An introduction to optimal transport (OT bootcamp)

Brendan Pass (U. Alberta)

June 20, 2022

Brendan Pass (U. Alberta) An introduction to optimal transport (OT bootcamp)

- Introduce some basic concepts from optimal transportation theory.
- Focus on ideas (rather than technical details) and on building intuition (with diagrams, non-rigorous proof sketches, etc.)
- Briefly cover a few topics requested by speakers.

Very incomplete list of references

- C. Villani. Topics in optimal transportation. AMS, 2003.
- C. Villani. Optimal transport: old and new. Springer, 2009.
- F. Santambrogio. Optimal transport for applied mathematicians. Birkhauser, 2015.
- G. Peyré and M. Cuturi. *Computational Optimal Transport: With Applications to Data Science* Now Publishers, 2019.
- A. Galichon. *Optimal Transport Methods in Economics* Princeton University Press, 2019.

Very incomplete list of references

- C. Villani. Topics in optimal transportation. AMS, 2003.
- C. Villani. Optimal transport: old and new. Springer, 2009.
- F. Santambrogio. Optimal transport for applied mathematicians. Birkhauser, 2015.
- G. Peyré and M. Cuturi. *Computational Optimal Transport: With Applications to Data Science* Now Publishers, 2019.
- A. Galichon. *Optimal Transport Methods in Economics* Princeton University Press, 2019.

• Given probability measures $\mu(x)$ (the source) and $\nu(y)$ (the target) on bounded domains $X, Y \subseteq \mathbb{R}^n$, we say a map $T: X \to Y$ pushes μ forward to ν , and write $T_{\#}\mu = \nu$, if $\mu(T^{-1}(A)) = \nu(A)$ for all $A \subseteq Y$. We sometimes call these T's transport maps.

- Given probability measures μ(x) (the source) and ν(y) (the target) on bounded domains X, Y ⊆ ℝⁿ, we say a map T : X → Y pushes μ forward to ν, and write T_#μ = ν, if μ(T⁻¹(A)) = ν(A) for all A ⊆ Y. We sometimes call these T's transport maps.
- Note: if dμ(x) = f(x)dx, dν(y) = g(y)dy, and T is a diffeomorphism (ie, 1 1, onto, smooth with a smooth inverse), this means T satisifies the change of variables equation f(x) = |detDT(X)|g(T(x)).

- 周 ト - ヨ ト - ヨ ト - -

- Given probability measures μ(x) (the source) and ν(y) (the target) on bounded domains X, Y ⊆ ℝⁿ, we say a map T : X → Y pushes μ forward to ν, and write T_#μ = ν, if μ(T⁻¹(A)) = ν(A) for all A ⊆ Y. We sometimes call these T's transport maps.
- Note: if dμ(x) = f(x)dx, dν(y) = g(y)dy, and T is a diffeomorphism (ie, 1 1, onto, smooth with a smooth inverse), this means T satisifes the change of variables equation f(x) = |detDT(X)|g(T(x)).
- Given a cost function c(x, y), **Monge's optimal transport problem** is to minimize:

$$\int_X c(x, \mathsf{T}(x)) d\mu(x)$$

among all T such that $T_{\#}\mu = \nu$.

- Given probability measures μ(x) (the source) and ν(y) (the target) on bounded domains X, Y ⊆ ℝⁿ, we say a map T : X → Y pushes μ forward to ν, and write T_#μ = ν, if μ(T⁻¹(A)) = ν(A) for all A ⊆ Y. We sometimes call these T's transport maps.
- Note: if dμ(x) = f(x)dx, dν(y) = g(y)dy, and T is a diffeomorphism (ie, 1 1, onto, smooth with a smooth inverse), this means T satisifes the change of variables equation f(x) = |detDT(X)|g(T(x)).
- Given a cost function c(x, y), **Monge's optimal transport problem** is to minimize:

$$\int_X c(x, \mathsf{T}(x)) d\mu(x)$$

among all T such that $T_{\#}\mu = \nu$.

• Example costs: $c(x, y) = |x - y|, |x - y|^2....$

- Given probability measures $\mu(x)$ (the source) and $\nu(y)$ (the target) on bounded domains $X, Y \subseteq \mathbb{R}^n$, we say a map $T: X \to Y$ pushes μ forward to ν , and write $T_{\#}\mu = \nu$, if $\mu(T^{-1}(A)) = \nu(A)$ for all $A \subseteq Y$. We sometimes call these T's transport maps.
- Note: if dμ(x) = f(x)dx, dν(y) = g(y)dy, and T is a diffeomorphism (ie, 1 1, onto, smooth with a smooth inverse), this means T satisifes the change of variables equation f(x) = |detDT(X)|g(T(x)).
- Given a cost function c(x, y), **Monge's optimal transport problem** is to minimize:

$$\int_X c(x, \mathsf{T}(x)) d\mu(x)$$

among all T such that $T_{\#}\mu = \nu$.

- Example costs: $c(x, y) = |x y|, |x y|^2....$
- Challenging to analyze (lacks linearity, compactness...)

Leonid Kantorovich 1942: instead of sending all the mass at the source point x to target point y = T(x), allow **splitting**, so that the mass may be divided among **several** (or even infinitely many) target points.

Leonid Kantorovich 1942: instead of sending all the mass at the source point x to target point y = T(x), allow **splitting**, so that the mass may be divided among **several** (or even infinitely many) target points.

Intuitively, think of denoting the amount of mass moved from x to y by $\gamma(x, y)$.

Brendan Pass (U. Alberta) An introduction to optimal transport (OT bootcamp)

• Given probability measures $\mu(x)$ (the source) and $\nu(y)$ (the target) on domains $X, Y \subseteq \mathbb{R}^n$, we say a probability measure γ on $X \times Y$, has **marginals** μ and ν if $\gamma(B \times Y) = \mu(B)$ and $\gamma(X \times A) = \nu(A)$ for all $A \subseteq Y$ and $B \subseteq X$. We will sometimes call such γ 's **transport plans**. We denote the set of all transport plans by $\Gamma(\mu, \nu)$.

 $\gamma(X \times A) = \nu(A)$

▲御▶ ▲ 臣▶ ▲ 臣▶

æ

Marginals

 $\gamma(B \times Y) = \mu(B)$

æ

▲御▶ ▲ 陸▶ ▲ 陸▶

Marginals for a Monge type transport plan (transport map)

$$\nu(A) = \gamma(X \times A) = \gamma(B \times Y) = \mu(B) = \mu(T_{\text{cond}}^{-1}(A))$$

- Given probability measures $\mu(x)$ (the source) and $\nu(y)$ (the target) on domains $X, Y \subseteq \mathbb{R}^n$, we say a probability measure γ on $X \times Y$, has **marginals** μ and ν if $\gamma(B \times Y) = \mu(B)$ and $\gamma(X \times A) = \nu(A)$ for all $A \subseteq Y$ and $B \subseteq X$. We will sometimes call such γ 's transport plans. We denote the set of all **transport plans** by $\Gamma(\mu, \nu)$.
- Given a cost function c(x, y), Kantorovich's optimal transport problem is to minimize:

$$\int_{X\times Y} c(x,y) d\gamma(x,y)$$

among all $\gamma \in \Gamma(\mu, \nu)$.

