HV Geometry for Signed Signal Comparison

Ruiyu Han ${ }^{1}$, Dejan Slepčev ${ }^{1}$ and Yunan Yang ${ }^{2}$
April 18, 2024
${ }^{1}$ Carnegie Mellon University
${ }^{2}$ Cornell University

Women in Optimal Transport, University of British Columbia , April 17-19, 2024

Problem: Signed Signal Comparison

Given two signals f_{0}, f_{1}, we view them as functions in $L^{2}(o, 1)$.

Problem: Signed Signal Comparison

Given two signals f_{0}, f_{1}, we view them as functions in $L^{2}(o, 1)$. "Good" metric for comparison?

Problem: Signed Signal Comparison

Given two signals f_{0}, f_{1}, we view them as functions in $L^{2}(o, 1)$.
"Good" metric for comparison?
Metric Candidate, L^{2} distance: $\left(\int_{0}^{1}\left|f_{0}(x)-f_{1}(x)\right|^{2} d x\right)^{\frac{1}{2}}$

Vertical Deformation

Problem: Signed Signal Comparison

Metric Candidate, Wasserstein distance: horizontal deformation

W_{2} distance is small, but L^{2} distance is large.

Want: Horizontal and Vertical Deformation

The computed geodesic in the space of signals based on the HV geometry.

New Metric: H(orizontal)V(ertical)
Geometry

Revisit the Benamou-Brenier formulation for W_{2}

The so-called dynamic formulation of optimal transport:

$$
W_{2}^{2}\left(f_{0}, f_{1}\right)=\min _{(v, f)} \int_{0}^{1} \int_{0}^{1} v^{2} f d x d t .
$$

subject to the constraints for all admissible paths

$$
\begin{align*}
\partial_{t} f & =-\operatorname{div}(f v) \tag{1}\\
f(\cdot, t=0) & =f_{0}, f(\cdot, t=1)=f_{1} .
\end{align*}
$$

Requires $\int f_{0} d x=\int f_{1} d x$ and $f_{0}, f_{1} \geq 0$.

A Metric Induced by the HV Geometry

Given a finite interval, e.g., $[0,1]$, consider $f_{0}, f_{1} \in L^{2}(0,1)$ with all the admissible paths satisfying

$$
\begin{aligned}
\partial_{\mathrm{t}} f & =-\partial_{x} f \cdot v+z \quad \text { on }[0,1] \times[0,1], \\
v(0, \cdot) & =v(1, \cdot)=0, \quad f(\cdot, 0)=f_{0}, f(\cdot, 1)=f_{1} .
\end{aligned}
$$

A Metric Induced by the HV Geometry

Given a finite interval, e.g., $[0,1]$, consider $f_{0}, f_{1} \in L^{2}(0,1)$ with all the admissible paths satisfying

$$
\begin{gathered}
\partial_{t} f=-\partial_{x} f \cdot v+z \quad \text { on }[0,1] \times[0,1] \\
v(0, \cdot)=v(1, \cdot)=0, \quad f(\cdot, 0)=f_{0}, f(\cdot, 1)=f_{1} . \\
f(\Phi(x, t), t)=f_{0}(x)+\int_{0}^{t} z(\Phi(x, s), s) d s
\end{gathered}
$$

where Φ is the flow of the vector field v :

$$
\partial_{t} \Phi(x, t)=v(\Phi(x, t), t), \quad \Phi(x, 0)=x
$$

A Metric Induced by the HV Geometry

Given a finite interval, e.g., $[0,1]$, consider $f_{0}, f_{1} \in L^{2}(0,1)$ with all the admissible paths satisfying

$$
\begin{align*}
\partial_{t} f & =-\partial_{x} f \cdot v+z \quad \text { on }[0,1] \times[0,1], \tag{2}\\
v(\mathrm{o}, \cdot) & =v(1, \cdot)=0, \quad f(\cdot, 0)=f_{0}, f(\cdot, 1)=f_{1} .
\end{align*}
$$

Define

$$
\mathcal{A}\left(f_{0}, f_{1}\right):=\{(f, v, z) \text { satisfies }(2)\} .
$$

A Metric Induced by the HV Geometry

Given a finite interval, e.g., $[0,1]$, consider $f_{0}, f_{1} \in L^{2}(0,1)$ with all the admissible paths satisfying

$$
\begin{align*}
\partial_{t} f & =-\partial_{x} f \cdot v+z \quad \text { on }[0,1] \times[0,1], \tag{2}\\
v(\mathrm{o}, \cdot) & =v(1, \cdot)=0, \quad f(\cdot, 0)=f_{0}, f(\cdot, 1)=f_{1} .
\end{align*}
$$

