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Goal of these lectures

Introduce some basic concepts from optimal transportation
theory.

Focus on ideas (rather than technical details) and on building
intuition (with diagrams, non-rigorous proof sketches, etc.)

Briefly cover a few topics requested by speakers.
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G. Peyré and M. Cuturi. Computational Optimal Transport:
With Applications to Data Science Now Publishers, 2019.

A. Galichon. Optimal Transport Methods in Economics
Princeton University Press, 2019.

Brendan Pass (U. Alberta) An introduction to optimal transport (OT bootcamp)



Origins of optimal transport

Gaspard Monge (1781): How do I fill a hole with dirt as
efficiently as possible?
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Monge’s optimal transport problem

Given probability measures µ(x) (the source) and ν(y) (the
target) on bounded domains X ,Y ⊆ Rn, we say a map
T : X → Y pushes µ forward to ν, and write T#µ = ν, if
µ(T−1(A)) = ν(A) for all A ⊆ Y . We sometimes call these
T ′s transport maps.

Note: if dµ(x) = f (x)dx , dν(y) = g(y)dy , and T is a
diffeomorphism (ie, 1− 1, onto, smooth with a smooth
inverse), this means T satisifes the change of variables
equation f (x) = |detDT (X )|g(T (x)).

Given a cost function c(x , y), Monge’s optimal transport
problem is to minimize:∫

X
c(x ,T (x))dµ(x)

among all T such that T#µ = ν.

Example costs: c(x , y) = |x − y |, |x − y |2....
Challenging to analyze (lacks linearity, compactness...)
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Kantorovich’s optimal transport problem

Leonid Kantorovich 1942: instead of sending all the mass at the
source point x to target point y = T (x), allow splitting, so that
the mass may be divided among several (or even infinitely many)
target points.

Intuitively, think of denoting the amount of mass moved from x to
y by γ(x , y).
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Kantorovich’s optimal transport problem

Given probability measures µ(x) (the source) and ν(y) (the
target) on domains X ,Y ⊆ Rn, we say a probability measure
γ on X × Y , has marginals µ and ν if γ(B × Y ) = µ(B) and
γ(X × A) = ν(A) for all A ⊆ Y and B ⊆ X . We will
sometimes call such γ’s transport plans. We denote the set
of all transport plans by Γ(µ, ν).
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Marginals
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Marginals

γ(X × A) = ν(A)
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Marginals

γ(B × Y ) = µ(B)
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Marginals for a Monge type transport plan (transport map)

ν(A) = γ(X × A) = γ(B × Y ) = µ(B) = µ(T−1(A))
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Kantorovich’s optimal transport problem

Given probability measures µ(x) (the source) and ν(y) (the
target) on domains X ,Y ⊆ Rn, we say a probability measure
γ on X × Y , has marginals µ and ν if γ(B × Y ) = µ(B) and
γ(X × A) = ν(A) for all A ⊆ Y and B ⊆ X . We will
sometimes call such γ’s transport plans. We denote the set of
all transport plans by Γ(µ, ν).

Given a cost function c(x , y), Kantorovich’s optimal
transport problem is to minimize:∫

X×Y
c(x , y)dγ(x , y)

among all γ ∈ Γ(µ, ν).

Linear minimization over a convex set. Under mild conditions,
there exists a solution (continuity-compactness).
We will call the smallest closed set S such that γ(S) = 1 the
support of γ, denoted by spt(γ).

Ex: For Monge type γ, the graph of T is the support (for a
continuous T ).
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Structure of solution: c-monotonicity

We say a set S ⊆ X × Y is c-monotone if for any (x0, y0),
(x1, y1) ∈ S we have

c(x0, y0) + c(x1, y1) ≤ c(x0, y1) + c(x1, y0)

The support of optimal transport plans is always c-monotone.
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Structure of solution: c-cyclical monotonicity

A set S ⊆ X × Y is c-cyclically monotone if for any finite
collection of points (x0, y0), (x1, y1), ...(xN , yN) ∈ S we have

N∑
i=0

c(xi , yi ) ≤
N∑
i=0

c(xi , yi+1) + c(xN , y0)

The support of optimal transport plans is always c-cyclically
monotone. In fact, this is a characterization.