- Given probability measures $\mu(x)$ (the source) and $\nu(y)$ (the target) on domains $X, Y \subseteq \mathbb{R}^n$, we say a probability measure γ on $X \times Y$, has **marginals** μ and ν if $\gamma(B \times Y) = \mu(B)$ and $\gamma(X \times A) = \nu(A)$ for all $A \subseteq Y$ and $B \subseteq X$. We will sometimes call such γ 's transport plans. We denote the set of all **transport plans** by $\Gamma(\mu, \nu)$.
- Given a cost function c(x, y), Kantorovich's optimal transport problem is to minimize:

$$\int_{X\times Y} c(x,y) d\gamma(x,y)$$

among all $\gamma \in \Gamma(\mu, \nu)$.

• Linear minimization over a convex set. Under mild conditions, there exists a solution (continuity-compactness).

- Given probability measures $\mu(x)$ (the source) and $\nu(y)$ (the target) on domains $X, Y \subseteq \mathbb{R}^n$, we say a probability measure γ on $X \times Y$, has **marginals** μ and ν if $\gamma(B \times Y) = \mu(B)$ and $\gamma(X \times A) = \nu(A)$ for all $A \subseteq Y$ and $B \subseteq X$. We will sometimes call such γ 's transport plans. We denote the set of all **transport plans** by $\Gamma(\mu, \nu)$.
- Given a cost function c(x, y), Kantorovich's optimal transport problem is to minimize:

$$\int_{X\times Y} c(x,y) d\gamma(x,y)$$

among all $\gamma \in \Gamma(\mu, \nu)$.

- Linear minimization over a convex set. Under mild conditions, there exists a solution (continuity-compactness).
- We will call the smallest closed set S such that γ(S) = 1 the support of γ, denoted by spt(γ).

• A B • • B • • B • •

- Given probability measures $\mu(x)$ (the source) and $\nu(y)$ (the target) on domains $X, Y \subseteq \mathbb{R}^n$, we say a probability measure γ on $X \times Y$, has **marginals** μ and ν if $\gamma(B \times Y) = \mu(B)$ and $\gamma(X \times A) = \nu(A)$ for all $A \subseteq Y$ and $B \subseteq X$. We will sometimes call such γ 's transport plans. We denote the set of all **transport plans** by $\Gamma(\mu, \nu)$.
- Given a cost function c(x, y), Kantorovich's optimal transport problem is to minimize:

$$\int_{X\times Y} c(x,y) d\gamma(x,y)$$

among all $\gamma \in \Gamma(\mu, \nu)$.

- Linear minimization over a convex set. Under mild conditions, there exists a solution (continuity-compactness).
- We will call the smallest closed set S such that γ(S) = 1 the support of γ, denoted by spt(γ).
 - Ex: For Monge type γ, the graph of T is the support (for a continuous T).

We say a set $S \subseteq X \times Y$ is *c*-monotone if for any (x_0, y_0) , $(x_1, y_1) \in S$ we have

$$c(x_0, y_0) + c(x_1, y_1) \le c(x_0, y_1) + c(x_1, y_0)$$

3 🕨 🖌 3

э

We say a set $S \subseteq X \times Y$ is *c*-monotone if for any (x_0, y_0) , $(x_1, y_1) \in S$ we have

$$c(x_0, y_0) + c(x_1, y_1) \le c(x_0, y_1) + c(x_1, y_0)$$

• The support of optimal transport plans is always *c*-monotone.

We say a set $S \subseteq X \times Y$ is *c*-monotone if for any (x_0, y_0) , $(x_1, y_1) \in S$ we have

$$c(x_0, y_0) + c(x_1, y_1) \le c(x_0, y_1) + c(x_1, y_0)$$

• The support of optimal transport plans is always *c*-monotone.

We say a set $S \subseteq X \times Y$ is *c*-monotone if for any (x_0, y_0) , $(x_1, y_1) \in S$ we have

$$c(x_0, y_0) + c(x_1, y_1) \le c(x_0, y_1) + c(x_1, y_0)$$

• The support of optimal transport plans is always *c*-monotone.

• For
$$c(x, y) = |x - y|^2$$
, this amounts to $(x_1 - x_0) \cdot (y_1 - y_0) \ge 0$.

うくで

Structure of solution: c-cyclical monotonicity

A set S ⊆ X × Y is c-cyclically monotone if for any finite collection of points (x₀, y₀), (x₁, y₁), ...(x_N, y_N) ∈ S we have

$$\sum_{i=0}^{N} c(x_i, y_i) \leq \sum_{i=0}^{N} c(x_i, y_{i+1}) + c(x_N, y_0)$$

Structure of solution: c-cyclical monotonicity

A set S ⊆ X × Y is c-cyclically monotone if for any finite collection of points (x₀, y₀), (x₁, y₁), ...(x_N, y_N) ∈ S we have

$$\sum_{i=0}^{N} c(x_i, y_i) \leq \sum_{i=0}^{N} c(x_i, y_{i+1}) + c(x_N, y_0)$$

• The support of optimal transport plans is always *c*-cyclically monotone. In fact, this is a characterization.

Structure of solution: c-cyclical monotonicity

A set S ⊆ X × Y is c-cyclically monotone if for any finite collection of points (x₀, y₀), (x₁, y₁), ...(x_N, y_N) ∈ S we have

$$\sum_{i=0}^{N} c(x_i, y_i) \leq \sum_{i=0}^{N} c(x_i, y_{i+1}) + c(x_N, y_0)$$

• The support of optimal transport plans is always *c*-cyclically monotone. In fact, this is a characterization.

• For
$$c(x, y) = |x - y|^2$$
, this is

$$\sum_{i=0}^{N} x_i \cdot (y_i - y_{i+1}) + x_N \cdot (y_N - y_0) \ge 0$$

This is known simply as cyclical monotonicity.
• Suppose
$$n = 1$$
: $X, Y \subset \mathbb{R}$.

- Suppose n = 1: $X, Y \subset \mathbb{R}$.
- Assume $\frac{\partial^2 c}{\partial x \partial y} < 0$ (e.g. $c(x, y) = (x y)^2$).

• Suppose
$$n = 1$$
: $X, Y \subset \mathbb{R}$.

• Assume
$$\frac{\partial^2 c}{\partial x \partial y} < 0$$
 (e.g. $c(x, y) = (x - y)^2$).

 If (x₀, y₀), (x₁, y₁) are in the support of an optimal γ, c-monotonicity means that:

$$0 \geq c(x_1, y_1) + c(x_0, y_0) - c(x_0, y_1) - c(x_1, y_0)$$

=
$$\int_{y_0}^{y_1} \left[\frac{\partial c}{\partial y}(x_1, y) - \frac{\partial c}{\partial y}(x_0, y) \right] dy$$

=
$$\int_{y_0}^{y_1} \int_{x_0}^{x_1} \frac{\partial^2 c}{\partial x \partial y}(x, y) dx dy$$

• • = • • = •

• Suppose
$$n = 1$$
: $X, Y \subset \mathbb{R}$.

