Computing high-dimensional optimal transport by flow neural networks

Yao Xie Georgia Institute of Technology

Women in OT Workshop, UBC, Vancouver April 19, 2024

Chen Xu GT

Computing high-dimensional optimal transport by flow neural networks. Cheng, X. arXiv:2305.11857. 2024

Xiuyuan Cheng Duke

Roadmap

- Problem set-up
- Background
- Proposed algorithm
- Numerical examples
- Application: Improved density ratio estimation (DRE)

Estimate high-dimensional optimal transport

- Given two sets of d-dimensional samples $\{X_i\}_{i=1}^N \sim p$ and $\{X_i\}_{i=1}^M \sim q$
- Goal: (i) estimate $\mathcal{W}_2^2(\mathbf{p}, \mathbf{q})$ and (ii) find **transport map** to match distributions

Idea: Use dynamic optimal transport formula with neural ODE, to handle high-dim data.

Between two arbitrary distributions

• Motivation: optimal transport, transfer learning, domain adaptation

Handbag

 $x_i \sim \rho_t$

 $\rho_1 = q$ Shoes

Wasserstein metric

- Distance function defined between *probability distributions* on a metric space: minimum cost of transporting probabilities
- Wasserstein-2 metric, Kantorovich

-8 -6 -4 -2 0

Kantorovich (1930)

Wasserstein metric

- Distance function defined between probability distributions on a metric space: minimum cost of transporting probabilities
- Wasserstein-2 metric, Kantorovich

$$\mathscr{W}_{2}^{2}(p,q) = \min_{\gamma} \{ \mathbb{E}_{(X,X')\sim\gamma} | \|X - X'\|^{2} : \gamma \text{ has}$$

• Monge: Pushforward operator (**transport map**) $T : \mathbb{R}^d \to \mathbb{R}^d$: (A))

$$T_{\sharp}P(A) = P(T^{-1}$$

$$\mathcal{W}_2^2(p,q) = \min_{T:T_{\sharp}p=q} \mathbb{E}_{X \sim p}$$

• Brenier Theorem (1991) Monge = Kantorovich under regularity cond.

s marginal distribution p, q

 $\|X - T(X)\|_{2}^{2}$

Kantorovich (1930)

Space of distributions

- We are familiar with "vector spaces" but "distribution space" is tricky
- $p_1 + p_2$ is not a distribution

• $0.4p_1 + 0.6p_2$ is a distribution but we cannot do this to convert "noise" to "cat"

Dynamic view of density evolution

• Particles $X(0) \sim p$, push particles by velocity field $v(\cdot, t) : \mathbb{R}^d \to \mathbb{R}^d$

 $\dot{x}(t) = v(x(t), t)$

particle space

• Distributions $X(t) \sim \rho_t$

$$\partial_t \rho_t + \nabla \cdot (\rho_t v_t) = 0$$

continuity equation

distribution space

Space of distributions

• More interestingly ...

dog

frog

9

Dynamic formulation of Wasserstein

- Benamou-Brenier formula (2000) (Villani et al. 2009)
- **Optimal** velocity field leads to

$$\mathscr{W}_{2}^{2}(\boldsymbol{p},\boldsymbol{q}) := \inf_{\boldsymbol{\rho},\boldsymbol{v}} \int_{0}^{1} \mathbb{E}_{x \sim \boldsymbol{\rho}(\cdot,t)} \| \boldsymbol{v}(\boldsymbol{x}) \| v(\boldsymbol{x}) \| v(\boldsymbol{x}$$

• Transport map: $T_0^t(x) = x + \int_0^t v^*(x(s), s) ds$, and $x(s) = T_0^s(x)$

 $[x,t) \|^2 dt$

 $=0, \quad
ho(\cdot,0)=p, \quad
ho(\cdot,1)=q$

v(x,t)

 W_2

Dynamic vs. Static Wasserstein

• Static: "one shot"

$\mathcal{W}_{2}^{2}(p,q) = \min_{T:T_{\sharp}p=q} \mathbb{E}_{X \sim p} \|X - T(X)\|_{2}^{2}$

• Dynamic: trajectory

$$\begin{aligned} \mathscr{W}_{2}^{2}(\boldsymbol{p},\boldsymbol{q}) &:= \\ \inf_{\rho,v} \int_{0}^{1} \mathbb{E}_{x \sim \rho(\cdot,t)} \|v(x,t)\|^{2} dt \\ s.t. \quad \partial_{t}\rho + \nabla \cdot (\rho v) = 0, \quad \rho(\cdot,0) = p, \quad \rho(\cdot,1) \end{aligned}$$

Continuous normalizing flow

- NeuralODE [Chen et al. 18], FFJORD (Grathwohl et al. 18)
- Particles $X(0) \sim p$, push particles by velocity field $v(\cdot, t) : \mathbb{R}^d \to \mathbb{R}^d$

• Residual networks, recurrent neural network decoder: Euler discretization of a continuous transformation

 $\dot{x}(t) = v(x(t), t)$ Can be parameterized by free-form neural networks

(He, Zhang, Ren, Sun 2015) (Chen, Rubanova et al. 2019)

Continuous normalizing flow

• Particles $X(0) \sim p$, push particles by velocity field $v(\cdot, t) : \mathbb{R}^d \to \mathbb{R}^d$

 $\dot{x}(t) = v(x(t), t)$

: FC layer, GNN, ConvNet...