For c(x , y) = |x − y |2, this is

N∑
i=0

xi · (yi − yi+1) + xN · (yN − y0) ≥ 0

This is known simply as cyclical monotonicity.
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One dimensional optimal transport

Suppose n = 1: X ,Y ⊂ R.

Assume ∂2c
∂x∂y < 0 (e.g. c(x , y) = (x − y)2).

If (x0, y0), (x1, y1) are in the support of an optimal γ,
c-monotonicity means that:

0 ≥ c(x1, y1) + c(x0, y0)− c(x0, y1)− c(x1, y0)

=

∫ y1

y0

[
∂c

∂y
(x1, y)−

∂c

∂y
(x0, y)]dy

=

∫ y1

y0

∫ x1

x0

∂2c

∂x∂y
(x , y)dxdy

=⇒ (x1 − x0)(y1 − y0) ≥ 0. That is, γ is concentrated on a
monotone increasing set.
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One dimensional optimal transport

For dµ(x) = f (x)dx , the only transport plan with monotone
increasing support is concentrated on the graph of T : X → Y
defined by: ∫ x

−∞
f (t)dt =

∫ T (x)

−∞
g(s)ds
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Remarks on one dimensional optimal transport

The T defined above is the unique solution to Monge’s
optimal transport problem. The corresponding measure
γ = (Id ,T )#µ is the unique solution to Kantorovich’s
problem.

The solution doesn’t really depend on c (as long as
∂2c
∂x∂y < 0). Therefore, the solutions for all costs satisfying this
condition (for the same marginals) are the same. This is a
special feature of the one dimensional setting.

For probabilistically minded people, this is T = (Fν)
−1 ◦ Fµ,

where Fν and Fµ are the cumulative distribution functions.

Differentiating
∫ x
−∞ f (t)dt =

∫ T (x)
−∞ g(s)ds with respect to x

yields an ODE for T .

f (x) = T ′(x)g(T (x))
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Duality

Kantorovich’s optimal transport problem between µ and ν is
dual to the problem of maximizing:∫

X
u(x)dµ(x) +

∫
Y
v(y)dν(y)

among functions u on X and v on Y such that
u(x) + v(y) ≤ c(x , y) for all (x , y) ∈ X × Y

Kantorovich duality theorem:

max
u+v≤c

∫
X
u(x)dµ(x)+

∫
Y
v(y)dν(y) = min

γ∈Γ(µ,ν)

∫
X×Y

c(x , y)dγ(x , y)

The ”≤” direction is easy to prove (just integrate both sides
of the constraint u(x) + v(y) ≤ c(x , y) against γ).

The duality is a key tool in analysis of OT problems.
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Duality: sketch of proof

Minimax theory for

H(γ, u, v) =

∫
X×Y

[c(x , y)− u(x)− v(y)]dγ(x , y)

+

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)

For fixed γ the unconstrained supremum of
(u, v) 7→ H(γ, u, v) is

∫
X×Y c(x , y)dγ(x , y) if γ ∈ Γ(µ, ν),

and ∞ otherwise.
So infγ sup(u,v) H(γ, µ, ν) = infγ∈Γ(µ,ν)

∫
X×Y

c(x , y)dγ(x , y)
(the Kantorovich primal problem)

For fixed (u, v), the unconstrained infimum of
γ 7→ H(γ, u, v) is

∫
X u(x)dµ(x) +

∫
Y v(y)dν(y) if

c(x , y) ≥ u(x) + v(y) everywhere and −∞ otherwise.
So sup(u,v) infγ H(γ, µ, ν) =

supu+v≤c

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y) (the dual problem)

Applying a minimax theorem,
infγ sup(u,v)H(γ, µ, ν) = sup(u,v) infγ H(γ, µ, ν) gives duality.
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More on duality: key facts

Suppose that u(x) and v(y) solve the dual problem, and
γ(x , y) solves the primal. Then, since u(x) + v(y) ≤ c(x , y)
everywhere, but∫
X×Y

[u(x) + v(y)]dγ(x , y) =

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y)

=

∫
X×Y

c(x , y)dγ(x , y)

we must have

u(x) + v(y)− c(x , y) = 0

γ -almost everywhere.