Define

$$
\mathcal{A}\left(f_{0}, f_{1}\right):=\{(f, v, z) \text { satisfies }(2)\} .
$$

For $\kappa>0, \lambda \geq 0, \varepsilon>0$, define:

$$
\begin{aligned}
& d_{H V(\kappa, \lambda, \varepsilon)}\left(f_{\mathrm{O}}, f_{1}\right):=\inf _{(f, v, z) \in \mathcal{A}\left(f_{0}, f_{1}\right)} \sqrt{A_{\kappa, \lambda, \varepsilon}(f, v, z)} \text {, where } \\
& A_{\kappa, \lambda, \varepsilon}(f, v, z)=\frac{1}{2} \int_{0}^{1} \int_{0}^{1}\left(\kappa v^{2}+\lambda v_{x}^{2}+\varepsilon v_{x x}^{2}+z^{2}\right) d x d t
\end{aligned}
$$

Degeneracy Without the Second Derivatives

But why not more naturally take

$$
A_{\kappa, \lambda}(f, v, z)=\frac{1}{2} \int_{0}^{1} \int_{0}^{1}\left(\kappa v^{2}+\lambda v_{x}^{2}+z^{2}\right) d x d t
$$

Degeneracy Without the Second Derivatives

But why not more naturally take

$$
A_{\kappa, \lambda}(f, v, z)=\frac{1}{2} \int_{0}^{1} \int_{0}^{1}\left(\kappa v^{2}+\lambda v_{x}^{2}+z^{2}\right) d x d t
$$

Proposition

If $\varepsilon=0$, there exists $H>0$ such that there is no path between $f_{0} \equiv \mathrm{o}$ and $f_{1} \equiv H$ minimizing the action.

Properties of $d_{H V}$

$d_{H V}$ is complete on $L^{2}(0,1)$ and admits geodesics.

Properties of $d_{H V}$

$d_{H v}$ is complete on $L^{2}(0,1)$ and admits geodesics. 1. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}} \subseteq L^{2}(0,1)$. If $f_{n} \rightarrow f$ in $d_{H V}$, then $f_{n} \rightarrow f$ in L^{2}.

Properties of $d_{H V}$

$d_{H V}$ is complete on $L^{2}(0,1)$ and admits geodesics.

1. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}} \subseteq L^{2}(0,1)$. If $f_{n} \rightarrow f$ in $d_{H V}$, then $f_{n} \rightarrow f$ in L^{2}.
2. (Regularity) If $f_{0}, f_{1} \in H^{1}$, then any action minimizing path $f \in L^{\infty}\left(0,1, H^{1}(0,1)\right)$.

Properties of $d_{H V}$

$d_{H v}$ is complete on $L^{2}(0,1)$ and admits geodesics.

1. Let $\left\{f_{n}\right\}_{n \in \mathbb{N}} \subseteq L^{2}(0,1)$. If $f_{n} \rightarrow f$ in $d_{H V}$, then $f_{n} \rightarrow f$ in L^{2}.
2. (Regularity) If $f_{\mathrm{o}}, f_{1} \in H^{1}$, then any action minimizing path $f \in L^{\infty}\left(0,1, H^{1}(0,1)\right)$.
3. (Stability) Assume $f_{0}^{n}, f_{1}^{n} \in L^{2}(0,1)$ for all $n \in \mathbb{N}$, $f_{0}^{n} \rightarrow f_{\mathrm{o}}, f_{1}^{n} \rightarrow f_{1}$ in $L^{2}(0,1)$ as $n \rightarrow \infty$.
Let $\left(f^{n}, v^{n}, z^{n}\right) \in \mathcal{A}\left(f_{0}^{n}, f_{1}^{n}\right)$ be action minimizing paths. Then there exists (f, v, z) such that along a subsequence

$$
f^{n} \rightarrow f, \quad z^{n} \rightarrow z, \quad v^{n} \rightarrow v
$$

Furthermore, (f, v, z) is an action minimizing path between f_{\circ} and f_{1}.

