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Problem: Signed Signal Comparison

Given two signals f0, f1, we view them as functions in L2(0, 1).

”Good” metric for comparison?

Metric Candidate, L2 distance: (
∫ 1

0 |f0(x)− f1(x)|2dx)
1
2

Vertical Deformation
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Problem: Signed Signal Comparison

Metric Candidate, Wasserstein distance: horizontal
deformation

W2 distance is small, but L2 distance is large.

2



Want: Horizontal and Vertical Deformation

The computed geodesic in the space of signals based on the HV geometry.
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New Metric: H(orizontal)V(ertical)
Geometry



Revisit the Benamou–Brenier formulation forW2

The so-called dynamic formulation of optimal transport:

W2
2(f0, f1) = min

(v,f)

∫ 1

0

∫ 1

0
v2f dxdt.

subject to the constraints for all admissible paths

∂tf = − div(f v)
f ( · , t = 0) = f0, f ( · , t = 1) = f1.

(1)

Requires
∫
f0dx =

∫
f1dx and f0, f1 ≥ 0.

[Benamou–Brenier, 2000] 4



A Metric Induced by the HV Geometry

Given a finite interval, e.g., [0, 1], consider f0, f1 ∈ L2(0, 1) with
all the admissible paths satisfying

∂tf = −∂xf · v + z on [0, 1]× [0, 1],

v(0, · ) = v(1, · ) = 0, f ( · ,0) = f0, f ( · , 1) = f1.

f (Φ(x, t), t) = f0(x) +
∫ t

0
z(Φ(x, s), s)ds

where Φ is the flow of the vector field v:

∂tΦ(x, t) = v(Φ(x, t), t), Φ(x,0) = x.

[Ambrosio and Crippa, 2014] 5
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A Metric Induced by the HV Geometry

Given a finite interval, e.g., [0, 1], consider f0, f1 ∈ L2(0, 1) with
all the admissible paths satisfying

∂tf = −∂xf · v + z on [0, 1]× [0, 1],

v(0, · ) = v(1, · ) = 0, f ( · ,0) = f0, f ( · , 1) = f1.
(2)

Define

A(f0, f1) :=
{
(f , v, z) satisfies (2)

}
.

For κ > 0, λ ≥ 0, ε > 0, define:

dHV(κ,λ,ε)(f0, f1) := inf
(f ,v,z)∈A(f0,f1)

√
Aκ,λ,ε(f , v, z), where

Aκ,λ,ε(f , v, z) =
1
2

∫ 1

0

∫ 1

0

(
κv2 + λv2

x + εv2
xx + z2) dxdt .

[Miller-Younes, 2001], [Trouvé-Younes, 2005], [H., Slepčev and Yang, 2023] 6
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Degeneracy Without the Second Derivatives

But why not more naturally take

Aκ,λ(f , v, z) =
1
2

∫ 1

0

∫ 1

0

(
κv2 + λv2

x + z2) dxdt .

Proposition
If ε = 0, there exists H > 0 such that there is no path between
f0 ≡ 0 and f1 ≡ H minimizing the action.

[H., Slepčev and Yang, 2023] 7
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Properties of dHV

dHV is complete on L2(0, 1) and admits geodesics.

1. Let {fn}n∈N ⊆ L2(0, 1). If fn → f in dHV , then fn → f in L2.
2. (Regularity) If f0, f1 ∈ H1 , then any action minimizing path
f ∈ L∞(0, 1,H1(0, 1)).
3. (Stability) Assume fn0 , fn1 ∈ L2(0, 1) for all n ∈ N,
fn0 → f0, fn1 → f1 in L2(0, 1) as n→ ∞.
Let (fn, vn, zn) ∈ A(fn0 , fn1 ) be action minimizing paths. Then
there exists (f , v, z) such that along a subsequence

fn → f , zn → z, vn → v

Furthermore, (f , v, z) is an action minimizing path between f0
and f1.

[H., Slepčev and Yang, 2023] 8
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[H., Slepčev and Yang, 2023] 8



Properties of dHV

dHV is complete on L2(0, 1) and admits geodesics.
1. Let {fn}n∈N ⊆ L2(0, 1). If fn → f in dHV , then fn → f in L2.
2. (Regularity) If f0, f1 ∈ H1 , then any action minimizing path
f ∈ L∞(0, 1,H1(0, 1)).

3. (Stability) Assume fn0 , fn1 ∈ L2(0, 1) for all n ∈ N,
fn0 → f0, fn1 → f1 in L2(0, 1) as n→ ∞.
Let (fn, vn, zn) ∈ A(fn0 , fn1 ) be action minimizing paths. Then
there exists (f , v, z) such that along a subsequence

fn → f , zn → z, vn → v

Furthermore, (f , v, z) is an action minimizing path between f0
and f1.
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Numerical Scheme: Iterating Between Two Steps

From (fold, vold, zold) to (fnew, vnew, znew) :

Step 1: (fnew, z̃) = G1(vold), from v to (f , z).
minimizing the objective functional:

min
f ,z

1
2

∫ 1

0

∫ 1

0
z2 dxdt, s.t. (f , v, z) ∈ A.

(f , z) has analytic formulation given v.

[H., Slepčev and Yang, 2023] 9
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Step 2: (vnew, znew) = G2(fnew), from f to (v, z)
minimizing the functional:

min
v,z

1
2

∫ 1

0

∫ 1

0
κv2 + λv2

x + εv2
xx + z2 dxdt, s.t. (f , v, z) ∈ A.

v obtained by solving a fourth order boundary value problem,

εvxxxx − λvxx + κv + zfx = 0 on (0, 1)2

v = 0 and vxx = 0 on {0, 1} × [0, 1]

z = ft + vfx given by constraint.

