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Estimate high-dimensional optimal transport
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« Given two sets of d-dimensional samples {Xi}f.\; ; ~ pand {Xj} =

* Goal: (i) estimate W%(p, g) and (ii) find transport map to match distributions
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[dea: Use dynamic optimal transport formula with neural ODE, to handle high-dim data.
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* Motivation: optimal transport, transfer learning, domain adaptation
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Between two arbitrary distributions
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Wasserstein metric

* Distance function defined between probability distributions on a
metric space: minimum cost of transporting probabilities

 Wasserstein-2 metric, Kantorovich

W35(p,q) = min{ = Xy | 1X — X'||5 : y has marginal distribution p, ¢} Kantorovich (1930)

—————————————



Wasserstein metric

 Distance function defined between probability distributions on a
metric space: minimum cost of transporting probabilities

e Wasserstein-2 metric, Kantorovich

W35(p,q) = min{ = o)y | IX = X'||? v has marginal distribution p, ¢} Kantorovich (1030)
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* Monge: Pushforward operator (transport map) 7 : |
T.P(A) = P(T~'(A))

Wip.q) = min Ey [IX=T(X)||3
ITyp=q

* Brenier Theorem (1991) Monge = Kantorovich under regularity cond. Monge (1781)



Space of distributions

* We are familiar with “vector spaces” but “distribution space” is tricky
* p; + p,is not a distribution

* 0.4p, + 0.6p, is a distribution but we cannot do this to convert “noise” to “cat”




Dynamic view of density evolution

Particles X(0) ~ p, push particles by » Distributions X(¢) ~ p,
velocity field v( - , 1) : R? d

X(1) = v(x(2), 1)

— |

0+ V- (py) =0

continuity equation

227\ e
P q

particle space distribution space



Space of distributions

* More interestingly ...
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Dynamic formulation of Wasserstein

* Benamou-Brenier formula (2000) (Villani et al. 2000)

* Optimal velocity field leads to

1
WP q) = inf / Ezp(t) V(2 1)t
VU J0

8.2. 8t’0 t+ V- (,O’U) = 0, ,0(,0) = D, P(, 1) — q

v(X, 1)

[
. Transport map: T(t)(x) =X+ [ v*(x(s), s)ds, and x(s) = T5(x)
0

[



Dynamic vs. Static Wasserstein

* Static: “one shot” * Dynamic: trajectory

IX—-T(X)ll5 WP, q) =

— X~p

1
in /O 2oy [[0(, )t

P,V
st. Op+ V- (pv) = 0, ,0(,0) — D; :0(7 1) — q

—————————————
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Continuous normalizing flow

 NeuralODE [Chen et al. 18], FFJORD (Grathwohl et al. 18)
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* Particles X(0) ~ p, push particles by velocity field v( - ,7) : |
x(1) = v(x(2), 1)

Can be parameterized by
free-form neural networks

Residual Network ODE Network
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+ {
-5 0 5 5 0 5
Input/Hidden/Output Input/Hidden/Output

* Residual networks, recurrent neural
network decoder: Euler discretization
of a continuous transformation

o = N w H u
——e r#——"/‘
""/—_._.\F4

w

Depth
Depth

o = N
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(He, Zhang, Ren, Sun 2015) (Chen, Rubanova et al. 2019)



Continuous normalizing flow
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* Particles X(0) ~ p, push particles by velocity field v( - ,7) : |
X(1) = v(x(2), )

* Implementation: Discretize into N blocks

Rd

—+| ResBlock |——| ResBlock [— *** ——»| ResBlock —

ResBlock |-

R4 R4
RP RP
: FC layer, GNN, ConvNet...
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Discrete normalizing flow

» Discrete-time version: x, = 7, (x,_,), 7, invertible
Tl T2 TN
XO—>X1 —> —)XN
p q

Overall T'=Ty 0 -+ o T

 Earlier work (e.g., NICE [Dinh 15]) requires special network architectures may have
limited representation power

* iResNet [Behrmann et al. 2019] utilizes extra computation (spectral normalization)
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Neural ODE: Invertibility

* Invertibility of each block is ensured by continuity of (neural ODE)

 Forward

e Reverse

An—1
—| ResBlock

tn—l
Tn(xn_l) = X

Tn_l(xn) = Xy [

X xn+1

n
—{ ResBlock |— -

tn tn+1

[

[

n—1

—| ResBlock —

parameterized by neural networks;

numerical integral

(o), Dde, X)) = x,
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G(p) = KL(p|[f.)