Numerical Scheme: Iterating Between Two Steps

From $\left(f_{\text {old }}, v_{\text {old }}, z_{\text {old }}\right)$ to $\left(f_{\text {new }}, v_{\text {new }}, z_{\text {new }}\right)$:

Numerical Scheme: Iterating Between Two Steps

From $\left(f_{\text {old }}, v_{\text {old }}, z_{\text {old }}\right)$ to $\left(f_{\text {new }}, v_{\text {new }}, z_{\text {new }}\right)$:
Step 1: $\left(f_{\text {new }}, \tilde{z}\right)=\mathcal{G}_{1}\left(v_{\text {old }}\right)$, from v to (f, z).
minimizing the objective functional:

$$
\min _{f, z} \frac{1}{2} \int_{0}^{1} \int_{0}^{1} z^{2} d x d t, \quad \text { s.t. } \quad(f, v, z) \in \mathcal{A} \text {. }
$$

(f, z) has analytic formulation given v.

Step 2: $\left(v_{\text {new }}, z_{\text {new }}\right)=\mathcal{G}_{2}\left(f_{\text {new }}\right)$, from f to (v, z) minimizing the functional:

$$
\min _{v, z} \frac{1}{2} \int_{0}^{1} \int_{0}^{1} \kappa v^{2}+\lambda v_{x}^{2}+\varepsilon v_{x x}^{2}+z^{2} d x d t, \quad \text { s.t. }(f, v, z) \in \mathcal{A} .
$$

Step 2: $\left(v_{\text {new }}, z_{\text {new }}\right)=\mathcal{G}_{2}\left(f_{\text {new }}\right)$, from f to (v, z) minimizing the functional:

$$
\min _{v, z} \frac{1}{2} \int_{0}^{1} \int_{0}^{1} \kappa v^{2}+\lambda v_{x}^{2}+\varepsilon v_{x x}^{2}+z^{2} d x d t \text {, s.t. }(f, v, z) \in \mathcal{A} .
$$

v obtained by solving a fourth order boundary value problem,

$$
\begin{aligned}
\varepsilon v_{x x x x}-\lambda v_{x x}+\kappa v+z f_{x} & =0 \text { on }(0,1)^{2} \\
v=0 \text { and } v_{x x} & =0 \text { on }\{0,1\} \times[0,1]
\end{aligned}
$$

$z=f_{t}+v f_{x}$ given by constraint.

Step 2: $\left(v_{\text {new }}, z_{\text {new }}\right)=\mathcal{G}_{2}\left(f_{\text {new }}\right)$, from f to (v, z) minimizing the functional:

$$
\min _{v, z} \frac{1}{2} \int_{0}^{1} \int_{0}^{1} \kappa v^{2}+\lambda v_{x}^{2}+\varepsilon v_{x x}^{2}+z^{2} d x d t \text {, s.t. }(f, v, z) \in \mathcal{A} .
$$

v obtained by solving a fourth order boundary value problem,

$$
\begin{aligned}
\varepsilon v_{x x x x}-\lambda v_{x x}+\kappa v+z f_{x} & =0 \text { on }(0,1)^{2} \\
v=0 \text { and } v_{x x} & =0 \text { on }\{0,1\} \times[0,1]
\end{aligned}
$$

$z=f_{t}+v f_{x}$ given by constraint.
Remark: (v, z) can be viewed as "tangent vector".

Iterating Between These Two Steps

$$
\begin{aligned}
& A_{\kappa, \lambda, \varepsilon}\left(f^{\text {new }}, v^{\text {new }}, z^{\text {new }}\right) \underbrace{\leq}_{\left(v^{\text {new }}, z^{\text {new }}\right)=\mathcal{G}_{2}(f), f^{\text {new }}=f} \underbrace{\leq}_{(f, z)=, \lambda, \varepsilon}\left(f, v^{\text {old }}, z\right) \\
& \leq \\
& \mathcal{G}_{1}\left(v^{\text {old }}\right)
\end{aligned} A_{\kappa, \lambda, \varepsilon}\left(f^{\text {old }}, v^{\text {old }}, z^{\text {old }}\right),
$$

Iterating Between These Two Steps

$$
A_{\kappa, \lambda, \varepsilon}\left(f^{\text {new }}, v^{\text {new }}, z^{\text {new }}\right) \underbrace{\leq}_{\left(v^{\text {new }}, z^{\text {new }}\right)=\mathcal{G}_{2}(f), \text { fnew }_{\text {new }}=f} A_{(f, z)=\mathcal{G}_{1}\left(v^{\text {old }}\right)}^{\leq} A_{\kappa, \lambda, \varepsilon}\left(f, f^{\text {old }}, z\right), v^{\text {old }}, z^{\text {old }}),
$$

