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Outline

Goals:
I What are gradient flows (GF) on the space of probability measures?
I How are GFs connected to PDEs?
I Why is this useful?

Part I:
I GF on Rd .
I GF on space of probability measures.
I Connection to PDEs.
I Following: [AGS] “Gradient Flows in Metric Spaces and in the Space of

Probability Measures” by Ambrosio, Gigli, Savaré.

Part II:
I Recent work on particle methods for nonlinear diffusion equations.
I Joint work with K. Craig, K. Elamvazhuthi, M. Haberland (2022).

Olga Turanova (MSU) April 17, 2024 2 / 27



Part I
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Gradient flows on Euclidean space

Let F : Rd → (−∞,+∞] be λ-convex, some λ ∈ R.
I This means F (x)− λ

2
|x |2 is convex.

Let x0 ∈ Rd . Gradient flow of F on Rd is a curve x : [0,T ]→ Rd such that{
x ′(t) = −∇F (x(t)) for t > 0,

x(0) = x0.
(ODE)

F is λ-convex =⇒ ∇F is Lipschitz =⇒ ODE has a solution for all x0 ∈ Rd .
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Subdifferential of λ-convex F : Rd → (−∞,+∞]
We say p ∈ Rd is in the subdifferential of F at x , denoted p ∈ ∂F (x), if

F (y)− F (x) ≥ (y − x) · p +
λ

2
|x − y |2 for all y ∈ Rd .

If x s.t. F is differentiable at x , then ∂F (x) = {∇F (x)}.
Example (λ = 0): 

It

1 1

Of x

Of10 1,1

Reformulate (ODE) as,{
x ′(t) ∈ −∂F (x(t)) for t > 0,

x(0) = x0.
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GF on P2(Rd)?

On Euclidean space: F λ-convex,{
x ′(t) ∈ −∂F (x(t)) for t > 0,

x(0) = x0.

P2(Rd) (probability measures with finite second moment) equipped with W2

distance.

For µ� dx , we denote its density by µ as well.

Energies F : P2(Rd)→ (−∞,+∞] that are proper, lower semicontinous wrt
W2, and λ-convex.

Let F : P2(Rd)→ (−∞,+∞] be proper, lower semicontinous wrt W2, and
λ-convex.

To formulate analogous definition in P2(Rd), need notions of:
I A curve µ(t) and its time derivative,
I Subdifferential of F .
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Time derivative of a curve µ : [0,T ]→ P2(Rd)

Definition: metric derivative

|µ′|(t) := lim
s→t

W2(µ(t), µ(s))

|t − s|
.

We consider curves µ ∈ AC 2([0,T ];P2(Rd)); for such curves this limit is
well-defined.

We use µ(t) to denote µ(·, t).

|µ′|(t) ∈ R; not quite analogous to x ′(t) ∈ Rd .

Theorem [AGS 8.3.1]: |µ′|(t) is the metric derivative of µ “if and only if”

∂tµ+∇ · (vµ) = 0 weakly on [0,T ]× Rd

holds for a velocity field v : [0,T ]× Rd → Rd , v(t, ·) ∈ L2(µ(t);Rd), with

|µ′(t)| = ‖v‖L2(µ(t);Rd ) a.e. t.

v will be our analogy of x ′.
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Subdifferential of λ-convex F

Definition: Let µ ∈ D(F). We say ξ : Rd → Rd with ξ ∈ L2(µ;Rd) is in the
subdifferential of F at µ if for all ν ∈ P2(Rd),

F(ν)−F(µ) ≥
∫
Rd×Rd

〈ξ(x), y − x〉dγ(x , y) +
λ

2
W 2

2 (µ, ν)

for all γ ∈ Γ0(µ, ν). We write ξ ∈ ∂F(µ).

Attempt 1: Let v ∈ L2(µ;Rd) be “time derivate of µ” as on previous slide.
How about

v(t) ∈ −∂F(µ(t))?

Not quite: there could be tons of stuff in the subdifferential.

Theorem [AGS 10.1.5]: For “nice” µ ∈ P2(Rd), the subdifferential ∂F(µ) has
an element of minimal norm (‖ · ‖L2(µ;Rd )). This element is denoted ∂◦F(µ).
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GF of λ-convex F

Definition [AGS 11.1.1]: We say µ ∈ AC 2([0,T ],P2(Rd)) is a gradient flow
of F if µ(t) solves

∂tµ+∇ · (vµ) = 0, (1)

and,
v(t) = −∂◦F(µ(t)) a.e. t ∈ [0,T ].

