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Estimate high-dimensional optimal transport

• Given two sets of -dimensional samples  and  

• Goal: (i) estimate  and (ii) find transport map to match distributions

d {Xi}N
i=1 ∼ p {X̃j}M

j=1 ∼ q

𝒲2
2(p, q)

4

qp

Idea: Use dynamic optimal transport formula with neural ODE, to handle high-dim data.



Between two arbitrary distributions
• Motivation: optimal transport, transfer learning, domain adaptation

ρ0 = p ρ1 = q

xi ∼ ρt

ShoesHandbag
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Wasserstein metric
• Distance function defined between probability distributions on a 

metric space: minimum cost of transporting probabilities 

• Wasserstein-2 metric, Kantorovich

Kantorovich (1930) 

p

q

𝒲2
2(p, q) = min

γ
{𝔼(X,X′ )∼γ |∥X − X′ ∥2

2 : γ has marginal distribution p, q}



Wasserstein metric
• Distance function defined between probability distributions on a 

metric space: minimum cost of transporting probabilities  

• Wasserstein-2 metric, Kantorovich 

• Monge: Pushforward operator (transport map) :  

 

 

• Brenier Theorem (1991) Monge = Kantorovich under regularity cond.

T : ℝd → ℝd

T♯P(A) = P(T−1(A))

𝒲2
2(p, q) = min

T:T♯p=q
𝔼X∼p∥X−T(X)∥2

2

Kantorovich (1930) 

Monge (1781)

𝒲2
2(p, q) = min

γ
{𝔼(X,X′ )∼γ |∥X − X′ ∥2 : γ has marginal distribution p, q}



Space of distributions

• We are familiar with “vector spaces” but “distribution space” is tricky 

•  is not a distribution 

•  is a distribution but we cannot do this to convert “noise” to “cat”

p1 + p2

0.4p1 + 0.6p2

+ =

？



Dynamic view of density evolution
• Particles , push particles by 

velocity field  
X(0) ∼ p

v( ⋅ , t) : ℝd → ℝd

·x(t) = v(x(t), t)

• Distributions X(t) ∼ ρt

particle space distribution space

∂tρt + ∇ ⋅ (ρtvt) = 0

p
p q

q

continuity equation



Space of distributions 
• More interestingly …  

p q



Dynamic formulation of Wasserstein
• Benamou-Brenier formula (2000) (Villani  et al. 2009) 

• Optimal velocity field leads to 

• Transport map: ,  and   Tt
0(x) = x + ∫

t

0
v⋆(x(s), s)ds x(s) = Ts

0(x)
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Dynamic vs. Static Wasserstein
• Dynamic: trajectory 
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𝒲2
2(p, q) :=

qp

p

q

• Static: “one shot” 

𝒲2
2(p, q) = min

T:T♯p=q
𝔼X∼p∥X−T(X)∥2

2



Continuous normalizing flow
• NeuralODE [Chen et al. 18], FFJORD (Grathwohl et al. 18) 

• Particles , push particles by velocity field  

 

X(0) ∼ p v( ⋅ , t) : ℝd → ℝd

·x(t) = v(x(t), t)
Can be parameterized by 

free-form neural networks

• Residual networks, recurrent neural 
network decoder: Euler discretization 
of a continuous transformation
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(He, Zhang, Ren, Sun 2015) (Chen, Rubanova et al. 2019)



Continuous normalizing flow

• Particles , push particles by velocity field  

 

X(0) ∼ p v( ⋅ , t) : ℝd → ℝd

·x(t) = v(x(t), t)

p
q

…

cGAN, cINN, …

X

ResBlockResBlock ……

H
:

ℝd
ℝp

Y Linear generator  
& classifier

WgeY + bg

ResBlock

iGNN (ours)
: FC layer, GNN, ConvNet…

ℝp ℝd

: Invertible mapping
g( ⋅ , θg

c )

f( ⋅ , θc
c)

G( ⋅ , θ)
Invertible NN,


Generating NN

• Implementation: Discretize into  blocks N
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Discrete normalizing flow
• Discrete-time version: ,  invertiblexn = Tn(xn−1) Tn

x0
T1 x1

T2 ⋯ TN xN

Overall T = TN ∘ ⋯ ∘ T1

p q
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• Earlier work (e.g., NICE [Dinh 15]) requires special network architectures may have 
limited representation power 

• iResNet [Behrmann et al. 2019] utilizes extra computation (spectral normalization)



• Reverse  

T−1
n (xn) = xn − ∫

tn

tn−1

v(x(τ), τ)dτ, x(tn) = xn

Neural ODE: Invertibility
• Invertibility of each block is ensured by continuity of (neural ODE) 