This means that x 7→ u(x)− c(x , ȳ) is maximized at any
x = x̄ such that (x̄ , ȳ) ∈ spt(γ) (that is, any x̄ that gets
transported to ȳ by γ). So

∇u(x̄) = ∇xc(x̄ , ȳ) and D2u(x̄) ≤ D2
xxc(x̄ , ȳ)
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Brenier’s Theorem

Brenier’s Theorem: Suppose that µ is absolutely continuous with

respect to Lebesgue measure and that c(x , y) = |x−y |2
2 . Then the

solution γ to the Kantorovich problem is unique and concentrated
on the graph of a function T : X → Y . Furthermore,
T (x) = ∇ϕ(x) for a convex function ϕ, and T is the unique
solution to the Monge problem.

Remarks:

In n = 1 dimension, convexity means that T ′(x) = ϕ′′(x) ≥ 0,
so that T is monotone increasing – we recover our earlier
result.

A non-trivial part of the theorem is that there exists a
(unique) convex function ϕ so that ∇ϕ#µ = ν. This fact by
itself has many applications.
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Brenier’s Theorem: sketch of proof

Let γ solve the primal problem and u(x), v(y) solve the dual.
We have, for any (x , y) ∈ spt(γ),

∇u(x) = ∇xc(x , y) = x − y

So we must have
y = x −∇u(x) = ∇( |x |

2

2 − u)(x) := ∇ϕ(x) := T (x).

Now, D2u(x) ≤ D2
xxc(x , y) = I , so

D2ϕ(x) = D2( |x |
2

2 − u)(x) = I − D2u(x) ≥ 0. So ϕ is convex.

What about uniqueness? If γ0 and γ1 both solve
Kantorovich’s problem, so does γ1/2 =

1
2 [γ0 + γ1], by linearity.

The argument above shows that γ0 and γ1 concentrate on
graphs of functions T0 and T1. γ1/2 then concentrates on the
union of theses two graphs.
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Brenier’s Theorem: sketch of proof
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2 − u)(x) = I − D2u(x) ≥ 0. So ϕ is convex.

What about uniqueness? If γ0 and γ1 both solve
Kantorovich’s problem, so does γ1/2 =

1
2 [γ0 + γ1], by linearity.

The argument above shows that γ0 and γ1 concentrate on
graphs of functions T0 and T1. γ1/2 then concentrates on the
union of theses two graphs.

But γ1/2 concentrates on a graph, too (using the argument
above again), which is impossible unless T0 = T1 in which
case γ0 = γ1.
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Remarks

The fact that the solution is graphical and unique doesn’t
really rely on c being quadratic. The same conclusions can be
drawn for more general costs satisfying the twist condition,
which is injectivity of y 7→ ∇xc(x , y) for each fixed x .

For c(x , y) = |x−y |2
2 , note that DT (x) = D2ϕ(x), so

f (x)
g(∇ϕ(x)) = |det(DT (x))| = detD2ϕ(x). That is, ϕ solves a
Monge-Ampere equation.

Instead of using duality, one could use Rockafellar’s theorem
(a set S ⊆ Rn × Rn is cyclically monotone if any only if it is
contained in the subdifferential of a convex funtion).
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Brenier map: examples

If µ is uniform on a ball, B(0, 1) and ν uniform on the
corresponding sphere, ∂B(0, 1), then

ϕ(x) = |x | and ∇ϕ(x) =
x

|x |

If µ and ν are Gaussians, µ = N (0, I ), ν = N (ȳ ,Σ), (so

f (x) = e−|x|2/2√
(2π)n

and g(y) = e−(y−ȳ)TΣ−1(y−ȳ)/2√
(2π)ndet(Σ)

