\nabla f^{\prime}(\mu)$	$\partial_{t} \mu-\nabla\left(\mu \nabla f^{\prime}(\mu)\right)=0$

- Subexamples:
- $f(s)=s \log s-s _$heat equation.
- $f(s)=\frac{1}{m-1} s^{m}$ m porous medium eq'n $(m>1)$, fast diffusion $\left(\frac{d}{d+2}<m<1\right)$.
- $\mathcal{F}:=\mathcal{E}+\mathcal{V}+\mathcal{W}$, say, yields corresponding drift-diffusion-aggregation PDE.

Curve of maximal slope: Euclidean space

- Let $y(t)$ be any curve.

$$
\begin{aligned}
F(y(0))-F(y(t)) & =\int_{0}^{t}-\frac{d}{d r} F(y(r)) d r=\int_{0}^{t}-\nabla F(y(r)) y^{\prime}(r) d r \\
& \leq \frac{1}{2} \int_{0}^{t}|\nabla F(y(r))|^{2} d r+\frac{1}{2} \int_{0}^{t}\left|y^{\prime}(r)\right|^{2} d r,
\end{aligned}
$$

with equality holding $\Longleftrightarrow y^{\prime}(r)=-\nabla F(y(r))$ for a.e. r.

- So $x(t)$ is GF of $F \Longleftrightarrow$ equality holds $\Longleftrightarrow \geq$ holds \qquad

$$
F(x(0))-F(x(t)) \geq \frac{1}{2} \int_{0}^{t} \int_{0}^{t}|\nabla F(x(r))|^{2} d r+\frac{1}{2} \int_{0}^{t}\left|x^{\prime}(r)\right|^{2} d r .
$$

- Theorem [AGS 11.2.1]: For "nice" \mathcal{F}, μ is the gradient flow of $\mathcal{F} \Longleftrightarrow \mu$ is a Curve of Maximal Slope; i.e., for all $t \in[0, T]$,

$$
\mathcal{F}(\mu(0))-\mathcal{F}(\mu(t)) \geq \frac{1}{2} \int_{0}^{t}|\partial \mathcal{F}|^{2}(\mu(r)) d r+\frac{1}{2} \int_{0}^{t}\left|\mu^{\prime}\right|^{2}(r) d r .
$$

- Here $|\partial \mathcal{F}|(\mu(r))$ is the metric slope of \mathcal{F} at $\mu(r)$.
- We can think $|\partial \mathcal{F}|(\mu)=\left\|\partial^{\circ} \mathcal{F}(\mu)\right\|_{L^{2}\left(\mu ; \mathbb{R}^{d}\right)}$.

JKO (Jordan-Kinderleher-Otto) scheme

$$
x^{\prime}(t)=-\nabla F(x), \quad x(0)=x_{0}
$$

- Fix small time step $\tau>0$, let $x_{0}^{\tau}=x_{0}$, and define, for $k \geq 1$,

$$
x_{k+1}^{\tau}=\operatorname{argmin}\left(F(x)+\frac{\left|x-x_{k}^{\tau}\right|^{2}}{2 \tau}\right),
$$

which implies $-\nabla F\left(x_{k+1}^{\tau}\right)=\frac{x_{k+1}^{\tau}-x_{k}^{\tau}}{\tau}$ holds.

- The x_{k}^{τ} converge to $x(t)$ as $\tau \rightarrow 0$ (implicit Euler scheme.)
- "JKO scheme" for \mathcal{F} : given initial data μ_{0}, define, for $k \geq 1$,

$$
\mu_{k+1}^{\tau}=\operatorname{argmin}\left(\mathcal{F}(\mu)+\frac{W_{2}\left(\mu, \mu_{k}^{\tau}\right)^{2}}{2 \tau}\right)
$$

- Theorem [AGS 11.2.1]: For "nice" \mathcal{F}, there exists a limiting μ, and it's a GF of \mathcal{F} in the previous sense.

Remark

- We've seen three equivalent (for "nice" \mathcal{F}) formulations of $G F s$ on $\mathcal{P}_{2}\left(\mathbb{R}^{d}\right)$:
- Pointwise-differential formulation
- Curve of maximal slope
- Minimizing movement scheme.
- There are others!