Theorem [AGS 11.2.1]: Suppose F : P2(Rd)→ (−∞,+∞] is proper, lsc, and
λ-convex, and µ0 ∈ D(F).
Then, there exists a unique gradient flow µ(t) of F with initial condition µ0.

The continuity equation (1) will connect GF to PDEs, once we characterize
−∂◦F(µ(t)) explicitly.

Olga Turanova (MSU) April 17, 2024 9 / 27



∂◦F(µ) and PDEs

Formally (for twice differentiable µ, nice F):

F(µ) =

∫
F (x , µ(x),∇µ(x)) dx =⇒ ∂◦F(µ) = ∇δF

δµ
,

where δF
δx is the first variation of F .

More generally: V convex, W convex and even, f convex (and more):

F ∂◦F(µ) PDE

V(µ) =

∫
V (x) dµ ∇V ∂tµ− div(µ∇V ) = 0

W(µ) =

∫
W (x − y)dµ(x)dµ(y) ∇W ∗ µ ∂tµ− div(µ∇W ∗ µ) = 0

E(µ) =

∫
f (µ) dx ∇f ′(µ) ∂tµ−∇(µ∇f ′(µ)) = 0

Subexamples:
I f (s) = s log s − s ! heat equation.
I f (s) = 1

m−1
sm ! porous medium eq’n (m > 1), fast diffusion ( d

d+2
< m < 1).

F := E + V +W, say, yields corresponding drift-diffusion-aggregation PDE.
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Curve of maximal slope: Euclidean space
Let y(t) be any curve.

F (y(0))− F (y(t)) =

∫ t

0

− d

dr
F (y(r)) dr =

∫ t

0

−∇F (y(r))y ′(r) dr

≤ 1

2

∫ t

0

|∇F (y(r))|2 dr +
1

2

∫ t

0

|y ′(r)|2 dr ,

with equality holding ⇐⇒ y ′(r) = −∇F (y(r)) for a.e. r .

So x(t) is GF of F ⇐⇒ equality holds ⇐⇒ ≥ holds ⇐⇒

F (x(0))− F (x(t)) ≥ 1

2

∫ t

0

∫ t

0

|∇F (x(r))|2 dr +
1

2

∫ t

0

|x ′(r)|2 dr .

Theorem [AGS 11.2.1]: For “nice” F , µ is the gradient flow of F ⇐⇒ µ is
a Curve of Maximal Slope; i.e., for all t ∈ [0,T ],

F(µ(0))−F(µ(t)) ≥ 1

2

∫ t

0

|∂F|2(µ(r))dr +
1

2

∫ t

0

|µ′|2(r)dr .

I Here |∂F|(µ(r)) is the metric slope of F at µ(r).
I We can think |∂F|(µ) = ‖∂◦F(µ)‖L2(µ;Rd ).
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JKO (Jordan-Kinderleher-Otto) scheme

x ′(t) = −∇F (x), x(0) = x0.

Fix small time step τ > 0, let xτ0 = x0, and define, for k ≥ 1,

xτk+1 = argmin

(
F (x) +

|x − xτk |2

2τ

)
,

which implies −∇F (xτk+1) =
xτk+1 − xτk

τ
holds.

The xτk converge to x(t) as τ → 0 (implicit Euler scheme.)

“JKO scheme” for F : given initial data µ0, define, for k ≥ 1,

µτk+1 = argmin

(
F(µ) +

W2(µ, µτk )2

2τ

)
.

Theorem [AGS 11.2.1]: For “nice” F , there exists a limiting µ, and it’s a GF
of F in the previous sense.
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Remark

We’ve seen three equivalent (for “nice” F) formulations of GFs on P2(Rd):
I Pointwise-differential formulation
I Curve of maximal slope
I Minimizing movement scheme.

There are others!
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Part II
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Introduction

Fix Ω ⊂ Rd (convex) and ρ̄ : Ω→ R+ (log-concave), nice.

We focus on: ∂tρ− div

(
ρ∇
(
ρ

ρ̄

))
= 0 in Ω× (0,∞),

∂ν

(
ρ
ρ̄

)
= 0 on (∂Ω)× (0,∞).