Discrete normalizing flow

• Discrete-time version: $x_n = T_n(x_{n-1})$, T_n invertible

p

- limited representation power

• Earlier work (e.g., NICE [Dinh 15]) requires special network architectures may have

• iResNet [Behrmann et al. 2019] utilizes extra computation (spectral normalization)

Neural ODE: Invertibility

• Invertibility of each block is ensured by continuity of (neural ODE)

$$\begin{array}{cccc} & & & & & & \\ & & & \\ & & & \\ & & & \\ t_{n-1} & t_n & t_n & t_{n+1} \end{array}$$

• Forward

$$T_n(x_{n-1}) = x_{n-1} + \int_{t_{n-1}}^{t_n}$$

Reverse

$$T_n^{-1}(x_n) = x_n - \int_{t_{n-1}}^{t_n} t_n$$

Example

 $G(\rho) = \mathrm{KL}(\rho \| f_z)$

p

Optimal transform corresponds to "minimum energy" velocity field.

 $\rho(f^{-1}(Z))$

 $\rho(f^{-1}(Z))$

q

Roadmap

- Problem set-up
- Background
- Proposed algorithm
- Numerical examples
- Application: Improved density ratio estimation (DRE)

- Cast the problem as Learning velocity field $v(\cdot, t) : \mathbb{R}^d \to \mathbb{R}^d, t \in [0,1]$
- We do not know *p* and *q*, only observe through samples
- Relax terminal constraints using $KL(q \| \hat{q})$ and $KL(p \| \hat{p})$
- Due to symmetry: consider both directions

$$W_{2}(x,t)\|_{2}^{2}dt + \frac{\gamma}{2}\mathrm{KL}(p\|\hat{p}) + \frac{\gamma}{2}\mathrm{KL}(q\|\hat{q})$$

For logistic loss, for f_0 and f_1 , let $\mathscr{E}[\varphi] = \int \log(1 + e^{\varphi(x)}) f_0(x)$

Then the functional global minimizer is given by $\varphi^* = \log(f_1/f_0)$.

Algorithm (Cont.)

$$(x, t)\|_{2}^{2}dt + \frac{\gamma}{2} \text{KL}(p\|\hat{p}) + \frac{\gamma}{2} \text{KL}(q\|\hat{q})$$

Estimate KL($q\|\hat{q}$), KL($p\|\hat{p}$)
by GAN-loss

<u>Lemma (Training of logistic loss leads to KL divergence under perfect training)</u>

$$f(x)dx + \int \log(1 + e^{-\varphi(x)})f_1(x)dx.$$

Roadmap

- Problem set-up
- Background
- Proposed algorithm
- Numerical examples
- Application: Improved density ratio estimation (DRE)

Comparison with other methods

- Our approach: parametrizes flow by a neural ODE
- directly solves the Benamou-Brenier equation from finite samples
- avoiding any pre-computation of OT couplings

last three rows are from [Korotin et al., 2021b] for comparisons.

	Data dimension	32	64	128	256						
	Q-flow (Ours)	(3.27, 0.99)	(4.00, 0.98)	(2.12, 0.99)	(1.97, 0.99)						
Flow-matching b	ased OTCFM [Tong et al., 2024]	(3.74, 0.99)	(4.64, 0.97)	(2.78, 0.99)	(3.02, 0.98)						
static OT	MMv1 [Taghvaei and Jalali, 2019]	(6.9, 0.98)	(8.1, 0.97)	(2.2, 0.99)	(2.6, 0.99)						
	MMv2 [Fan et al., 2021]	(5.3, 0.99)	(10.1, 0.96)	(3.2, 0.99)	(2.7, 0.99)						
	W2 [Korotin et al., 2021c]	(6.0, 0.99)	(7.2, 0.97)	(2.0, 1.00)	(2.7, 1.00)						

Table 2: OT benchmarks using Gaussian mixtures with increasing dimensions (columns). Metric values (\mathcal{L}^2 -UVP, cos) are shown in cells, with lower \mathcal{L}^2 -UVP and higher cos being better. The

Numerical example

 $x_i \sim \rho_t$

• Using learned $\hat{v}(x, t)$ on new test sample, can perform "style transformation"