Part II

Introduction

- Fix $\Omega \subset \mathbb{R}^{d}$ (convex) and $\bar{\rho}: \Omega \rightarrow \mathbb{R}^{+}$(log-concave), nice.
- We focus on:

$$
\left\{\begin{array}{l}
\partial_{t} \rho-\operatorname{div}\left(\rho \nabla\left(\frac{\rho}{\bar{\rho}}\right)\right)=0 \text { in } \Omega \times(0, \infty) \tag{D}\\
\partial_{\nu}\left(\frac{\rho}{\bar{\rho}}\right)=0 \text { on }(\partial \Omega) \times(0, \infty)
\end{array}\right.
$$

- If $\bar{\rho} \equiv 1$, then the diffusion term becomes,

$$
\operatorname{div}(\rho \nabla \rho)=\frac{1}{2} \operatorname{div}\left(\nabla \rho^{2}\right)=\frac{1}{2} \Delta\left(\rho^{2}\right) .
$$

So this PDE is an inhomogeneous porous medium equation.

- Today: deterministic particle method.
- Challenge: $\rho(0)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}^{0}} \nRightarrow \rho(t)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}(t)}$.

Introduction

- Part I stuff implies:

$$
\partial_{t} \rho-\operatorname{div}\left(\rho \nabla\left(\frac{\rho}{\bar{\rho}}\right)\right)=0 \quad \Longleftrightarrow \quad \rho \mathrm{GF} \text { of } \mathcal{E}[\rho]=\frac{1}{2} \int \frac{\rho}{\bar{\rho}} d \rho
$$

- Main idea:

regularize \mathcal{E}

in a way that ensures "particles remain particles."

- We define the regularized energy

$$
\mathcal{E}_{\varepsilon}[\rho]=\frac{1}{2} \int \frac{\left(\rho * \zeta_{\varepsilon}\right)^{2}}{\bar{\rho}} d x
$$

where ζ_{ε} is a mollifier "with enough decay."

- This idea originates from Lions, Mas-Gallic (2001): study PME, $\bar{\rho} \equiv 1$.
- Carillo, Craig, Patacchini (2019): $\bar{\rho} \equiv 1$ and with aggregation and drift.
- Related work: Oelschlöger (1990); Lu, Slepčev, Wang (2023); Carrillo, Esposito, Wu (2023); Craig, Jacobs, T. (2023).

On the convex domain $\Omega \subset \mathbb{R}^{d}$

$$
\left\{\begin{array}{l}
\partial_{t} \rho-\operatorname{div}\left(\rho \nabla\left(\frac{\rho}{\bar{\rho}}\right)\right)=0 \text { in } \Omega \times(0, \infty) \tag{D}\\
\partial_{\nu}\left(\frac{\rho}{\bar{\rho}}\right)=0 \text { on }(\partial \Omega) \times(0, \infty)
\end{array}\right.
$$

- Solutions to (D) are Wasserstein gradient flows of the energy:

$$
\mathcal{F}[\rho]=\mathcal{E}[\rho]+\mathcal{V}_{\Omega}[\rho], \quad \text { where } \mathcal{V}_{\Omega}[\rho]=\left\{\begin{array}{l}
0 \text { if supp } \rho \subset \bar{\Omega}, \\
+\infty \text { otherwise } .
\end{array}\right.
$$

- We also approximate \mathcal{V}_{Ω} via a "soft cutoff potential":

$$
\mathcal{V}_{k}[\rho]:=\int_{\mathbb{R}^{d}} V_{k} d \rho, \quad \text { where } \quad\left\{\begin{array}{l}
V_{k}(x)=0 \quad \text { for all } x \in \bar{\Omega}, \text { for all } k, \\
V_{k}(x) \rightarrow+\infty \quad \text { as } k \rightarrow \infty \text { for } x \in \bar{\Omega}^{c} .
\end{array}\right.
$$

- Main result: take $\varepsilon \rightarrow 0$ and $k \rightarrow \infty$ in

$$
\mathcal{F}_{\varepsilon, k}=\mathcal{E}_{\varepsilon}+\mathcal{V}_{k} .
$$

The approximation and particle data

Lemma: GFs of $\mathcal{F}_{\varepsilon, k}$ are well-defined and are distributional solutions of

$$
\partial_{t} \rho-\operatorname{div}\left(\rho \nabla\left(\zeta_{\varepsilon} *\left(\frac{\zeta_{\varepsilon} * \rho}{\bar{\rho}}\right)+V_{k}\right)\right)=0 .
$$

Lemma: Let $\rho_{\varepsilon, k}^{N}$ denote the GF of $\mathcal{F}_{\varepsilon, k}$ with initial data $\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}^{0}}$. We have, for $t>0$,

$$
\rho_{\varepsilon, k}^{N}(x, t)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}(t)}
$$

where the X_{i} evolve via the system of ODEs associated to the continuity equation:

$$
\frac{d}{d t} X_{j}(t)=-V_{\varepsilon}^{(j)}\left(X_{1}(t), \ldots, X_{N}(t)\right), \quad X_{j}(0)=X_{j}^{0}
$$

where V_{ε} is given by,

$$
V_{\varepsilon}^{(i)}\left(y_{1}, \ldots, y_{N}\right)=\sum_{j=1}^{N} m_{j} \int_{\mathbb{R}^{d}} \nabla \zeta_{\varepsilon}\left(y_{i}-z\right) \zeta_{\varepsilon}\left(z-y_{j}\right) \frac{1}{\bar{\rho}(z)} d z-\nabla V_{k}\left(y_{i}\right) .
$$