- Assume $\frac{\partial^2 c}{\partial x \partial y} < 0$ (e.g. $c(x, y) = (x y)^2$).
- If (x₀, y₀), (x₁, y₁) are in the support of an optimal γ, c-monotonicity means that:

$$0 \geq c(x_1, y_1) + c(x_0, y_0) - c(x_0, y_1) - c(x_1, y_0)$$

=
$$\int_{y_0}^{y_1} \left[\frac{\partial c}{\partial y}(x_1, y) - \frac{\partial c}{\partial y}(x_0, y) \right] dy$$

=
$$\int_{y_0}^{y_1} \int_{x_0}^{x_1} \frac{\partial^2 c}{\partial x \partial y}(x, y) dx dy$$

 $\implies (x_1 - x_0)(y_1 - y_0) \ge 0$. That is, γ is concentrated on a **monotone increasing** set.

• • = • • = •

For $d\mu(x) = f(x)dx$, the only transport plan with monotone increasing support is concentrated on the graph of $T : X \to Y$ defined by:

$$\int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{T(x)} g(s)ds$$

For $d\mu(x) = f(x)dx$, the only transport plan with monotone increasing support is concentrated on the graph of $T : X \to Y$ defined by:

$$\int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{T(x)} g(s)ds$$

• The *T* defined above is the unique solution to Monge's optimal transport problem. The corresponding measure $\gamma = (Id, T)_{\#}\mu$ is the unique solution to Kantorovich's problem.

- The T defined above is the unique solution to Monge's optimal transport problem. The corresponding measure $\gamma = (Id, T)_{\#}\mu$ is the unique solution to Kantorovich's problem.
- The solution doesn't really depend on c (as long as $\frac{\partial^2 c}{\partial x \partial y} < 0$). Therefore, the solutions for all costs satisfying this condition (for the same marginals) are the same. This is a special feature of the one dimensional setting.

- The T defined above is the unique solution to Monge's optimal transport problem. The corresponding measure $\gamma = (Id, T)_{\#}\mu$ is the unique solution to Kantorovich's problem.
- The solution doesn't really depend on c (as long as $\frac{\partial^2 c}{\partial x \partial y} < 0$). Therefore, the solutions for all costs satisfying this condition (for the same marginals) are the same. This is a special feature of the one dimensional setting.
- For probabilistically minded people, this is $T = (F_{\nu})^{-1} \circ F_{\mu}$, where F_{ν} and F_{μ} are the cumulative distribution functions.

- The T defined above is the unique solution to Monge's optimal transport problem. The corresponding measure $\gamma = (Id, T)_{\#}\mu$ is the unique solution to Kantorovich's problem.
- The solution doesn't really depend on c (as long as $\frac{\partial^2 c}{\partial x \partial y} < 0$). Therefore, the solutions for all costs satisfying this condition (for the same marginals) are the same. This is a special feature of the one dimensional setting.
- For probabilistically minded people, this is $T = (F_{\nu})^{-1} \circ F_{\mu}$, where F_{ν} and F_{μ} are the cumulative distribution functions.
- Differentiating $\int_{-\infty}^{x} f(t)dt = \int_{-\infty}^{T(x)} g(s)ds$ with respect to x yields an ODE for T.

$$f(x) = T'(x)g(T(x))$$

伺 ト イヨト イヨト

• Kantorovich's optimal transport problem between μ and ν is dual to the problem of maximizing:

$$\int_X u(x)d\mu(x) + \int_Y v(y)d\nu(y)$$

among functions u on X and v on Y such that $u(x) + v(y) \le c(x, y)$ for all $(x, y) \in X \times Y$

• Kantorovich's optimal transport problem between μ and ν is dual to the problem of maximizing:

$$\int_X u(x)d\mu(x) + \int_Y v(y)d\nu(y)$$

among functions u on X and v on Y such that $u(x) + v(y) \le c(x, y)$ for all $(x, y) \in X \times Y$

• Kantorovich duality theorem:

$$\max_{u+v\leq c}\int_{X} u(x)d\mu(x) + \int_{Y} v(y)d\nu(y) = \min_{\gamma\in\Gamma(\mu,\nu)}\int_{X\times Y} c(x,y)d\gamma(x$$

• Kantorovich's optimal transport problem between μ and ν is dual to the problem of maximizing:

$$\int_X u(x)d\mu(x) + \int_Y v(y)d\nu(y)$$

among functions u on X and v on Y such that $u(x) + v(y) \le c(x, y)$ for all $(x, y) \in X \times Y$

• Kantorovich duality theorem:

$$\max_{u+v\leq c}\int_{X}u(x)d\mu(x)+\int_{Y}v(y)d\nu(y)=\min_{\gamma\in\Gamma(\mu,\nu)}\int_{X\times Y}c(x,y)d\gamma(x$$

 The "≤" direction is easy to prove (just integrate both sides of the constraint u(x) + v(y) ≤ c(x, y) against γ).

• Kantorovich's optimal transport problem between μ and ν is dual to the problem of maximizing:

$$\int_X u(x)d\mu(x) + \int_Y v(y)d\nu(y)$$

among functions u on X and v on Y such that $u(x) + v(y) \le c(x, y)$ for all $(x, y) \in X \times Y$

• Kantorovich duality theorem:

$$\max_{u+v\leq c}\int_{X} u(x)d\mu(x) + \int_{Y} v(y)d\nu(y) = \min_{\gamma\in\Gamma(\mu,\nu)}\int_{X\times Y} c(x,y)d\gamma(x$$

- The "≤" direction is easy to prove (just integrate both sides of the constraint u(x) + v(y) ≤ c(x, y) against γ).
- The duality is a key tool in analysis of OT problems.

• Minimax theory for

$$H(\gamma, u, v) = \int_{X \times Y} [c(x, y) - u(x) - v(y)] d\gamma(x, y)$$

+
$$\int_X u(x) d\mu(x) + \int_Y v(y) d\nu(y)$$

Minimax theory for

$$H(\gamma, u, v) = \int_{X \times Y} [c(x, y) - u(x) - v(y)] d\gamma(x, y)$$

+
$$\int_X u(x) d\mu(x) + \int_Y v(y) d\nu(y)$$

- For fixed γ the unconstrained supremum of

 (u, v) → H(γ, u, v) is ∫_{X×Y} c(x, y)dγ(x, y) if γ ∈ Γ(μ, ν),
 and ∞ otherwise.
 - So $\inf_{\gamma} \sup_{(u,v)} H(\gamma, \mu, \nu) = \inf_{\gamma \in \Gamma(\mu,\nu)} \int_{X \times Y} c(x, y) d\gamma(x, y)$ (the Kantorovich primal problem)

Minimax theory for

$$H(\gamma, u, v) = \int_{X \times Y} [c(x, y) - u(x) - v(y)] d\gamma(x, y)$$

+
$$\int_X u(x) d\mu(x) + \int_Y v(y) d\nu(y)$$

- For fixed γ the unconstrained supremum of

 (u, v) → H(γ, u, v) is ∫_{X×Y} c(x, y)dγ(x, y) if γ ∈ Γ(μ, ν),
 and ∞ otherwise.
 - So inf_γ sup_(u,v) H(γ, μ, ν) = inf_{γ∈Γ(μ,ν)} ∫_{X×Y} c(x, y)dγ(x, y) (the Kantorovich primal problem)
- For fixed (u, v), the **unconstrained** infimum of $\gamma \mapsto H(\gamma, u, v)$ is $\int_X u(x)d\mu(x) + \int_Y v(y)d\nu(y)$ if $c(x, y) \ge u(x) + v(y)$ everywhere and $-\infty$ otherwise.