(D)

If ρ̄ ≡ 1, then the diffusion term becomes,

div(ρ∇ρ) =
1

2
div(∇ρ2) =

1

2
∆(ρ2).

So this PDE is an inhomogeneous porous medium equation.

Today: deterministic particle method.

Challenge: ρ(0) = 1
N

∑N
i=1 δX 0

i
; ρ(t) = 1

N

∑N
i=1 δXi (t).
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Introduction

Part I stuff implies:

∂tρ− div

(
ρ∇
(
ρ

ρ̄

))
= 0 ⇐⇒ ρ GF of E [ρ] =

1

2

∫
ρ

ρ̄
dρ.

Main idea:

regularize E
in a way that ensures “particles remain particles.”

We define the regularized energy

Eε[ρ] =
1

2

∫
(ρ ∗ ζε)2

ρ̄
dx ,

where ζε is a mollifier “with enough decay.”

This idea originates from Lions, Mas-Gallic (2001): study PME, ρ̄ ≡ 1.

Carillo, Craig, Patacchini (2019): ρ̄ ≡ 1 and with aggregation and drift.

Related work: Oelschlöger (1990); Lu, Slepčev, Wang (2023); Carrillo,
Esposito, Wu (2023); Craig, Jacobs, T. (2023).
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On the convex domain Ω ⊂ Rd

∂tρ− div

(
ρ∇
(
ρ

ρ̄

))
= 0 in Ω× (0,∞),

∂ν

(
ρ
ρ̄

)
= 0 on (∂Ω)× (0,∞).

(D)

Solutions to (D) are Wasserstein gradient flows of the energy:

F [ρ] = E [ρ] + VΩ[ρ], where VΩ[ρ] =

{
0 if supp ρ ⊂ Ω̄,

+∞ otherwise.

We also approximate VΩ via a “soft cutoff potential”:

Vk [ρ] :=

∫
Rd

Vk dρ, where

{
Vk(x) = 0 for all x ∈ Ω̄, for all k ,

Vk(x)→ +∞ as k →∞ for x ∈ Ω̄c .

Main result: take ε→ 0 and k →∞ in

Fε,k = Eε + Vk .
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The approximation and particle data
Lemma: GFs of Fε,k are well-defined and are distributional solutions of

∂tρ− div

(
ρ∇
(
ζε ∗

(
ζε ∗ ρ
ρ̄

)
+ Vk

))
= 0.

Lemma: Let ρNε,k denote the GF of Fε,k with initial data 1
N

∑N
i=1 δX 0

i
. We have,

for t > 0,

ρNε,k(x , t) =
1

N

N∑
i=1

δXi (t),

where the Xi evolve via the system of ODEs associated to the continuity equation:

d

dt
Xj(t) = −V (j)

ε (X1(t), ...,XN(t)), Xj(0) = X 0
j ,

where Vε is given by,

V (i)
ε (y1, ..., yN) =

N∑
j=1

mj

∫
Rd

∇ζε(yi − z)ζε(z − yj)
1

ρ̄(z)
dz −∇Vk(yi ).
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Numerical method

Discretize initial data into particles: ρ0 ≈ 1
N

∑N
i=1 δX 0

i
.

Let the particles evolve via the ODE system:

d

dt
Xj(t) = −V (j)

ε (X1(t), ...,XN(t)), Xj(0) = X 0
j .

Let

ρNε,k(x , t) =
1

N

N∑
i=1

δXi (t).

Consider “blobs” over each particle:

ρ̃Nε,k(x , t) =
1

N

N∑
i=1

ζε(x − Xi (t)) = (ζε ∗ ρNε,k)(x , t).

This ρ̃Nε,k is our approximate solution.
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Application to sampling

∂tρ− div

(
ρ∇
(
ρ

ρ̄

))
= 0 in Ω× (0,∞), ∂ν

(
ρ

ρ̄

)
= 0 on (∂Ω)× (0,∞).

Fact: W2(ρ(t),1Ωρ̄)→ 0 as t →∞.

Given
I target probability measure ρ̄,
I reference ρ0 = 1

N

∑N
i=1 δX 0

i
.

Goal: find ρN = 1
N

∑N
i=1 δXi approximating ρ̄.

We prove, under the same assumptions as the main theorems:

Corollary

There exist k = k(t)→ +∞, ε = ε(k)→ 0, and N = N(ε)→ +∞ so that

lim
t→+∞

W1

(
ρNε,k(·, t),1Ωρ̄

)
= 0.