• Forward 

Tn(xn−1) = xn−1 + ∫
tn

tn−1

v(x(τ), τ)dτ, x(tn−1) = xn−1

tn

xn
…

xn−1

tn+1tn−1

xn+1

parameterized by neural networks; 

numerical integral
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Example

G(ρ) = KL(ρ∥fz)



Velocity field is not unique

p q

Optimal transform corresponds to “minimum energy” velocity field.
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Algorithm
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• Cast the problem as Learning velocity field   

• We do not know  and , only observe through samples 

• Relax terminal constraints using  and  

• Due to symmetry: consider both directions

v( ⋅ , t) : ℝd → ℝd, t ∈ [0,1]

p q

KL(q∥ ̂q ) KL(p∥ ̂p )

Matching distributions, 
not individual data points

p q ̂q
v(x, t)
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Algorithm 

• Solve the following problem
(Cont.)

Find  to minimize  v(x, t) ∫
1

0
𝔼x∼ρ(t)∥v(x, t)∥2

2dt +
γ
2

KL(p∥ ̂p ) +
γ
2

KL(q∥ ̂q )

estimate using time discretization and finite sample

W2

Block1 2 3
p0 = pX

p1

p2

p3

pZ

W2

Block1 3 42 5 6p0 = pX

pZ
p1 p2

p3

p4
p5

p6

Probability Trajectory  MovementW2

f6
f5f4

f3

f2

f1

f1 f2 f3

t0

t1

∫
t1

t0

𝔼x∼ρt
∥v(x, t)∥2

2dt = W2
2(ρt0, ρt1) ≈

1
N

N

∑
i=1

∥xi(t1) − xi(t0)∥2
2For given ,v

Can also use symmetry to push from the other end.



v(x, t)

m = 3

x1(t0)

x2(t0)

x3(t0)

p = p0

t0 t1

p1

x2(t1)

x3(t1)

x1(t1) v(x, t) x1(t2)

x2(t2)

x3(t2)

p2

t2

v(x, t)

T1♯ T2♯

x1(tN)

x2(tN)

x3(tN)

pN ≈ q

tN

…

TN♯
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Time discretization



Algorithm 

• Solve the following problem

(Cont.)

Find  to minimize  v(x, t) ∫
1

0
𝔼x∼ρ(t)∥v(x, t)∥2

2dt +
γ
2

KL(p∥ ̂p ) +
γ
2

KL(q∥ ̂q )

Estimate ,  
by GAN-loss
KL(q∥ ̂q ) KL(p∥ ̂p )

Lemma (Training of logistic loss leads to KL divergence under perfect training) 
For logistic loss, for  and , let 

.  

Then the functional global minimizer is given by .

f0 f1

ℓ[φ] = ∫ log(1 + eφ(x))f0(x)dx + ∫ log(1 + e−φ(x))f1(x)dx

φ⋆ = log( f1/f0)
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Comparison with other methods
• Our approach: parametrizes flow by a neural ODE 

• directly solves the Benamou-Brenier equation from finite samples 

• avoiding any pre-computation of OT couplings

static OT

Flow-matching based



Numerical example
• Using learned  on new test sample, can perform “style transformation”̂v(x, t)
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ρ0 = p ρ1 = q

xi ∼ ρt

Image size 

64-by-64



Comparison on CelebA64 images
FID score

Image size: 64-by-64, dim = 4096 

Latent space dim = 768
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Application:  Improved density ratio estimation
• Given finite samples from unknown  and   

• Density ratio estimation (DRE)   

• Idea: “infinitesimal density ratio estimation” (Choi, Meng, Song, Ermon, 2022) 

                                               

• Training by GAN  applied to transport data over consecutive time grids 

p q

log(p/q)

log ( p
q ) = log ( p

p1 ) + ⋯ + log ( q
pN )

29(Rhodes, Xu, Gutmann 2020)



Example
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Example: Comparison
• Density ratio between two Gaussian mixtures 

•  

•

p =
1
3

𝒩([−2
2 ] ,0.75I2) +

1
3

𝒩([−1.5
1.5 ] ,0.25I2) +

1
3

𝒩([−1
1 ] ,0.75I2)

q =
1
2

𝒩([0.75
−1.5] ,0.5I2) +

1
2

𝒩([−2
−3] ,0.5I2)
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Comparison for DRE estimation



Summary
• Compute optimal transport (OT) using dynamic formula 

• Parametrizes flow by a neural ODE  

• directly solves the Benamou-Brenier equation from finite samples 

• avoiding pre-computation of OT couplings 
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