Minimax theory for

$$H(\gamma, u, v) = \int_{X \times Y} [c(x, y) - u(x) - v(y)] d\gamma(x, y)$$

+
$$\int_{X} u(x) d\mu(x) + \int_{Y} v(y) d\nu(y)$$

- For fixed γ the unconstrained supremum of

 (u, v) → H(γ, u, v) is ∫_{X×Y} c(x, y)dγ(x, y) if γ ∈ Γ(μ, ν),
 and ∞ otherwise.
 - So inf_γ sup_(u,v) H(γ, μ, ν) = inf_{γ∈Γ(μ,ν)} ∫_{X×Y} c(x, y)dγ(x, y) (the Kantorovich primal problem)
- For fixed (u, v), the unconstrained infimum of γ → H(γ, u, v) is ∫_X u(x)dµ(x) + ∫_Y v(y)dν(y) if c(x, y) ≥ u(x) + v(y) everywhere and -∞ otherwise.

 So sup_(u,v) inf_Y H(γ, µ, ν) =

 $\sup_{u+v \leq c} \int_X u(x) d\mu(x) + \int_Y v(y) d\nu(y)$ (the dual problem)

• Minimax theory for

$$H(\gamma, u, v) = \int_{X \times Y} [c(x, y) - u(x) - v(y)] d\gamma(x, y)$$

+
$$\int_{X} u(x) d\mu(x) + \int_{Y} v(y) d\nu(y)$$

- For fixed γ the unconstrained supremum of

 (u, v) → H(γ, u, v) is ∫_{X×Y} c(x, y)dγ(x, y) if γ ∈ Γ(μ, ν),
 and ∞ otherwise.
 - So inf_γ sup_(u,v) H(γ, μ, ν) = inf_{γ∈Γ(μ,ν)} ∫_{X×Y} c(x, y)dγ(x, y) (the Kantorovich primal problem)
- For fixed (u, v), the **unconstrained** infimum of $\gamma \mapsto H(\gamma, u, v)$ is $\int_{X} u(x) d\mu(x) + \int_{Y} v(y) d\nu(y)$ if
 - $c(x,y) \ge u(x) + v(y)$ everywhere and $-\infty$ otherwise.
 - So $\sup_{(u,v)} \inf_{\gamma} H(\gamma, \mu, \nu) =$ $\sup_{u+v \le c} \int_X u(x) d\mu(x) + \int_Y v(y) d\nu(y)$ (the dual problem)
- Applying a minimax theorem, $\inf_{\gamma} \sup_{(u,v)} H(\gamma, \mu, \nu) = \sup_{(u,v)} \inf_{\gamma} H(\gamma, \mu, \nu)$ gives duality.

More on duality: key facts

• Suppose that u(x) and v(y) solve the dual problem, and $\gamma(x, y)$ solves the primal. Then, since $u(x) + v(y) \le c(x, y)$ everywhere, but

$$\int_{X \times Y} [u(x) + v(y)] d\gamma(x, y) = \int_X u(x) d\mu(x) + \int_Y v(y) d\nu(y)$$
$$= \int_{X \times Y} c(x, y) d\gamma(x, y)$$

we must have

$$u(x)+v(y)-c(x,y)=0$$

 γ -almost everywhere.

More on duality: key facts

• Suppose that u(x) and v(y) solve the dual problem, and $\gamma(x, y)$ solves the primal. Then, since $u(x) + v(y) \le c(x, y)$ everywhere, but

$$\int_{X \times Y} [u(x) + v(y)] d\gamma(x, y) = \int_X u(x) d\mu(x) + \int_Y v(y) d\nu(y)$$
$$= \int_{X \times Y} c(x, y) d\gamma(x, y)$$

we must have

$$u(x) + v(y) - c(x, y) = 0$$

 γ -almost everywhere.

This means that x → u(x) - c(x, ȳ) is maximized at any x = x̄ such that (x̄, ȳ) ∈ spt(γ) (that is, any x̄ that gets transported to ȳ by γ). So

$$abla u(ar{x}) =
abla_{\mathsf{x}\mathsf{x}} c(ar{x},ar{y}) ext{ and } D^2 u(ar{x}) \leq D^2_{\mathsf{x}\mathsf{x}} c(ar{x},ar{y})$$

Brenier's Theorem: Suppose that μ is absolutely continuous with respect to Lebesgue measure and that $c(x, y) = \frac{|x-y|^2}{2}$. Then the solution γ to the Kantorovich problem is unique and concentrated on the graph of a function $T : X \to Y$. Furthermore, $T(x) = \nabla \phi(x)$ for a convex function ϕ , and T is the unique solution to the Monge problem.

Brenier's Theorem: Suppose that μ is absolutely continuous with respect to Lebesgue measure and that $c(x, y) = \frac{|x-y|^2}{2}$. Then the solution γ to the Kantorovich problem is unique and concentrated on the graph of a function $T : X \to Y$. Furthermore, $T(x) = \nabla \phi(x)$ for a convex function ϕ , and T is the unique solution to the Monge problem.

Remarks:

- In n = 1 dimension, convexity means that T'(x) = φ"(x) ≥ 0, so that T is monotone increasing – we recover our earlier result.
- A non-trivial part of the theorem is that there exists a (unique) convex function ϕ so that $\nabla \phi_{\#} \mu = \nu$. This fact by itself has many applications.

Let γ solve the primal problem and u(x), v(y) solve the dual.
 We have, for any (x, y) ∈ spt(γ),

$$abla u(x) =
abla_x c(x, y) = x - y$$

э

Let γ solve the primal problem and u(x), v(y) solve the dual.
 We have, for any (x, y) ∈ spt(γ),

$$\nabla u(x) = \nabla_x c(x, y) = x - y$$

• So we must have

$$y = x - \nabla u(x) = \nabla (\frac{|x|^2}{2} - u)(x) := \nabla \phi(x) := T(x).$$

э

Let γ solve the primal problem and u(x), v(y) solve the dual.
 We have, for any (x, y) ∈ spt(γ),

$$\nabla u(x) = \nabla_x c(x, y) = x - y$$

• • = • • = • = •

Let γ solve the primal problem and u(x), v(y) solve the dual.
 We have, for any (x, y) ∈ spt(γ),

$$\nabla u(x) = \nabla_x c(x, y) = x - y$$

• What about uniqueness? If γ_0 and γ_1 both solve Kantorovich's problem, so does $\gamma_{1/2} = \frac{1}{2}[\gamma_0 + \gamma_1]$, by linearity.

Let γ solve the primal problem and u(x), v(y) solve the dual.
 We have, for any (x, y) ∈ spt(γ),

$$\nabla u(x) = \nabla_x c(x, y) = x - y$$

- What about uniqueness? If γ_0 and γ_1 both solve Kantorovich's problem, so does $\gamma_{1/2} = \frac{1}{2}[\gamma_0 + \gamma_1]$, by linearity.
- The argument above shows that γ_0 and γ_1 concentrate on graphs of functions T_0 and T_1 . $\gamma_{1/2}$ then concentrates on the union of theses two graphs.