) then

ϕ(x) = ȳ · x +
1

2
xTΣ1/2x , and ∇ϕ(x) = ȳ +Σ1/2x
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Brendan Pass (U. Alberta) An introduction to optimal transport (OT bootcamp)



Brenier map: examples

If µ is uniform on a ball, B(0, 1) and ν uniform on the
corresponding sphere, ∂B(0, 1), then

ϕ(x) = |x | and ∇ϕ(x) =
x

|x |

If µ and ν are Gaussians, µ = N (0, I ), ν = N (ȳ ,Σ), (so
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Application: isoperimetric inequality

Isoperimetric inequality: The surface area of any set M ⊆ Rn is
greater than or equal to the surface area of a ball with the same
volume.

Vol(M) = Vol(BR(0)) =⇒ S(M) ≥ S(BR(0))
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Application: isoperimetric inequality

Isoperimetric inequality: The surface area of any set M ⊆ Rn is
greater than or equal to the surface area of a ball with the same
volume.

Vol(M) = Vol(BR(0)) =⇒ S(M) ≥ S(BR(0))

Proof:

Take f (x) = χM , g(y) = χBR(0).

∇ϕ(x) the Brenier map
=⇒ det(D2ϕ(x)) = f (x)/g(∇ϕ(x)) = 1 (change of
variables).

Arithmetic mean dominates geometric mean (as ϕ is convex,
D2ϕ has positive eigenvalues)
=⇒ det1/n(D2ϕ(x)) ≤ 1

n tr(D
2ϕ(x)) = 1

n∆ϕ(x)
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∇ϕ(x) the Brenier map
=⇒ det(D2ϕ(x)) = f (x)/g(∇ϕ(x)) = 1 (change of
variables).

Arithmetic mean dominates geometric mean (as ϕ is convex,
D2ϕ has positive eigenvalues)
=⇒ det1/n(D2ϕ(x)) ≤ 1

n tr(D
2ϕ(x)) = 1

n∆ϕ(x)
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Proof sketch:

1

n
S(BR(0))R = Vol(BR(0)) = Vol(M)

=

∫
M
1dnx

=

∫
M
det1/n(D2ϕ(x))dx

≤
∫
M

1

n
∆ϕ(x)dx

=
1

n

∫
∂M

∇ϕ(x) · N⃗dn−1S(x)
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Proof sketch:

1

n
S(BR(0))R = Vol(BR(0)) = Vol(M)

=

∫
M
1dnx

=

∫
M
det1/n(D2ϕ(x))dx

≤
∫
M

1

n
∆ϕ(x)dx

=
1

n

∫
∂M

∇ϕ(x) · N⃗dn−1S(x)

≤ 1

n

∫
∂M

Rdn−1S(x)

=
1

n
S(M)R
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Comments on the proof

The optimal transport proof is pretty simple; everything in
the proof is first or second year mathematics (except Brenier’s
theorem)!

We prove an inequality about surfaces/curves/bodies in Rn by
working with simple inequalities under the integral sign
(geometric-arithmetic mean, Cauchy-Schwartz on Rn).

This is a common theme in applications of optimal transport
in geometry.
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The Wasserstein distance

Optimal transport can be used to derive a metric on the space
of probability measures, which we call the Wasserstein
distance:

W2(µ, ν) :=

√
min

γ∈Γ(µ,ν)

∫
X×Y

|x − y |2dγ(x , y)

This is useful in a variety of applications when we want to
compare two distributions of mass and the underlying distance
plays a role.

It works with discrete measures; in fact, x 7→ δx isometrically
embeds Rn into the space of probability measures.

In one dimension, W 2
2 (µ, ν) =

∫ 1
0 |F−1

µ (t)− F−1
ν (t)|2dt,

where Fµ and Fν are the cdfs (ie, we compare µ and ν via
their quantiles.)
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Wasserstein distance

Three probability measures: du(x) = f (x)dx , dν(x) = g(x)dx ,
dσ(x) = h(x)dx . Note that

||f − g ||L2 = ||f − h||L2

but
W2(µ, ν) << W2(µ, σ)
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Displacement interpolation

Displacement interpolants are a natural way to interpolate (or
average) between two probability measures, respecting the
underlying geometry.