Numerical method

- Discretize initial data into particles: $\rho_{0} \approx \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}^{0}}$.
- Let the particles evolve via the ODE system:

$$
\frac{d}{d t} X_{j}(t)=-V_{\varepsilon}^{(j)}\left(X_{1}(t), \ldots, X_{N}(t)\right), \quad X_{j}(0)=X_{j}^{0}
$$

- Let

$$
\rho_{\varepsilon, k}^{N}(x, t)=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}(t)} .
$$

- Consider "blobs" over each particle:

$$
\tilde{\rho}_{\varepsilon, k}^{N}(x, t)=\frac{1}{N} \sum_{i=1}^{N} \zeta_{\varepsilon}\left(x-X_{i}(t)\right)=\left(\zeta_{\varepsilon} * \rho_{\varepsilon, k}^{N}\right)(x, t)
$$

- This $\tilde{\rho}_{\varepsilon, k}^{N}$ is our approximate solution.

Application to sampling

$$
\partial_{t} \rho-\operatorname{div}\left(\rho \nabla\left(\frac{\rho}{\bar{\rho}}\right)\right)=0 \text { in } \Omega \times(0, \infty), \quad \partial_{\nu}\left(\frac{\rho}{\bar{\rho}}\right)=0 \text { on }(\partial \Omega) \times(0, \infty) .
$$

- Fact: $W_{2}\left(\rho(t), \mathbb{1}_{\Omega} \bar{\rho}\right) \rightarrow 0$ as $t \rightarrow \infty$.
- Given
- target probability measure $\bar{\rho}$,
- reference $\rho_{0}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}^{0}}$.

Goal: find $\rho_{N}=\frac{1}{N} \sum_{i=1}^{N} \delta_{X_{i}}$ approximating $\bar{\rho}$.

- We prove, under the same assumptions as the main theorems:

Corollary

There exist $k=k(t) \rightarrow+\infty, \varepsilon=\varepsilon(k) \rightarrow 0$, and $N=N(\varepsilon) \rightarrow+\infty$ so that

$$
\lim _{t \rightarrow+\infty} W_{1}\left(\rho_{\varepsilon, k}^{N}(\cdot, t), \mathbb{1}_{\bar{\Omega}} \bar{\rho}\right)=0 .
$$

- So, Corollary gives a way to approximate $\bar{\rho}$ by an empirical measure.

Numerical method

Videos!

Convergence of numerical method

Assumptions:
(1) $\Omega \subset \mathbb{R}^{d}$ is convex;
(2) $\bar{\rho} \in C^{1}(\Omega)$ is bounded from above and away from zero on Ω;
(3) $\bar{\rho}$ log-concave on Ω, i.e $\bar{\rho}(x)=e^{\Phi(x)}$ for some Φ that's concave on Ω.
(4) mild assumptions on initial data ρ_{0}.

Theorem (Craig, Elamvazhuthi, Haberland, T (2023))

Let ρ solve the PDE (D) with initial data ρ_{0}. Then as $k \rightarrow \infty$, there exist subsequences $\varepsilon(k) \rightarrow 0$ and $N(k) \rightarrow \infty$, such that,

$$
\rho_{\varepsilon, k}^{N}(t) \rightarrow \rho(t) \text { and } \tilde{\rho}_{\varepsilon, k}^{N}(t) \rightarrow \rho(t)
$$

in the 1-Wassertein distance*, uniformly in $t \in[0, T]$.
$\left(^{*}\right)$ hence also in the sense of "integrating against test functions"

Results on GF

Recall

$$
\mathcal{F}=\mathcal{E}+\mathcal{V}_{\Omega}, \quad \mathcal{F}_{\varepsilon, k}=\mathcal{E}_{\varepsilon}+\mathcal{V}_{k}
$$

Under the same assumptions:

Theorem (Craig, Elamvazhuthi, Haberland, T (2023))

Let $\rho_{\varepsilon, k}$ be the Wasserstein gradient flow of $\mathcal{F}_{\varepsilon, k}$ with initial data ρ_{0}. Then as $k \rightarrow \infty$, there exists a subsequence $\varepsilon(k) \rightarrow 0$ such that such that,

$$
\rho_{\varepsilon, k}(t) \rightarrow \rho(t)
$$

in the 1-Wassertein distance, uniformly in $t \in[0, T]$, where ρ is the gradient flow of \mathcal{F} with initial data ρ_{0}.