Remark: (v, z) can be viewed as “tangent vector”.

[H., Slepčev and Yang, 2023] 10
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Iterating Between These Two Steps

Aκ,λ,ε(fnew, vnew, znew) ≤︸︷︷︸
(vnew, znew) = G2(f), fnew=f

Aκ,λ,ε(f , vold, z)

≤︸︷︷︸
(f , z) = G1(vold)

Aκ,λ,ε(fold, vold, zold),

1: Given (f (0), v(0), z(0)) ∈ A, max iterations N, tolerance δ > 0.
2: for n = 1 to N do
3: Compute (f̃ , z̃) = G1(v(n)) with G1 and set f (n+1) = f̃ .
4: Set (v(n+1), z(n+1)) = G2(f (n+1)) with G2

5: if |Aκ,λ,ε(f (n+1), v(n+1), z(n+1))− Aκ,λ,ε(f (n), v(n), z(n))| < δ then
6: Return

(
f (n+1), z(n+1), v(n+1)); Break.

7: end if
8: end for

[H., Slepčev and Yang, 2023] 11
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Initialization Selection

We propose two different types of initial guesses.
1. Zero-velocity initialization. Set v(0)(x, t) ≡ 0, and

⇒ f (0)(x, t) = (1 − t)f0(x) + tf1(x), z(0)(x, t) = f1(x)− f0(x)

[H., Slepčev and Yang, 2023] 12
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Initialization Selection

2. Prominence-matching initialization.
Let k be a positive integer. For the given f0 and f1, we each
select k local maxima with the largest k prominence.

The location of the local maxima are denoted by {xi} and {yi},
1 ≤ i ≤ k, respectively.
Construct a piecewise linear map T such that T(xi) = yi,
T(0) = 0, T(1) = 1.

[H., Slepčev and Yang, 2023], [Wikipedia] 13
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Example using prominence-matching initialization

[H., Slepčev and Yang, 2023] 14



Numerical Results: Non-Uniqueness of the Minimizing Path

For appropriate ratio of bump heights, both dominant transport
mechanisms produce the same action.

[H., Slepčev and Yang, 2023] 15



Numerical Results: Non-Smooth Signals

Algorithm allows for non-smooth data.

[H., Slepčev and Yang, 2023] 16



Numerical Results: Electrocardiography (ECG) Signals

The large features (peaks) are matched via horizontal transport.

[H., Slepčev and Yang, 2023] 17



Numerical Results: Seismic Signals

Signals

Normalized Signals

HV geodesic

OT geodesic
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Degeneracy Without the Second Derivatives

Aκ,λ(f , v, z) =
1
2

∫ 1

0

∫ 1

0

(
κv2 + λv2

x + z2) dxdt .
Proposition
If ε = 0, there exists H > 0 such that there is no path between
f0 ≡ 0 and f1 ≡ H minimizing the action.

Lemma
If ε = 0, then for all λ ∈ [0,∞) there exists H ∈ R such that the
linear interpolation between f0 ≡ 0 and f1 ≡ H is not optimal.

The optimal path has v ̸≡ 0.
If there existed an optimizing path (f , v, z), one could
construct path of lower action by creating two copies of f
shrank to interval 1

2 . The velocity is reduced to one-half.

[H., Slepčev and Yang, 2023]
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Stability of dHV : Precise statement

(Stability) Let f0, f1 ∈ L2(0, 1).
Assume fn0 , fn1 ∈ L2(0, 1) for all n ∈ N, fn0 → f0, fn1 → f1 in
L2(0, 1) as n→ ∞.
Let (fn, vn, zn) ∈ A(fn0 , fn1 ) be action minimizing paths. Then
there exists (f , v, z) ∈ A(f0, f1) such that along a subsequence

fn ∗
⇀ f in L∞((0, 1), L2(0, 1))

fn → f in C((0, 1), (L2(0, 1),dHV))
zn ⇀ z in L2((0, 1), L2(0, 1))
vn ⇀ v in L2([0, 1];H2(0, 1)).

Furthermore (f , v, z) is an action minimizing path between f0
and f1.

[H., Slepčev and Yang, 2023]



Parameter Selection

We suggest

κ = 0.01H
2

L2 , λ = 0.02H2, and ε = 0.2H2W2.

where
H is the average vertical variation in the data;
W is the typical width of features in the data;
L is the maximum horizontal distance between the features to
be matched.
A suggestion for H is the L2 distance between the signals.

[H., Slepčev and Yang, 2023]



Scaling Properties of dHV

Proposition

Consider f0, f1 ∈ L2(0, 1). Let c > 0. Then

(i) dHV(f0 + c, f1 + c) = dHV(f0, f1)
(ii) dHV(c2κ,c2λ,c2ε)(cf0, cf1) = cdHV(κ,λ,ε)(f0, f1)

To indicate the behavior of the action with respect to rescaling
the space extend f0 and f1 periodically to R. Likewise, given a
path (f , v, z) consider it extended periodically to R. Then for
L ∈ N,

(iii) AL2κ,λ,ε/L2(f (L · , · ), v(L · , · ), z(L · , · )) = Aκ,λ,ε(f , v, z), where
the action is considered only on [0, 1], as usual.

[H., Slepčev and Yang, 2023]
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