1: Given $\left(f^{(0)}, v^{(0)}, z^{(0)}\right) \in \mathcal{A}$, max iterations N, tolerance $\delta>0$.
2: for $n=1$ to N do
3: \quad Compute $(\tilde{f}, \tilde{z})=\mathcal{G}_{1}\left(v^{(n)}\right)$ with \mathcal{G}_{1} and set $f^{(n+1)}=\tilde{f}$.
4: \quad Set $\left(v^{(n+1)}, z^{(n+1)}\right)=\mathcal{G}_{2}\left(f^{(n+1)}\right)$ with \mathcal{G}_{2}
5: if $\left|A_{\kappa, \lambda, \varepsilon}\left(f^{(n+1)}, \boldsymbol{v}^{(n+1)}, \boldsymbol{z}^{(n+1)}\right)-A_{\kappa, \lambda, \varepsilon}\left(f^{(n)}, \boldsymbol{v}^{(n)}, \boldsymbol{z}^{(n)}\right)\right|<\delta$ then
6: $\quad \operatorname{Return}\left(f^{(n+1)}, z^{(n+1)}, \boldsymbol{v}^{(n+1)}\right) ;$ Break.

7: end if

8: end for

Initialization Selection

We propose two different types of initial guesses.

1. Zero-velocity initialization. Set $v^{(0)}(x, t) \equiv 0$, and

$$
\Rightarrow f^{(0)}(x, t)=(1-t) f_{0}(x)+t f_{1}(x), \quad z^{(0)}(x, t)=f_{1}(x)-f_{0}(x)
$$

Initialization Selection

We propose two different types of initial guesses.

1. Zero-velocity initialization. Set $v^{(0)}(x, t) \equiv 0$, and

$$
\Rightarrow f^{(o)}(x, t)=(1-t) f_{0}(x)+t f_{1}(x), \quad z^{(o)}(x, t)=f_{1}(x)-f_{0}(x)
$$

Initialization Selection

2. Prominence-matching initialization.
 Let k be a positive integer. For the given f_{0} and f_{1}, we each select k local maxima with the largest k prominence.

Topographic isolation and prominence of the summit " B "

Initialization Selection

2. Prominence-matching initialization.

Let k be a positive integer. For the given f_{0} and f_{1}, we each select k local maxima with the largest k prominence.

Topographic isolation and prominence of the summit " B "

The location of the local maxima are denoted by $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$, $1 \leq i \leq k$, respectively.

Initialization Selection

2. Prominence-matching initialization.

Let k be a positive integer. For the given f_{0} and f_{1}, we each select k local maxima with the largest k prominence.

The location of the local maxima are denoted by $\left\{x_{i}\right\}$ and $\left\{y_{i}\right\}$, $1 \leq i \leq k$, respectively.
Construct a piecewise linear map T such that $T\left(x_{i}\right)=y_{i}$,
$T(0)=0, T(1)=1$.
[H., Slepčev and Yang, 2023], [Wikipedia]

Example using prominence-matching initialization

Numerical Results: Non-Uniqueness of the Minimizing Path

For appropriate ratio of bump heights, both dominant transport mechanisms produce the same action.

Numerical Results: Non-Smooth Signals

Algorithm allows for non-smooth data.

Numerical Results: Electrocardiography (ECG) Signals

The large features (peaks) are matched via horizontal transport.

Numerical Results: Seismic Signals

Acknowledgments

Thank Katy Craig, Dejan Slepčev and Yunan Yang!

Thank all the workshop organizers!

Thanks for listening!

Degeneracy Without the Second Derivatives

$$
A_{\kappa, \lambda}(f, v, z)=\frac{1}{2} \int_{0}^{1} \int_{0}^{1}\left(\kappa v^{2}+\lambda v_{x}^{2}+z^{2}\right) d x d t
$$

Proposition

If $\varepsilon=0$, there exists $H>0$ such that there is no path between $f_{0} \equiv \mathrm{o}$ and $f_{1} \equiv H$ minimizing the action.

Degeneracy Without the Second Derivatives

$$
A_{\kappa, \lambda}(f, v, z)=\frac{1}{2} \int_{0}^{1} \int_{0}^{1}\left(\kappa v^{2}+\lambda v_{x}^{2}+z^{2}\right) d x d t
$$

Proposition

If $\varepsilon=0$, there exists $H>0$ such that there is no path between $f_{0} \equiv \mathrm{o}$ and $f_{1} \equiv H$ minimizing the action.