Graphical supports and their union

Graphical supports and their union

 $graph(v_0) \vee graph(v_1)^{-1}$ = $Spt(v_{11+})$

Let γ solve the primal problem and u(x), v(y) solve the dual.
 We have, for any (x, y) ∈ spt(γ),

$$\nabla u(x) = \nabla_x c(x, y) = x - y$$

- So we must have y = x - ∇u(x) = ∇(^{|x|²}/₂ - u)(x) := ∇φ(x) := T(x).
 Now, D²u(x) ≤ D²_{xx}c(x, y) = I, so D²φ(x) = D²(^{|x|²}/₂ - u)(x) = I - D²u(x) ≥ 0. So φ is convex.
- What about uniqueness? If γ_0 and γ_1 both solve Kantorovich's problem, so does $\gamma_{1/2} = \frac{1}{2}[\gamma_0 + \gamma_1]$, by linearity.
- The argument above shows that γ_0 and γ_1 concentrate on graphs of functions T_0 and T_1 . $\gamma_{1/2}$ then concentrates on the **union** of theses two graphs.
- But $\gamma_{1/2}$ concentrates on a graph, too (using the argument above again), which is impossible unless $T_0 = T_1$ in which case $\gamma_0 = \gamma_1$.

Remarks

The fact that the solution is graphical and unique doesn't really rely on *c* being quadratic. The same conclusions can be drawn for more general costs satisfying the **twist condition**, which is injectivity of *y* → ∇_x*c*(*x*, *y*) for each fixed *x*.

Remarks

 The fact that the solution is graphical and unique doesn't really rely on c being quadratic. The same conclusions can be drawn for more general costs satisfying the **twist condition**, which is injectivity of y → ∇_xc(x, y) for each fixed x.

• For
$$c(x, y) = \frac{|x-y|^2}{2}$$
, note that $DT(x) = D^2\phi(x)$, so
 $\frac{f(x)}{g(\nabla\phi(x))} = |det(DT(x))| = detD^2\phi(x)$. That is, ϕ solves a Monge-Ampere equation.

Remarks

• The fact that the solution is graphical and unique doesn't really rely on c being quadratic. The same conclusions can be drawn for more general costs satisfying the **twist condition**, which is injectivity of $y \mapsto \nabla_x c(x, y)$ for each fixed x.

• For
$$c(x, y) = \frac{|x-y|^2}{2}$$
, note that $DT(x) = D^2\phi(x)$, so
 $\frac{f(x)}{g(\nabla\phi(x))} = |det(DT(x))| = detD^2\phi(x)$. That is, ϕ solves a Monge-Ampere equation.

 Instead of using duality, one could use Rockafellar's theorem (a set S ⊆ ℝⁿ × ℝⁿ is cyclically monotone if any only if it is contained in the subdifferential of a convex function).

Brenier map: examples

• If μ is uniform on a ball, B(0,1) and ν uniform on the corresponding sphere, $\partial B(0,1)$, then

・ 同 ト ・ ヨ ト ・ ヨ ト …

э
Brenier map: examples

• If μ is uniform on a ball, B(0,1) and ν uniform on the corresponding sphere, $\partial B(0,1)$, then

$$\phi(x) = |x|$$
 and $\nabla \phi(x) = \frac{x}{|x|}$

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

Brenier map: examples

• If μ is uniform on a ball, B(0,1) and ν uniform on the corresponding sphere, $\partial B(0,1)$, then

$$\phi(x) = |x|$$
 and $\nabla \phi(x) = \frac{x}{|x|}$

• If μ and ν are Gaussians, $\mu = \mathcal{N}(0, I), \nu = \mathcal{N}(\bar{y}, \Sigma)$, (so $f(x) = \frac{e^{-|x|^2/2}}{\sqrt{(2\pi)^n}}$ and $g(y) = \frac{e^{-(y-\bar{y})^T \Sigma^{-1}(y-\bar{y})/2}}{\sqrt{(2\pi)^n det(\Sigma)}}$) then

何 ト イヨ ト イヨ ト

Brenier map: examples

• If μ is uniform on a ball, B(0,1) and ν uniform on the corresponding sphere, $\partial B(0,1)$, then

$$\phi(x) = |x|$$
 and $\nabla \phi(x) = \frac{x}{|x|}$

• If μ and ν are Gaussians, $\mu = \mathcal{N}(0, I)$, $\nu = \mathcal{N}(\bar{y}, \Sigma)$, (so $f(x) = \frac{e^{-|x|^2/2}}{\sqrt{(2\pi)^n}}$ and $g(y) = \frac{e^{-(y-\bar{y})^T \Sigma^{-1}(y-\bar{y})/2}}{\sqrt{(2\pi)^n \det(\Sigma)}}$) then

$$\phi(x) = \overline{y} \cdot x + \frac{1}{2} x^T \Sigma^{1/2} x$$
, and $\nabla \phi(x) = \overline{y} + \Sigma^{1/2} x$

同 ト イヨ ト イヨ ト ニヨ

Isoperimetric inequality: The surface area of any set $M \subseteq \mathbb{R}^n$ is greater than or equal to the surface area of a ball with the same volume.

$$Vol(M) = Vol(B_R(0)) \implies S(M) \ge S(B_R(0))$$

Isoperimetric inequality

æ

Brendan Pass (U. Alberta) An introduction to optimal transport (OT bootcamp)

Application: isoperimetric inequality

Isoperimetric inequality: The surface area of any set $M \subseteq \mathbb{R}^n$ is greater than or equal to the surface area of a ball with the same volume.

$$Vol(M) = Vol(B_R(0)) \implies S(M) \ge S(B_R(0))$$

Application: isoperimetric inequality

Isoperimetric inequality: The surface area of any set $M \subseteq \mathbb{R}^n$ is greater than or equal to the surface area of a ball with the same volume.

$$Vol(M) = Vol(B_R(0)) \implies S(M) \ge S(B_R(0))$$

Proof:

• Take
$$f(x) = \chi_M, g(y) = \chi_{B_R(0)}$$
.

- $\nabla \phi(x)$ the Brenier map $\implies det(D^2 \phi(x)) = f(x)/g(\nabla \phi(x)) = 1$ (change of variables).
- Arithmetic mean dominates geometric mean (as ϕ is convex, $D^2\phi$ has positive eigenvalues) $\implies det^{1/n}(D^2\phi(x)) \leq \frac{1}{n}tr(D^2\phi(x)) = \frac{1}{n}\Delta\phi(x)$

$$\frac{1}{n}S(B_R(0))R = Vol(B_R(0)) = Vol(M)$$

$$= \int_M 1d^n x$$

$$= \int_M det^{1/n}(D^2\phi(x))dx$$

$$\leq \int_M \frac{1}{n}\Delta\phi(x)dx$$

$$= \frac{1}{n}\int_{\partial M} \nabla\phi(x) \cdot \vec{N}d^{n-1}S(x)$$

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

Isoperimetric inequality

つくつ

Proof sketch:

$$\frac{1}{n}S(B_R(0))R = Vol(B_R(0)) = Vol(M)$$

$$= \int_M 1d^n x$$

$$= \int_M det^{1/n}(D^2\phi(x))dx$$

$$\leq \int_M \frac{1}{n}\Delta\phi(x)dx$$

$$= \frac{1}{n}\int_{\partial M} \nabla\phi(x) \cdot \vec{N}d^{n-1}S(x)$$

$$\leq \frac{1}{n}\int_{\partial M} Rd^{n-1}S(x)$$

$$= \frac{1}{n}S(M)R$$

æ

Ξ.