Velocity field is not unique

— p(2) p(f~1(2))
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Optimal transform corresponds to “minimum energy” velocity field.
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Matching distributions,

Alg()rithm not individual data points

— R4 t € [0,1]

Cast the problem as Learning velocity field v( - ,?) : [
We do not know p and g, only observe through samples

Relax terminal constraints using KL(¢||g) and KL(p||p)

Due to symmetry: consider both directions
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Algorithm

(Cont.)
* Solve the following problem
1
Find v(x, ) to minimize J' = (VXS t)\l%dt + gKL(pHﬁ) + %KL(qH q)
\O N J
estimate using time discretization and finite sample

A

[

N
- v ol2de = W2, p) S ey = x(0)12
For given v, x~p NV XS Dl 2 \P1o Pr,) ~ N A1) = Xillp) I

lo i=1
Can also use symmetry to push from the other end.



Time discretization

m =3
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Algorithm

(Cont.)
* Solve the following problem
1
Find v(x, ) to minimize J' = (VX t)H%dt + ZKL(pHﬁ) + lKL(qH q)
0 2 \ v - J
Estimate KL(¢||g), KL(p||p)
by GAN-loss

Lemma (Training of logistic loss leads to KL divergence under perfect training)

For logistic loss, for f, and f;, let

AV [log(l + e’ (x)dx + Jlog(l + e ?Wf, (x)dx.

Then the functional global minimizer is given by o™ = log(f,/f;).
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Comparison with other methods

* Our approach: parametrizes flow by a neural ODE
» directly solves the Benamou-Brenier equation from finite samples
» avoiding any pre-computation of OT couplings

Table 2: OT benchmarks using Gaussian mixtures with increasing dimensions (columns). Metric
values (L%-UVP, cos) are shown in cells, with lower £%-UVP and higher cos being better. The
last three rows are from |Korotin et al., 2021b| for comparisons.

Data dimension ‘ 32 64 128 256

Q-flow (Ours) (3.27, 0.99) (4.00, 0.98) (2.12, 0.99) (1.97, 0.99)
Flow-matching based OTCFM [Tong et al., 2024] (3.74,0.99)  (4.64,0.97) (2.78,0.99) (3.02, 0.98)
: MMv1 [Taghvaei and Jalali, 2019]| (6.9, 0.98) (8.1, 0.97) (2.2, 0.99) (2.6, 0.99)
static OT< MMv?2 [Fan et al., 2021] (53,0.99)  (10.1,0.96)  (3.2,099) (2.7, 0.99)
B W2 |Korotin et al., 2021c] (6.0, 0.99) (7.2, 0.97) (2.0, 1.00) (2.7, 1.00)




Numerical example

 Using learned V(x, ) on new test sample, can perform “style transformation”

Image size

64-by-64  (b)ColebA male > female

26



Comparison on CelebA64 images

FID score

Q-flow OTCKFM Re-flow MM:R Disco GAN Cycle GAN NOT

(ours) |Tong et al., 2024| |Liu et al., 2023] [Makkuva et al., 2020| [Kim et al., 2017| [Zhu et al., 2017| |Korotin et al., 2023|

Handbag
12.34 15.96 25.92 33.04 22.42 16.00 13.77
— shoes
CelebA male
9.66 9.76 20.24 12.34 35.64 17.74 13.23

— female

Image size: 64-by-64, dim = 4096
Latent space dim = 768
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Application: Improved density ratio estimation

* Given finite samples from unknown p and g

 Density ratio estimation (DRE) log(p/g)

* Idea: “infinitesimal density ratio estimation” (Choi, Meng, Song, Ermon, 2022)
log (2) = log <£> + --- +log =
q P1 PN

* Training by GAN applied to transport data over consecutive time grids

(Rhodes, Xu, Gutmann 2020) 29
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Example: Comparison

* Density ratio between two Gaussian mixtures

e P

e 4

2 1.5

3 3

1 0.75 L 1-2
=—N(] 0.5L) +—N ,0.51
. <[_1.5] )+ <[_3] )
Ground Truth . Ours: MAE = 2.38 .

(| o7 oasn
=— /(|| ,0.75L) + =¥ 0.25L) + =

KDE: MAE = 5.35

[‘11] 0.751,)

- —50

-85




Comparison for DRE estimation

Table 1: DRE performance on the energy-based modeling task for MNIST, reported in BPD and
lower, is better. Results for DRE-0co are from [Choi et al., 2022|, and results for one ratio and
TRE are from |[Rhodes et al., 2020)|.

Choice of @) RQ-NSF Copula, Gaussian

Method |Ours DRE-oo TRE 1 ratio| Ours DRE-oo TRE 1 ratio| Ours DRE-o0 TRE 1 ratio

BPD ({) [1.05 109 109 1.09 (1.14 121 124 133 |1.31 133 139 196

(e) Gaussian: raw samples from @



Summary

» Compute optimal transport (OT) using dynamic formula
* Parametrizes flow by a neural ODE
» directly solves the Benamou-Brenier equation from finite samples

* avoiding pre-computation of OT couplings
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