The displacement interpolant between µ0 and µ1 is the curve
of measures µt := ((1− t)I + t∇ϕ)#µ0, where ∇ϕ is the
Brenier (optimal transport) map between µ0 and µ1.
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Displacement interpolation vs linear averages

Probability measures µ0 and µ1.

Brendan Pass (U. Alberta) An introduction to optimal transport (OT bootcamp)



Displacement interpolation vs linear averages

Probability measures µ0 and µ1. The linear interpolant
µt = (1− t)µ0 + tµ1
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Displacement interpolation vs linear averages

Probability measures µ0 and µ1. The displacement interpolant
µt = ((1− t)Id + t∇ϕ)#µ0
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Comments on displacement interpolation

In one dimension, optimal transport matches equal quantiles.

Dispacement interpolation then interpolates between
quantiles:

If µ0 and µ1 have cdfs F0 and F1, the cdf of µt is

Ft = [(1− t)F−1
0 + tF−1

1 ]−1

In general, displacement interpolation tends to preserve
shapes/geometric features better than other interpolation
methods.
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Dynamic formulation of optimal transport
(Benamou-Brenier)

There is also a way to view the Wasserstein distance through
action minimizing curves in the space of probability measures.

For an absolutely continuous probability measure at time t,
dµt(x) = ft(x)dx with density ft(x), we let vt(x) be the
velocity of a particle at point x and time t.

The divergence ∇ · (vt(x)ft(x)) tells us how much mass is
moving away from, or towards, the point x at time t.
Conservation of mass gives us the continuity equation:
f ′t (x) +∇ · (vt(x)ft(x)) = 0.
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Dynamic formulation of optimal transport
(Benamou-Brenier)

Recall that in Rn, the squared distance |x0 − x1|2 is given by

min
∫ 1
0 |vt |2dt, where the minimum is among curves xt joining

x0 and x1 with velocity vt = x ′t .

The optimal curve is the straight line xt = x0 + t(x1 − x0) (so
that vt = x1 − x0 is constant).

Analagously, the squared Wasserstein distance between
probability measures µ0 and µ1 may be written

W 2
2 (µ0, µ1) = min

∫ 1

0

∫
Rn

ft(x)|vt(x)|2dxdt

among curves dµt = ftdx joining µ0 and µt , satisfying the
continuity equation.

The optimal velocity, vt(x) = ∇ϕ(x)− x is exactly the
Brenier map.
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Wasserstein gradient flows

Certain evolution PDEs can be interpreted as gradient flows in
the Wasserstein space: that is, a distribution of mass is
rearranging itself so as to decrease a certain functional as
quickly as possible, relative to the Wasserstein metric.

Recall the gradient flow on Rn for a function F : Rn → R is

dx

dt
(t) = −∇F (x(t))

How can this idea be adapted to Wasserstein space?

Brendan Pass (U. Alberta) An introduction to optimal transport (OT bootcamp)



Wasserstein gradient flows

Certain evolution PDEs can be interpreted as gradient flows in
the Wasserstein space: that is, a distribution of mass is
rearranging itself so as to decrease a certain functional as
quickly as possible, relative to the Wasserstein metric.

Recall the gradient flow on Rn for a function F : Rn → R is

dx

dt
(t) = −∇F (x(t))

How can this idea be adapted to Wasserstein space?

Brendan Pass (U. Alberta) An introduction to optimal transport (OT bootcamp)



Wasserstein gradient flows

Certain evolution PDEs can be interpreted as gradient flows in
the Wasserstein space: that is, a distribution of mass is
rearranging itself so as to decrease a certain functional as
quickly as possible, relative to the Wasserstein metric.

Recall the gradient flow on Rn for a function F : Rn → R is

dx

dt
(t) = −∇F (x(t))

How can this idea be adapted to Wasserstein space?

