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Our bodies are made of 20 trillion cells



DNA stores the genetic code in 20,000 genes 
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gene 3



Each cell has the same DNA but expresses different genes 

Cells in the brain perform 
different functions:

Neurons process information
Astrocytes support neurons



Each cell has the same DNA but expresses different genes 

The intestine is the most regenerative 
organ in the human body. 

It completely regenerates the lining 
every 5 days!



Single cell RNA sequencing

single cell RNA-Sequencing

Single cell 
expression profile
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Cells are isolated together with 
barcoded beads in dropletts
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Cell membranes are lysed and 
mRNA is captured by beads



mRNA is captured on beads



mRNA molecules are extended to 
include bead barcodes



Barcoded mRNA molecules are
then pooled together and sequenced



Single cell RNA seq reveals the vectors of cell identity

Astrocytes
Neurons



Clustering groups cells by cell type



Differential expression reveals identity of each type 



Waddington’s ”Epigenetic Landscape”

How do these different cell types arise?
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Defining developmental trajectories

Cells change gene expression over time.

Cell division creates branching paths.

Measurement kills cells so we cannot observe paths!
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Developmental time courses with scRNA-seq



Defining developmental stochastic processes
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Goal: infer 𝛾!!,!" from independent samples. 



How can we estimate joint distributions?

Example.  Consider a pair of random variables

and

How can we estimate the joint distribution?

If 𝑋# is close to 𝑋$, then estimate: 

Solution:

µ



• Transport grain-by-grain to minimize total work

• Application to creating military fortifications

• Earliest anticipation of Linear Programming.

Monge, 1781.  Kantorovich, 1940.

Gaspard Monge, 1781

Approach: optimal transport



Optimal transport

Solomon et al. 2015 

computer graphics • pure math (PDE, differential geometry) • statistics • economics • fluid mechanics



The optimal transport plan minimizes the expected cost:

�x ⇡(x, ·)

X
Y

Transport plan redistributes mass



Optimal transport is a linear program



OT stochastic processes



OT stochastic processes

Intuition
In the space of distributions with the OT metric,

the process is locally linear:



OT stochastic processes

Intuition
In the space of distributions with the OT metric,

the process is locally linear:

Biological considerations:

1. Classical OT conserves mass.
But cells can proliferate! 

2. As a linear program, OT gives a 
deterministic coupling.   

But cells can be partially fated!



Developmental temporal coupling with growth
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Optimal transport for proliferating cells 



Estimate a growth function, !𝑔 𝑥 !!,  that scales transported mass

Optimal transport for proliferating cells 

Δ% = 𝑡& − 𝑡$
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ĝ(x)�t



Estimate a growth function, !𝑔 𝑥 !!,  that scales the transported mass

Optimal transport for proliferating cells 

Δ% = 𝑡& − 𝑡$
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Biological considerations:

1. Classical OT conserves mass.
But cells can proliferate! 

2. As a linear program, OT gives a 
deterministic coupling.   

But cells can be partially fated!
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columns specify “ancestors” rows specify “descendants”

Ancestors, descendants, and entropy

P̂t1

P̂t2

P̂t3

𝑥$

𝑥'

𝑦$ 𝑦' 𝑧$ 𝑧'
𝑦$

𝑦'

𝑥$ 𝑥'

𝑦$ 𝑦'

𝑧$ 𝑧'

⇡̂t2,t3⇡̂t1,t2



Entropy regularization

Sinkhorn Distances: Lightspeed Computation of Optimal Transport. M. Cuturi (2013).

entropy
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The benefits of entropic regularization

To what extent are 
cells fated?

Entropy regularization 
makes the optimization 

objective strongly convex
and easy to solve quickly. 

Given that we only have 
finitely many samples, 

we assign cells multiple 
descendants to avoid 

“overfitting”.

Biological Statistical Computational

Theoretical justification: stay tuned for Part II



Photo courtesy of L. Chizat
Theorem: (Schrodinger, 1932)

Entropically regularized transport map gives expected coupling of 
indistinguishable particles undergoing Brownian motion.

Interpreting entropy regularization: Schrodinger bridges



Unbalanced transport

Scaling algorithms for unbalanced transport. L. Chizat et al., 2016. 



Inferring developmental trajectories with optimal transport
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Reprogramming fibroblasts to iPSCs

Philippe
Rigollet

Aviv
Regev

Eric
Lander

Jian
Shu

Marcin
Tabaka

Brian
Cleary

Schiebinger, Shu, Tabaka, Cleary, et al. Cell 2019



315,000 cells
40 time points



Day 18

Day 0

Neural

Day 0
MEF

Stromal

iPSCs

Placental

Diverse cell types arise during reprogramming



Day 18

Day 0
low probability                high probability
trajectory                            trajectory

Neural

Day 0
MEF

Stromal

iPSCs

Placental

Trajectories of stem cell reprogramming

Ancestors of iPSCs

Ancestors of Stromal





Validation by geodesic interpolation

Analysis: 
• Compute optimal transport from 𝒕𝟏 to 𝒕𝟑
• Infer distribution at time 𝒕𝟐
• Compare to observed distribution at 𝒕𝟐

Result:  Inferred distribution at 𝒕𝟐 matches
observed distribution at 𝒕𝟐

almost as well as one batch at 𝒕𝟐
matches other batch at 𝒕𝟐
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Model time dependence of ℙ% as arising from pushing it through
a differential equation

In discrete time  

Use estimated couplings +𝜋 to generate training pairs (𝑥%!, 𝑥%") 
and learn f via regression 

Learning gene regulatory models



Prediction: 
Obox6 drives cells towards iPSCs

Experimental Validation:
We get more stem cells!