So, Corollary gives a way to approximate ρ̄ by an empirical measure.
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Numerical method

Videos!
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Convergence of numerical method

Assumptions:

1 Ω ⊂ Rd is convex;

2 ρ̄ ∈ C 1(Ω) is bounded from above and away from zero on Ω;

3 ρ̄ log-concave on Ω, i.e ρ̄(x) = eΦ(x) for some Φ that’s concave on Ω.

4 mild assumptions on initial data ρ0.

Theorem (Craig, Elamvazhuthi, Haberland, T (2023))

Let ρ solve the PDE (D) with initial data ρ0. Then as k →∞, there exist
subsequences ε(k)→ 0 and N(k)→∞, such that,

ρNε,k(t)→ ρ(t) and ρ̃Nε,k(t)→ ρ(t),

in the 1-Wassertein distance*, uniformly in t ∈ [0,T ].

(*) hence also in the sense of “integrating against test functions”
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Results on GF

Recall
F = E + VΩ, Fε,k = Eε + Vk .

Under the same assumptions:

Theorem (Craig, Elamvazhuthi, Haberland, T (2023))

Let ρε,k be the Wasserstein gradient flow of Fε,k with initial data ρ0. Then as
k →∞, there exists a subsequence ε(k)→ 0 such that such that,

ρε,k(t)→ ρ(t),

in the 1-Wassertein distance, uniformly in t ∈ [0,T ], where ρ is the gradient flow
of F with initial data ρ0.

The previously stated result follows from this.
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Elements of the proof

1 AGS: Wasserstein GFs for F = E + VΩ are well-defined.
2 We show: GF for Fε,k = Eε + Vk are well-defined.

I Eε is λε-convex along generalized geodesics in Wasserstein space (where
λε < 0 and λε → −∞ as ε→ 0).

I does not require log-concavity assumption.

3 Γ-convergence of Fε,k to F .

4 Obtain estimate on an “H1-like norm” for GFs of Fε,k that is uniform in ε.
I key ingredient: energy estimate for the ε-PDE.

5 Γ-convergence of metric slopes of Fε,k to those of F .

6 Conclude via a general result (variant of Serfaty, 2011) on convergence of GF:

Fε,k(ρε,k(0))−Fε,k(ρε,k(t))︸ ︷︷ ︸
use step 3

≥ 1

2

∫ t

0

|ρ′ε,k |2(r)dr︸ ︷︷ ︸
use compactness

+
1

2

∫ t

0

|∂Fε,k |2(ρε,k(r))dr︸ ︷︷ ︸
use step 5

.
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More on the proof: H1-like bound

Lemma
Suppose ρ is a solution to

∂tρ− div

(
ρ∇
(
ζε ∗

(
ζε ∗ ρ
ρ̄

)))
= 0.

Then we have, ∫ T

0

∫
|∇ρ ∗ ζε|2 dx dt ≤ C .

Follows from energy estimate:

d

dt

∫
ρ log(ρ) dx +

∫
|∇ρ ∗ ζε|2 = 〈∇ρ ∗ ζε, (ρ ∗ ζε)∇

(
1

ρ̄

)
〉.
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Energy estimate with ρ̄ ≡ 1:

∂tρ− div(ρ(∇ρ ∗ ζε ∗ ζε)) = 0.

Note: d
dt

∫
ρ log(ρ) dx = d

dt

(∫
ρ log(ρ) dx −

∫
ρ dx

)
, so that,

d

dt

∫
ρ log(ρ) dx =

∫
ρt log(ρ) + ρ

ρt
ρ
− ρt dx

=

∫
div(ρ(∇ρ ∗ ζε ∗ ζε)) log(ρ) dx

= −
∫
ρ(∇ρ ∗ ζε ∗ ζε)∇ log(ρ) dx

= −
∫
ρ(∇ρ ∗ ζε ∗ ζε)

∇ρ
ρ

dx

= −
∫

(∇ρ ∗ ζε ∗ ζε)∇ρ dx = −
∫

(∇ρ ∗ ζε)2 dx .

Recall: if ζ is even, then∫
(f ∗ ζ)(x)g(x) dx =

∫
f (x)(ζ ∗ g)(x) dx .
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Thank you!
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