< 同 × I = >

Comments on the proof

Brendan Pass (U. Alberta) An introduction to optimal transport (OT bootcamp)

э

• The optimal transport proof is pretty **simple**; everything in the proof is first or second year mathematics (*except* Brenier's theorem)!

- The optimal transport proof is pretty **simple**; everything in the proof is first or second year mathematics (*except* Brenier's theorem)!
- We prove an inequality about surfaces/curves/bodies in ℝⁿ by working with simple inequalities under the integral sign (geometric-arithmetic mean, Cauchy-Schwartz on ℝⁿ).

- The optimal transport proof is pretty **simple**; everything in the proof is first or second year mathematics (*except* Brenier's theorem)!
- We prove an inequality about surfaces/curves/bodies in ℝⁿ by working with simple inequalities under the integral sign (geometric-arithmetic mean, Cauchy-Schwartz on ℝⁿ).
- This is a **common theme** in applications of optimal transport in geometry.

• Optimal transport can be used to derive a metric on the space of probability measures, which we call the Wasserstein distance:

$$W_2(\mu,
u) := \sqrt{\min_{\gamma \in \Gamma(\mu,
u)} \int_{X imes Y} |x - y|^2 d\gamma(x,y)}$$

 Optimal transport can be used to derive a metric on the space of probability measures, which we call the Wasserstein distance:

$$W_2(\mu,
u) := \sqrt{\min_{\gamma \in \Gamma(\mu,
u)} \int_{X \times Y} |x - y|^2 d\gamma(x, y)}$$

• This is useful in a variety of applications when we want to compare two distributions of mass and the underlying distance plays a role.

 Optimal transport can be used to derive a metric on the space of probability measures, which we call the Wasserstein distance:

$$W_2(\mu,
u) := \sqrt{\min_{\gamma \in \Gamma(\mu,
u)} \int_{X \times Y} |x - y|^2 d\gamma(x, y)}$$

- This is useful in a variety of applications when we want to compare two distributions of mass and the underlying distance plays a role.
- It works with discrete measures; in fact, x → δ_x isometrically embeds ℝⁿ into the space of probability measures.

 Optimal transport can be used to derive a metric on the space of probability measures, which we call the Wasserstein distance:

$$W_2(\mu,
u) := \sqrt{\min_{\gamma \in \Gamma(\mu,
u)} \int_{X \times Y} |x - y|^2 d\gamma(x, y)}$$

- This is useful in a variety of applications when we want to compare two distributions of mass and the underlying distance plays a role.
- It works with discrete measures; in fact, x → δ_x isometrically embeds ℝⁿ into the space of probability measures.
- In one dimension, $W_2^2(\mu, \nu) = \int_0^1 |F_{\mu}^{-1}(t) F_{\nu}^{-1}(t)|^2 dt$, where F_{μ} and F_{ν} are the cdfs (ie, we compare μ and ν via their quantiles.)

Three probability measures: du(x) = f(x)dx, $d\nu(x) = g(x)dx$, $d\sigma(x) = h(x)dx$. Note that

$$||f - g||_{L^2} = ||f - h||_{L^2}$$

but

$$W_2(\mu, \nu) \ll W_2(\mu, \sigma)$$

∃ → ∢

э

- Displacement interpolants are a natural way to interpolate (or average) between two probability measures, respecting the underlying geometry.
- The displacement interpolant between μ_0 and μ_1 is the curve of measures $\mu_t := ((1 - t)I + t\nabla\phi)_{\#}\mu_0$, where $\nabla\phi$ is the Brenier (optimal transport) map between μ_0 and μ_1 .

Probability measures μ_0 and μ_1 .

Probability measures μ_0 and μ_1 . The linear interpolant $\mu_t = (1-t)\mu_0 + t\mu_1$

Probability measures μ_0 and μ_1 .

Probability measures μ_0 and μ_1 .

Probability measures μ_0 and μ_1 . The displacement interpolant $\mu_t = ((1-t)Id + t\nabla\phi)_{\#}\mu_0$

Comments on displacement interpolation

• In one dimension, optimal transport matches equal quantiles.

Comments on displacement interpolation

- In one dimension, optimal transport matches equal quantiles.
- Dispacement interpolation then interpolates between quantiles:

• If μ_0 and μ_1 have cdfs F_0 and F_1 , the cdf of μ_t is

$$F_t = [(1-t)F_0^{-1} + tF_1^{-1}]^{-1}$$

- In one dimension, optimal transport matches equal quantiles.
- Dispacement interpolation then interpolates between quantiles:
 - If μ_0 and μ_1 have cdfs F_0 and F_1 , the cdf of μ_t is

$$F_t = [(1-t)F_0^{-1} + tF_1^{-1}]^{-1}$$

 In general, displacement interpolation tends to preserve shapes/geometric features better than other interpolation methods.

• There is also a way to view the Wasserstein distance through action minimizing curves in the space of probability measures.

- There is also a way to view the Wasserstein distance through action minimizing curves in the space of probability measures.
- For an absolutely continuous probability measure at time t, $d\mu_t(x) = f_t(x)dx$ with density $f_t(x)$, we let $v_t(x)$ be the velocity of a particle at point x and time t.

- There is also a way to view the Wasserstein distance through action minimizing curves in the space of probability measures.
- For an absolutely continuous probability measure at time t, $d\mu_t(x) = f_t(x)dx$ with density $f_t(x)$, we let $v_t(x)$ be the velocity of a particle at point x and time t.
 - The divergence ∇ · (v_t(x)f_t(x)) tells us how much mass is moving away from, or towards, the point x at time t.
 - Conservation of mass gives us the continuity equation: $f'_t(x) + \nabla \cdot (v_t(x)f_t(x)) = 0.$

- Recall that in ℝⁿ, the squared distance |x₀ x₁|² is given by min ∫₀¹ |v_t|²dt, where the minimum is among curves x_t joining x₀ and x₁ with velocity v_t = x'_t.
 - The optimal curve is the straight line x_t = x₀ + t(x₁ x₀) (so that v_t = x₁ x₀ is constant).

- Recall that in ℝⁿ, the squared distance |x₀ x₁|² is given by min ∫₀¹ |v_t|²dt, where the minimum is among curves x_t joining x₀ and x₁ with velocity v_t = x'_t.
 - The optimal curve is the straight line x_t = x₀ + t(x₁ x₀) (so that v_t = x₁ x₀ is constant).
- Analagously, the squared Wasserstein distance between probability measures μ_0 and μ_1 may be written

$$W_2^2(\mu_0,\mu_1) = \min \int_0^1 \int_{\mathbb{R}^n} f_t(x) |v_t(x)|^2 dx dt$$

among curves $d\mu_t = f_t dx$ joining μ_0 and μ_t , satisfying the continuity equation.