Lemma
If $\varepsilon=0$, then for all $\lambda \in[0, \infty)$ there exists $H \in \mathbb{R}$ such that the linear interpolation between $f_{0} \equiv 0$ and $f_{1} \equiv H$ is not optimal.

The optimal path has $v \not \equiv 0$.

Degeneracy Without the Second Derivatives

$$
A_{\kappa, \lambda}(f, v, z)=\frac{1}{2} \int_{0}^{1} \int_{0}^{1}\left(\kappa v^{2}+\lambda v_{x}^{2}+z^{2}\right) d x d t
$$

Proposition

If $\varepsilon=0$, there exists $H>0$ such that there is no path between
$f_{0} \equiv \mathrm{o}$ and $f_{1} \equiv H$ minimizing the action.
Lemma
If $\varepsilon=0$, then for all $\lambda \in[0, \infty)$ there exists $H \in \mathbb{R}$ such that the linear interpolation between $f_{0} \equiv 0$ and $f_{1} \equiv H$ is not optimal.

The optimal path has $v \not \equiv 0$.
If there existed an optimizing path (f, v, z), one could construct path of lower action by creating two copies of f shrank to interval $\frac{1}{2}$. The velocity is reduced to one-half.

Stability of $d_{H v}$: Precise statement

(Stability) Let $f_{0}, f_{1} \in L^{2}(0,1)$.
Assume $f_{0}^{n}, f_{1}^{n} \in L^{2}(0,1)$ for all $n \in \mathbb{N}, f_{0}^{n} \rightarrow f_{0}, f_{1}^{n} \rightarrow f_{1}$ in $L^{2}(0,1)$ as $n \rightarrow \infty$.
Let $\left(f^{n}, v^{n}, z^{n}\right) \in \mathcal{A}\left(f_{0}^{n}, f_{1}^{n}\right)$ be action minimizing paths. Then there exists $(f, v, z) \in \mathcal{A}\left(f_{0}, f_{1}\right)$ such that along a subsequence

$$
\begin{aligned}
& f^{n} \stackrel{*}{\rightharpoonup} f \text { in } L^{\infty}\left((0,1), L^{2}(0,1)\right) \\
& f^{n} \rightarrow f \text { in } C\left((0,1),\left(L^{2}(0,1), d_{H v}\right)\right) \\
& z^{n} \rightharpoonup z \text { in } L^{2}\left((0,1), L^{2}(0,1)\right) \\
& v^{n} \rightharpoonup v \text { in } L^{2}\left([0,1] ; H^{2}(0,1)\right) .
\end{aligned}
$$

Furthermore (f, v, z) is an action minimizing path between f_{0} and f_{1}.

Parameter Selection

We suggest

$$
\kappa=0.01 \frac{H^{2}}{L^{2}}, \quad \lambda=0.02 H^{2}, \text { and } \varepsilon=0.2 H^{2} W^{2}
$$

where
H is the average vertical variation in the data;
W is the typical width of features in the data;
L is the maximum horizontal distance between the features to be matched.
A suggestion for H is the L^{2} distance between the signals.

Scaling Properties of $d_{H V}$

Proposition

Consider $f_{0}, f_{1} \in L^{2}(0,1)$. Let $c>0$. Then
(i) $d_{H V}\left(f_{0}+c, f_{1}+c\right)=d_{H V}\left(f_{0}, f_{1}\right)$
(ii) $d_{H V\left(c^{2} \kappa, c^{2} \lambda, c^{2} \varepsilon\right)}\left(c f_{0}, c f_{1}\right)=c d_{H V(\kappa, \lambda, \varepsilon)}\left(f_{0}, f_{1}\right)$

To indicate the behavior of the action with respect to rescaling the space extend f_{0} and f_{1} periodically to \mathbb{R}. Likewise, given a path (f, v, z) consider it extended periodically to \mathbb{R}. Then for $L \in \mathbb{N}$,
(iii) $A_{L^{2} \kappa, \lambda, \varepsilon / L^{2}}(f(L \cdot, \cdot), v(L \cdot, \cdot), z(L \cdot, \cdot))=A_{\kappa, \lambda, \varepsilon}(f, v, z)$, where the action is considered only on $[0,1]$, as usual.