Zfp42 Obox6 Control

Learning gene regulatory models



Cell-cell interactions

Stromal

iPSCs

Paracrine signaling

Predicted interactions between iPS and Stromal

Experimental validation



LineageOTRediscovering Gene Regulation in Sea Urchin

AJ Massri

Greg
Wray

Dave
McClay

Duke University

Massri et al (2021, Development)



Perspective on experimental design

The number of time-points determines the “size of the dataset”. 

Each time-point is a “data point” along the curve.

The number of cells determines the noise level.

Schiebinger, Current Opinion in Systems Biology 2021



Wasserstein Regression

Stephen
Zhang Hugo

Lavenant

Young-Heon
Kim

Theorem: Suppose the ground truth is generated by a diffusion + drift (with 
interactions). Then in the limit of infinitely many time-points (and small 
regularization), the optimal solution converges to the ground truth.

dataR
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regularization), the optimal solution converges to the ground truth.



OT captures Waddington’s landscape

Let P be law of trajectories from SDE:

Let W𝝈 be trajectories of Brownian motion. 

For any other trajectories R, with the same 
marginals,

This means we can recover P from snapshots! 

Theorem

Lavenant et al, 2021 arxiv



Optimal transport and entropy minimization

Min Ent 
over coupling matrices

Min Ent 
over space of paths

Entropic OT 
over coupling matrices



Optimal transport and entropy minimization
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over coupling matrices

Min Ent 
over space of paths

Entropic OT 
over coupling matrices



Optimal transport and entropy minimization

Min Ent 
over coupling matrices

Min Ent 
over space of paths

Entropic OT 
over coupling matrices



OT captures Waddington’s landscape

Let P be law of trajectories from SDE:

Let W𝝈 be trajectories of Brownian motion. 

For any other trajectories R, with the same 
marginals,

This means we can recover P from snapshots! 

Theorem

Lavenant et al, 2021 arxiv

Therefore “entropic OT”  recovers the true trajectories
from fully observed marginals



OT captures Waddington’s landscape

Let P be law of trajectories from SDE:

Let W𝝈 be trajectories of Brownian motion. 

For any other trajectories R, with the same 
marginals,

This means we can recover P from snapshots! 

Theorem

Lavenant et al, 2021 arxiv

Therefore “entropic OT”  recovers the true trajectories
from fully observed marginals

What about finite data?



Trajectory inference via Min Ent (in path space)

R



Data fitting term
R



How can we solve this optimization problem? 



How can we solve this optimization problem? 



Aside: What about a simpler approach?
Locally-weighted averaging is a simple approach to function approximation: 



How can we solve this optimization problem? 



A definition



A “representer theorem” 

[Chizat et al 2022] [Lavenant et al 2021]



Langevin Dynamics 



Langevin Dynamics 



Langevin Dynamics 

Recent work on ”Mean Field Langevin Dynamics” generalizes these ideas to general convex F  [Chizat 2022]. 



Back to our trajectory inference problem 

[Chizat et al 2022]



Back to our trajectory inference problem 

[Chizat et al 2022]



Perspective on experimental design

Collecting thousands of time-points 
with scRNA-seq + lineage tracing 

in C. elegans. 

Nozomu Yachie
Kenji Sugioka

Each time-point is a “data point” along the curve.

The number of cells determines the noise level.

The number of time-points determines the “size of the dataset”. 



Embryo barcoding for high-density temporal profiling
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2021 CIHR project grant proposal by Schiebinger, Sugioka and Yachie Nozomu Yachie, UBC SBME 

Kenji Sugioka
UBC Zoology



Order embryos in developmental time

Roomina Zendehboodi



Aden Forrow
Oxford

Lineage Tracing + Trajectory Inference



Aden Forrow
Oxford

Lineage Tracing + Trajectory Inference



Lineage Tracing + Trajectory Inference

Aden Forrow
Oxford



Step 1: adjust 𝑡& cells 
based on lineage

Step 2: connect ancestors to 
descendants with OT.

Lineage-OT

t2

t1

Forrow and Schiebinger (2021, Nature Communications)



Spatial transcriptomics



A DNA-based 
Global Positioning System

Greenstreet et al, bioRxiv 2022



Greenstreet et al, bioRxiv 2022



Waddington-OT Tutorial
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Thank you!

Positions available!!  (postdocs and students)contact:     geoff@math.ubc.ca

Want to learn more?