伺 ト イヨト イヨト

- Recall that in ℝⁿ, the squared distance |x₀ x₁|² is given by min ∫₀¹ |v_t|²dt, where the minimum is among curves x_t joining x₀ and x₁ with velocity v_t = x'_t.
 - The optimal curve is the straight line x_t = x₀ + t(x₁ x₀) (so that v_t = x₁ x₀ is constant).
- Analagously, the squared Wasserstein distance between probability measures μ_0 and μ_1 may be written

$$W_2^2(\mu_0,\mu_1) = \min \int_0^1 \int_{\mathbb{R}^n} f_t(x) |v_t(x)|^2 dx dt$$

among curves $d\mu_t = f_t dx$ joining μ_0 and μ_t , satisfying the continuity equation.

• The optimal velocity, $v_t(x) = \nabla \phi(x) - x$ is exactly the Brenier map.

Wasserstein gradient flows

• Certain evolution PDEs can be interpreted as gradient flows in the Wasserstein space: that is, a distribution of mass is rearranging itself so as to decrease a certain functional as quickly as possible, relative to the Wasserstein metric.
- Certain evolution PDEs can be interpreted as gradient flows in the Wasserstein space: that is, a distribution of mass is rearranging itself so as to decrease a certain functional as quickly as possible, relative to the Wasserstein metric.
- Recall the gradient flow on \mathbb{R}^n for a function $F : \mathbb{R}^n \to \mathbb{R}$ is

$$\frac{dx}{dt}(t) = -\nabla F(x(t))$$

- Certain evolution PDEs can be interpreted as gradient flows in the Wasserstein space: that is, a distribution of mass is rearranging itself so as to decrease a certain functional as quickly as possible, relative to the Wasserstein metric.
- Recall the gradient flow on \mathbb{R}^n for a function $F : \mathbb{R}^n \to \mathbb{R}$ is

$$\frac{dx}{dt}(t) = -\nabla F(x(t))$$

• How can this idea be adapted to Wasserstein space?

• First, we have to understand gradients. The key point from \mathbb{R}^n we want to translate is that for a curves x_t , $\frac{d}{dt}(F(x(t))) = \nabla F(x(t)) \cdot x'(t)$

< 3 > < 3 >

- First, we have to understand gradients. The key point from \mathbb{R}^n we want to translate is that for a curves x_t , $\frac{d}{dt}(F(x(t))) = \nabla F(x(t)) \cdot x'(t)$
- For a curve of measures, $d\mu_t(x) = f_t(x)dx$, the classical way (working in L^2) to interpet its velocity would be as $f'_t(x)$ (the rate of change of mass at the point x).

- First, we have to understand gradients. The key point from \mathbb{R}^n we want to translate is that for a curves x_t , $\frac{d}{dt}(F(x(t))) = \nabla F(x(t)) \cdot x'(t)$
- For a curve of measures, $d\mu_t(x) = f_t(x)dx$, the classical way (working in L^2) to interpet its velocity would be as $f'_t(x)$ (the rate of change of mass at the point x).
- Optimal transport is about how mass *moves*; we therefore interpret the velocity of a curve by its velocity vector at individual points, given by f'_t(x) = −∇ · (v_t(x)f_t(x))

・ 同 ト ・ ヨ ト ・ ヨ ト …

- First, we have to understand gradients. The key point from \mathbb{R}^n we want to translate is that for a curves x_t , $\frac{d}{dt}(F(x(t))) = \nabla F(x(t)) \cdot x'(t)$
- For a curve of measures, $d\mu_t(x) = f_t(x)dx$, the classical way (working in L^2) to interpet its velocity would be as $f'_t(x)$ (the rate of change of mass at the point x).
- Optimal transport is about how mass *moves*; we therefore interpret the velocity of a curve by its velocity vector at individual points, given by f'_t(x) = −∇ · (v_t(x)f_t(x))
- Therefore, for a functional \mathcal{F} on the space of probability measures, we would like ot define $\nabla \mathcal{F}$ so that for each curve $d\mu_t(x) = f_t(x)dx$, we have

$$\frac{d}{dt}(\mathcal{F}(\mu_t)) = \langle w_t, v_t \rangle_{L^2(\mu_t)} = \int_{\mathbb{R}^n} w_t(x) \cdot v_t(x) d\mu_t(x)$$

where $f_t' = -\nabla \cdot (v_t f_t)$ and $(\nabla \mathcal{F})(\mu_t) = -\nabla \cdot (w_t f_t)$

 \bullet For simplicity, consider functionals ${\cal F}$ on Wasserstein space of the form

$$\mathcal{F}(\mu) = \int_{\mathbb{R}^n} U(f(x)) dx$$

where $d\mu(x) = f(x)dx$.

ヨトイヨト

э

• For simplicity, consider functionals ${\mathcal F}$ on Wasserstein space of the form

$$\mathcal{F}(\mu) = \int_{\mathbb{R}^n} U(f(x)) dx$$

where $d\mu(x) = f(x)dx$.

• For a curve $d\mu_t = f_t dx$, we have

$$\frac{d}{dt}\mathcal{F}(\mu_t) = \int_{\mathbb{R}^n} U'(f_t(x))f'_t(x)dx$$

 For simplicity, consider functionals *F* on Wasserstein space of the form

$$\mathcal{F}(\mu) = \int_{\mathbb{R}^n} U(f(x)) dx$$

where $d\mu(x) = f(x)dx$.

• For a curve $d\mu_t = f_t dx$, we have

$$\frac{d}{dt}\mathcal{F}(\mu_t) = \int_{\mathbb{R}^n} U'(f_t(x))f'_t(x)dx$$

• We would like to write this as an integral against the corresponding velocity vector *v*_t which satisfies:

$$f'_t(x) = -\nabla \cdot (v_t(x)f_t(x))$$

$$\begin{aligned} \frac{d}{dt}\mathcal{F}(\mu_t) &= \int_{\mathbb{R}^n} U'(f_t(x))f'_t(x)dx \\ &= -\int_{\mathbb{R}^n} U'(f_t(x))\nabla \cdot (v_t(x)f_t(x))dx \\ &= \int_{\mathbb{R}^n} \nabla (U'(f_t(x))) \cdot v_t(x)f_t(x)dx \end{aligned}$$

э

$$\begin{aligned} \frac{d}{dt}\mathcal{F}(\mu_t) &= \int_{\mathbb{R}^n} U'(f_t(x))f'_t(x)dx \\ &= -\int_{\mathbb{R}^n} U'(f_t(x))\nabla \cdot (v_t(x)f_t(x))dx \\ &= \int_{\mathbb{R}^n} \nabla (U'(f_t(x))) \cdot v_t(x)f_t(x)dx \end{aligned}$$

This establishes $\nabla(U'(f_t(x)))$ as the **velocity** corresponding to the gradient. The corresponding rate of change of the density then comes from the continuity equation:

$$(\nabla \mathcal{F})(\mu_t) = -\nabla \cdot (f_t(x)\nabla (U'(f_t(x))).$$

$$\begin{aligned} \frac{d}{dt}\mathcal{F}(\mu_t) &= \int_{\mathbb{R}^n} U'(f_t(x))f'_t(x)dx \\ &= -\int_{\mathbb{R}^n} U'(f_t(x))\nabla \cdot (v_t(x)f_t(x))dx \\ &= \int_{\mathbb{R}^n} \nabla (U'(f_t(x))) \cdot v_t(x)f_t(x)dx \end{aligned}$$

This establishes $\nabla(U'(f_t(x)))$ as the **velocity** corresponding to the gradient. The corresponding rate of change of the density then comes from the continuity equation:

$$(\nabla \mathcal{F})(\mu_t) = -\nabla \cdot (f_t(x)\nabla (U'(f_t(x))).$$

So, the gradient of \mathcal{F} evaluated at $d\mu(x) = f(x)dx$ is $-\nabla \cdot (f(x)\nabla(U'(f(x))))$.