Brendan Pass (U. Alberta) An introduction to optimal transport (OT bootcamp)



Wasserstein gradient flows

First, we have to understand gradients. The key point from
Rn we want to translate is that for a curves xt ,
d
dt (F (x(t))) = ∇F (x(t)) · x ′(t)

For a curve of measures, dµt(x) = ft(x)dx , the classical way
(working in L2) to interpet its velocity would be as f ′t (x) (the
rate of change of mass at the point x).

Optimal transport is about how mass moves; we therefore
interpret the velocity of a curve by its velocity vector at
individual points, given by f ′t (x) = −∇ · (vt(x)ft(x))
Therefore, for a functional F on the space of probability
measures, we would like ot define ∇F so that for each curve
dµt(x) = ft(x)dx , we have

d

dt
(F(µt)) =< wt , vt >L2(µt)=

∫
Rn

wt(x) · vt(x)dµt(x)

where f ′t = −∇ · (vt ft) and (∇F)(µt) = −∇ · (wt ft)
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Wasserstein gradient flows

For simplicity, consider functionals F on Wasserstein space of
the form

F(µ) =

∫
Rn

U(f (x))dx

where dµ(x) = f (x)dx .

For a curve dµt = ftdx , we have

d

dt
F(µt) =

∫
Rn

U ′(ft(x))f
′
t (x)dx

We would like to write this as an integral against the
corresponding velocity vector vt which satisfies:

f ′t (x) = −∇ · (vt(x)ft(x))
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Wasserstein gradient flows

d

dt
F(µt) =

∫
Rn

U ′(ft(x))f
′
t (x)dx

= −
∫
Rn

U ′(ft(x))∇ · (vt(x)ft(x))dx

=

∫
Rn

∇(U ′(ft(x))) · vt(x)ft(x)dx

This establishes ∇(U ′(ft(x))) as the velocity corresponding to the
gradient. The corresponding rate of change of the density then
comes from the continuity equation:

(∇F)(µt) = −∇ · (ft(x)∇(U ′(ft(x))).

So, the gradient of F evaluated at dµ(x) = f (x)dx is
−∇ · (f (x)∇(U ′(f (x))).
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Wasserstein gradient flows: examples

Take the entropy: F =
∫
Rn f (x) log(f (x))dx (so U(r) = r log(r)).

Then its Wasserstein gradient is

−∇ · (f (x)∇(U ′(f (x))) = −∇ · (f (x)∇(log(f (x) + 1))

= −∇ · (f (x)(∇f (x)

f (x)
)) = −∆f (x)

So the Wasserstein gradient flow of the entropy is given by:

f ′(x) = ∆f (x)

The heat equation! (Note: it is actually easy to show that the
entropy decreases for solutions of the heat equation – this show
that it decreases as quickly as possible relative to the Wasserstein
metric. On the other hand, it is well known that the heat equation
is the gradient flow of the Dirichlet energy,

∫
X |∇f (x)|2 under the

L2 metric.)
Many other examples (see, for example, Villani TOT p.252).
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metric. On the other hand, it is well known that the heat equation
is the gradient flow of the Dirichlet energy,

∫
X |∇f (x)|2 under the

L2 metric.)

Many other examples (see, for example, Villani TOT p.252).
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Jordan-Kinderlehrer-Otto scheme

For x ′(t) = −∇F (x(t)) in Rn, think of discretizing time
t0, t1, ..., with h = ti+1 − ti .

Then x(ti+1)− x(ti ) ≈ hx ′(ti+1) = −h∇F (xti+1).

That is x(ti+1) ≈ x(ti )− h∇F (xti+1).

So x = x(ti+1) makes the gradient of
x 7→ 1

2 |x − x(ti )|2 + hF (x) vanish.

Under suitable conditions on F , for small h, we expect
choosing x(ti+1) to minimize 1

2 |x − x(ti )|2 + hF (x) to be a
good approximation of the solution.

Similarly, on Wasserstein space, we expect choosing µti+1 to
minimize

µ 7→ F(µ) +
1

2h
W 2

2 (µti , µ)

to be close to Wasserstein gradient flow (or the corresponding
PDE).
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