(b) CelebA male \rightarrow female

Comparison on CelebA64 images

	Q-flow	OTCFM	I Re-flow	MM:R	Disco GAN	Cycle GAN	NOT
	(ours)	Tong et al.,	2024] [Liu et al., 2023]	[Makkuva et al., 2020]	[Kim et al., 2017]	[Zhu et al., 2017]	[Korotin et al., 2023]
Handbag \rightarrow shoes	12.34	15.96	25.92	33.04	22.42	16.00	13.77
CelebA male \rightarrow female	9.66	9.76	20.24	12.34	35.64	17.74	13.23

Image size: 64-by-64, dim = 4096 Latent space dim = 768

FID score

Roadmap

- Problem set-up
- Background
- Proposed algorithm
- Numerical examples
- Application: Improved density ratio estimation (DRE)

Application: Improved density ratio estimation

- Given **finite samples** from unknown *p* and *q*
- Density ratio estimation (DRE) $\log(p/q)$
- Idea: "infinitesimal density ratio estimation" (Choi, Meng, Song, Ermon, 2022)

$$\log\left(\frac{p}{q}\right) = \log\left(\frac{p}{p_1}\right) + \dots + \log\left(\frac{q}{p_N}\right)$$

• Training by GAN applied to transport data over consecutive time grids

(Rhodes, Xu, Gutmann 2020)

Example

(a) Trajectory from P to Q

(b) Estimated log-ratio between $P_{t_{k-1}}$ and P_{t_k} by the trained flow-ratio net.

Example: Comparison

• Density ratio between two Gaussian mixtures

•
$$p = \frac{1}{3}\mathcal{N}(\begin{bmatrix} -2\\2 \end{bmatrix}, 0.75I_2) + \frac{1}{3}\mathcal{N}(\begin{bmatrix} -1.5\\1.5 \end{bmatrix}, 0.25I_2) + \frac{1}{3}\mathcal{N}(\begin{bmatrix} -1\\1 \end{bmatrix}, 0.75I_2)$$

• $q = \frac{1}{2}\mathcal{N}(\begin{bmatrix} 0.75\\-1.5 \end{bmatrix}, 0.5I_2) + \frac{1}{2}\mathcal{N}(\begin{bmatrix} -2\\-3 \end{bmatrix}, 0.5I_2)$

Comparison for DRE estimation

Table 1: DRE performance on the energy-based modeling task for MNIST, reported in BPD and lower, is better. Results for DRE- ∞ are from [Choi et al., 2022], and results for one ratio and TRE are from [Rhodes et al., 2020].

Choice of Q		RQ-N	ISF			Cop	Gaussian					
Method	Ours DRE- ∞		TRE	1 ratio	Ours DRE- ∞ TRE 1 ratio				Ours	Ours DRE- ∞ TRI		
BPD (↓)	1.05	1.09	1.09	1.09	1.14	1.21	1.24	1.33	1.31	1.33	1.3	

3	?	υ	1	X	کر	Ø.	G	0	1	7	ί,	C	1	a	١	¥	4
لر	5	┥	ゝ	2	ን	Ż	Υ,	5	₽	2	۹.	21	ş	5	•	¥	1
4	£,	5	7	3	I	۶.	ζ	Ç	1	17	٠.	1	D	1	:	7.5	ž
			(a	l) I	RQ)-N	SF	r: r	aw	v sa	am	ple	es f	fro	m	Q	
1.1	79	15	₽₽.		2	-	÷		1	07	\$2	10	×	1	23	: F	a.e.

	10		1. A			1		<u></u>	1	Ŷ	1	1		17	4	1	
6	7		ر د به	-	9	$(\tilde{\gamma}, \tilde{\gamma})$;	÷,	Ś	2.5			ిళ	1 7	÷.	1	ģ
3	12.5	ан 1	\mathbf{t}_{i}	3	3	Ċ		4	7	2	ņ	9	ς,	্য ১	ţ,		Ę,

E 1 ratio

89 1.96

(c) Copula: raw samples from Q

t_{j}	Ĩ	1	1	j	ŕ.	${\bf G}_{\mathbf{f}}$	ξ		L.	2	249	:∳ ²	Ϋ́́́́М	$\widehat{\mathcal{G}}$	2	4.1	\tilde{c}_{I}
Û	÷	Ŋ	\tilde{c}_{1}	4	\$:., #	ŕ	۱4.	ŝ	ţ,	54	$t_{i,k}$	з,	3	ΰ	4	t., .
14	Ę,		¥	(j.	Ð	17.	$(\overline{a},\overline{a})$	$\xi_{\vec{l}}$	\tilde{f}	1	J.	، ۲ ۲, ;	Ţ	**	÷	194	7

(e) Gaussian: raw samples from ${\cal Q}$

- Compute optimal transport (OT) using dynamic formula
- Parametrizes flow by a **neural ODE**
- directly solves the **Benamou-Brenier equation** from finite samples
- avoiding pre-computation of OT couplings

Computing high-dimensional optimal transport by flow neural networks. Cheng, X. arXiv:2305.11857. 2024

Summary

 W_2