- The previously stated result follows from this.

Elements of the proof

(1) AGS: Wasserstein GFs for $\mathcal{F}=\mathcal{E}+\mathcal{V}_{\Omega}$ are well-defined.
(2) We show: GF for $\mathcal{F}_{\varepsilon, k}=\mathcal{E}_{\varepsilon}+\mathcal{V}_{k}$ are well-defined.

- $\mathcal{E}_{\varepsilon}$ is λ_{ε}-convex along generalized geodesics in Wasserstein space (where $\lambda_{\varepsilon}<0$ and $\lambda_{\varepsilon} \rightarrow-\infty$ as $\varepsilon \rightarrow 0$).
- does not require log-concavity assumption.
(3) 「-convergence of $\mathcal{F}_{\varepsilon, k}$ to \mathcal{F}.
(9) Obtain estimate on an " H^{1}-like norm" for GFs of $\mathcal{F}_{\varepsilon, k}$ that is uniform in ε.
- key ingredient: energy estimate for the ε-PDE.
(5) Г-convergence of metric slopes of $\mathcal{F}_{\varepsilon, k}$ to those of \mathcal{F}.
(0) Conclude via a general result (variant of Serfaty, 2011) on convergence of GF:

$$
\underbrace{\mathcal{F}_{\varepsilon, k}\left(\rho_{\varepsilon, k}(0)\right)-\mathcal{F}_{\varepsilon, k}\left(\rho_{\varepsilon, k}(t)\right)}_{\text {use step 3 }} \geq \frac{1}{2} \underbrace{\int_{0}^{t}\left|\rho_{\varepsilon, k}^{\prime}\right|^{2}(r) d r}_{\text {use compactness }}+\underbrace{\frac{1}{2} \int_{0}^{t}\left|\partial \mathcal{F}_{\varepsilon, k}\right|^{2}\left(\rho_{\varepsilon, k}(r)\right) d r}_{\text {use step 5 }} .
$$

More on the proof: H^{1}-like bound

Lemma

Suppose ρ is a solution to

$$
\partial_{t} \rho-\operatorname{div}\left(\rho \nabla\left(\zeta_{\varepsilon} *\left(\frac{\zeta_{\varepsilon} * \rho}{\bar{\rho}}\right)\right)\right)=0 .
$$

Then we have,

$$
\int_{0}^{T} \int\left|\nabla \rho * \zeta_{\varepsilon}\right|^{2} d x d t \leq C
$$

Follows from energy estimate:

$$
\frac{d}{d t} \int \rho \log (\rho) d x+\int\left|\nabla \rho * \zeta_{\varepsilon}\right|^{2}=\left\langle\nabla \rho * \zeta_{\varepsilon},\left(\rho * \zeta_{\varepsilon}\right) \nabla\left(\frac{1}{\bar{\rho}}\right)\right\rangle
$$

Energy estimate with $\bar{\rho} \equiv 1$:

$$
\partial_{t} \rho-\operatorname{div}\left(\rho\left(\nabla \rho * \zeta_{\varepsilon} * \zeta_{\varepsilon}\right)\right)=0
$$

Note: $\frac{d}{d t} \int \rho \log (\rho) d x=\frac{d}{d t}\left(\int \rho \log (\rho) d x-\int \rho d x\right)$, so that,

$$
\begin{aligned}
\frac{d}{d t} \int \rho \log (\rho) d x & =\int \rho_{t} \log (\rho)+\rho \frac{\rho_{t}}{\rho}-\rho_{t} d x \\
& =\int \operatorname{div}\left(\rho\left(\nabla \rho * \zeta_{\varepsilon} * \zeta_{\varepsilon}\right)\right) \log (\rho) d x \\
& =-\int \rho\left(\nabla \rho * \zeta_{\varepsilon} * \zeta_{\varepsilon}\right) \nabla \log (\rho) d x \\
& =-\int \rho\left(\nabla \rho * \zeta_{\varepsilon} * \zeta_{\varepsilon}\right) \frac{\nabla \rho}{\rho} d x \\
& =-\int\left(\nabla \rho * \zeta_{\varepsilon} * \zeta_{\varepsilon}\right) \nabla \rho d x=-\int\left(\nabla \rho * \zeta_{\varepsilon}\right)^{2} d x
\end{aligned}
$$

Recall: if ζ is even, then

$$
\int(f * \zeta)(x) g(x) d x=\int f(x)(\zeta * g)(x) d x
$$

Thank you!