Take the entropy: $\mathcal{F} = \int_{\mathbb{R}^n} f(x) \log(f(x)) dx$ (so $U(r) = r \log(r)$). Then its Wasserstein gradient is

$$\begin{aligned} -\nabla \cdot (f(x)\nabla(U'(f(x))) &= -\nabla \cdot (f(x)\nabla(\log(f(x)+1))) \\ &= -\nabla \cdot (f(x)(\frac{\nabla f(x)}{f(x)})) = -\Delta f(x) \end{aligned}$$

Take the entropy: $\mathcal{F} = \int_{\mathbb{R}^n} f(x) \log(f(x)) dx$ (so $U(r) = r \log(r)$). Then its Wasserstein gradient is

$$\begin{aligned} -\nabla \cdot (f(x)\nabla(U'(f(x))) &= -\nabla \cdot (f(x)\nabla(\log(f(x)+1))) \\ &= -\nabla \cdot (f(x)(\frac{\nabla f(x)}{f(x)})) = -\Delta f(x) \end{aligned}$$

So the Wasserstein gradient flow of the entropy is given by:

$$f'(x) = \Delta f(x)$$

The heat equation!

Take the entropy: $\mathcal{F} = \int_{\mathbb{R}^n} f(x) \log(f(x)) dx$ (so $U(r) = r \log(r)$). Then its Wasserstein gradient is

$$\begin{aligned} -\nabla \cdot (f(x)\nabla (U'(f(x))) &= -\nabla \cdot (f(x)\nabla (\log(f(x)+1))) \\ &= -\nabla \cdot (f(x)(\frac{\nabla f(x)}{f(x)})) = -\Delta f(x) \end{aligned}$$

So the Wasserstein gradient flow of the entropy is given by:

$$f'(x) = \Delta f(x)$$

The **heat equation!** (Note: it is actually easy to show that the entropy decreases for solutions of the heat equation – this show that it decreases as quickly as possible relative to the Wasserstein metric. On the other hand, it is well known that the heat equation is the gradient flow of the Dirichlet energy, $\int_X |\nabla f(x)|^2$ under the L^2 metric.)

Take the entropy: $\mathcal{F} = \int_{\mathbb{R}^n} f(x) \log(f(x)) dx$ (so $U(r) = r \log(r)$). Then its Wasserstein gradient is

$$\begin{aligned} -\nabla \cdot (f(x)\nabla (U'(f(x))) &= -\nabla \cdot (f(x)\nabla (\log(f(x)+1))) \\ &= -\nabla \cdot (f(x)(\frac{\nabla f(x)}{f(x)})) = -\Delta f(x) \end{aligned}$$

So the Wasserstein gradient flow of the entropy is given by:

$$f'(x) = \Delta f(x)$$

The **heat equation!** (Note: it is actually easy to show that the entropy decreases for solutions of the heat equation – this show that it decreases as quickly as possible relative to the Wasserstein metric. On the other hand, it is well known that the heat equation is the gradient flow of the Dirichlet energy, $\int_X |\nabla f(x)|^2$ under the L^2 metric.) Many other examples (see, for example, Villani_TOT p.252).

Brendan Pass (U. Alberta) An introduction to optimal transport (OT bootcamp)

• For $x'(t) = -\nabla F(x(t))$ in \mathbb{R}^n , think of discretizing time $t_0, t_1, ...,$ with $h = t_{i+1} - t_i$.

★ ∃ ► < ∃ ►</p>

э

- For $x'(t) = -\nabla F(x(t))$ in \mathbb{R}^n , think of discretizing time $t_0, t_1, ...,$ with $h = t_{i+1} t_i$.
- Then $x(t_{i+1}) x(t_i) \approx h x'(t_{i+1}) = -h \nabla F(x_{t_{i+1}}).$

• • = • • = •

э

- For $x'(t) = -\nabla F(x(t))$ in \mathbb{R}^n , think of discretizing time $t_0, t_1, ...,$ with $h = t_{i+1} t_i$.
- Then $x(t_{i+1}) x(t_i) \approx hx'(t_{i+1}) = -h\nabla F(x_{t_{i+1}}).$
- That is $x(t_{i+1}) \approx x(t_i) h \nabla F(x_{t_{i+1}})$.

4 E 6 4 E 6

- For $x'(t) = -\nabla F(x(t))$ in \mathbb{R}^n , think of discretizing time $t_0, t_1, ...,$ with $h = t_{i+1} t_i$.
- Then $x(t_{i+1}) x(t_i) \approx hx'(t_{i+1}) = -h\nabla F(x_{t_{i+1}}).$
- That is $x(t_{i+1}) \approx x(t_i) h \nabla F(x_{t_{i+1}})$.
- So $x = x(t_{i+1})$ makes the gradient of $x \mapsto \frac{1}{2}|x x(t_i)|^2 + hF(x)$ vanish.

- For $x'(t) = -\nabla F(x(t))$ in \mathbb{R}^n , think of discretizing time $t_0, t_1, ...,$ with $h = t_{i+1} t_i$.
- Then $x(t_{i+1}) x(t_i) \approx hx'(t_{i+1}) = -h\nabla F(x_{t_{i+1}}).$
- That is $x(t_{i+1}) \approx x(t_i) h \nabla F(x_{t_{i+1}})$.
- So $x = x(t_{i+1})$ makes the gradient of $x \mapsto \frac{1}{2}|x x(t_i)|^2 + hF(x)$ vanish.
- Under suitable conditions on F, for small h, we expect choosing x(t_{i+1}) to minimize ¹/₂|x - x(t_i)|² + hF(x) to be a good approximation of the solution.

- For $x'(t) = -\nabla F(x(t))$ in \mathbb{R}^n , think of discretizing time $t_0, t_1, ...,$ with $h = t_{i+1} t_i$.
- Then $x(t_{i+1}) x(t_i) \approx h x'(t_{i+1}) = -h \nabla F(x_{t_{i+1}}).$
- That is $x(t_{i+1}) \approx x(t_i) h \nabla F(x_{t_{i+1}})$.
- So $x = x(t_{i+1})$ makes the gradient of $x \mapsto \frac{1}{2}|x x(t_i)|^2 + hF(x)$ vanish.
- Under suitable conditions on F, for small h, we expect choosing x(t_{i+1}) to minimize ¹/₂|x - x(t_i)|² + hF(x) to be a good approximation of the solution.
- Similarly, on Wasserstein space, we expect choosing $\mu_{t_{i+1}}$ to minimize

$$\mu \mapsto \mathcal{F}(\mu) + \frac{1}{2h} W_2^2(\mu_{t_i}, \mu)$$

to be close to Wasserstein gradient flow (or the corresponding PDE).

ь « Эь « Эь