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(11) Machine learning

¥ i

= OT mapping via input-convex neural networks, ICML, 2020

= Scalable computations of Wasserstein barycenter via input convex
neural networks, ICML, 2021

Variational Wasserstein gradient flow, Submitted to ICML, 2022

Common objectives:
u develop efficient and scalable algorithms
= understand fundamental limitations
Theoretical theme:
= optimal transportation

u (mean-field) optimal control
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Motivation

= Many machine learning problems are formulated as an optimization problem on the
space of probability distributions (e.g. sampling, GAN, policy optimization)

= Optimal transportation theory provides geometrical tools (i.e. Riemannian metric)
to employ optimization methods for such problems

m This talk: numerical implementation of Wasserstein gradient flows

Related works:
m pde-based approach (Peyre, 2015; Benamou et al., 2016; Carlier et al., 2017; Li et
al., 2020; Carrillo et al., 2021)

m JKO scheme + ICNN (Mokrov et al., 2021; Alvarez-Melis et al., 2021; Yang et al.,
2020; Bunne et al., 2021; Bonet et al., 2021)

m kernel methods (Liu & Wang, 2016; Chewi et al., 2020; Korba et al. 2021)
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Wasserstein gradient flow
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Wasserstein gradient flow

m Optimization problem:

min F
PEP2(R™) ()

m Wasserstein gradient flow:

Op _ oF
a—v'(l?v(sp)

where (;—F is the Ly-derivative.
4

m Example: F(p) = D(plle”") (KL divergence)
op
5% = V- (pVV)+ Ap, (Fokker-Planck eq.)

m How to numerically implement the Wasserstein gradient flow?

m pde approach (does not scale with the dimension)

m probabilistic approach (approximate with an empirical distribution of particles)
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Probabilistic approach

Objective: numerically implement the gradient flow % =V- (pV%):
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m Step 2: Realize X; with a system of (interacting) particles s.t. {th, e
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Probabilistic approach

Objective: numerically implement the gradient flow % =V. (prS—F):
p

m Step 1: Construct a stochastic process {Xt}tzo s.t.
Law(Xt) = Pt Vvt 2 0

m Step 2: Realize X; with a system of (interacting) particles s.t. {X/,..., XN}
N

Questions:

= How to construct X,?

= How to realize with system of interacting particles? (approximating the mean-field
terms that depend on density)

= Error analysis for particle approximation (propagation of chaos)
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m Step 2: Realize X; with a system of (interacting) particles s.t. {X/,..., XN}
N

Questions:

= How to construct X;? — uniqueness issue

= How to realize with system of interacting particles? (approximating the mean-field
terms that depend on density)

= Error analysis for particle approximation (propagation of chaos)
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Uniqueness issue

Step 1: Given a gradient flow {p;}:>0, construct a stochastic process {X;}:>0 s.t.

Law(X't) = DPt, Vi >0
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Uniqueness issue

Step 1: Given a gradient flow {p;}:>0, construct a stochastic process {X;}:>0 s.t.

Law(X't) = Pt, Vi >0

= No unique solution: two-time marginals are not specified (Law(X¢,, X:,) =7)

D

Example: Fokker-Planck eq. ot

=V (pVV) + Ap,

m Stochastic:

dX, = —-VV(X,)dt + V2dB;, Xo~ po

m Deterministic: . ~ _ _
Xt = —VV(Xt) + Vlog;ﬁt(Xt), XO ~ Po

where p; = Law(X})
m Both systems lead to the same one-time marginal densities

m difference arises with particle approximation
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Particle approximation

Step 2: Realize X; with system of (interacting) particles s.t. {th, e ,XtN}

N
1 =
pgN) == E Oxi A Law(X¢)
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Particle approximation

Step 2: Realize X; with system of (interacting) particles s.t. {th, e ,XtN}
1 &
piN) == ZéXZ ~ Law(Xy)
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Particle approximation

Step 2: Realize X; with system of (interacting) particles s.t. {th, e ,XtN}
1 &
piN) == ZéXZ ~ Law(Xy)
i=1

Example: Fokker-Planck eq.

m Stochastic:

dX; = -VV(X,)dt + V2dB; — dX;=-VV(X})+ V2dB;
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Particle approximation

Step 2: Realize X; with system of (interacting) particles s.t. {th, e ,XtN}

pV) = %iéxz ~ Law(X?)
i=1
Example: Fokker-Planck eq.
m Stochastic:
dX, = —VV(X,)dt + vV2dB, — dX;=-VV(X})+ V2dB;
u Deterministic:
X, = -VV(X,) - Viegp:i(X:) — Xi=-VV(X})—I(Xi,p{")

where I(ac,p,gN)) is approximation of V log p:(x)
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Particle approximation

Step 2: Realize X; with system of (interacting) particles s.t. {th, e ,XtN}

N
N 1 >
pi )= N E Oxi A Law(X¢)

i=1

Example: Fokker-Planck eq.
m Stochastic:
dX, = -VV(X)dt + V2dB, — dX} = -VV(X})+ V2dB]

Deterministic:

Xi=-VV(X:) - Viegpi(X:) — Xi=-VV(X{)—I(Xi,p")
where I(m,pgN)) is approximation of V log p¢(x)
m results in interacting particle systems
m How to design the approximation?

What is the difference between deterministic and stochastic method?
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Gaussian approximation

In order to approximate V log(p;) in terms of particles {X;,..., X} }:

m Fit a Gaussian distribution N(m,EN), EiN)) to the particles, where

N

N
1
= LSt B = LS = )X )T

2 \

7.:1
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Gaussian approximation

In order to approximate V log(p;) in terms of particles {X;,..., X} }:

m Fit a Gaussian distribution N(m,EN), EiN)) to the particles, where

N
o = (N) _ (N) (N)\T
my N E Xt, ) N E_ Xt my )

d=il

m Use this to approximate the interaction term:

V log(5t(z)) &~ —(ZM) 7z — m{™M)
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m Fit a Gaussian distribution N (m;, ), E(N)) to the particles, where

N
o = (N) _ (N) (N)\T
my N E Xt, ) N E_ Xt my )
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m Use this to approximate the interaction term:
Vlog(pi()) ~ —(£(") !z — m™")
m Resulting update law for particles
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Gaussian approximation

In order to approximate V log(p;) in terms of particles {X;,..., X} }:

m Fit a Gaussian distribution N (m;, ), E(N)) to the particles, where

N N
1 i
i = 3o B = 30k =m0 = )"

i=1 i=1
m Use this to approximate the interaction term:
Vlog(pi()) ~ —(£(") !z — m™")
m Resulting update law for particles
X ==V + (&)X - mi™)
m what are the benefits compared to stochastic case

dX;{ = -VV(X}) + V2dB;
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Gaussian setting
comparison between stochastic and deterministic method
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error = E[||m{™) — z||?]
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Gaussian setting
comparison between stochastic and deterministic method

= Assume the target distribution is N (z,Q), i.e. V = (z —2)"Q ' (x — Z)
m Compare the error in estimating mean or variance:

error = E[||m{™) — z||?]

m deterministic: -
——— stochastic
error < e_AtIE[”méN) = (EHZ] 100 —— deterministic
m stochastic: g
£
— C 1072
error < e M]E[Hm(()N) = f||2] 4 ~
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Gaussian setting
comparison between stochastic and deterministic method

= Assume the target distribution is N (z,Q), i.e. V = (z —2)"Q ' (x — Z)
m Compare the error in estimating mean or variance:

error = E[||m{™) — z||?]

m deterministic: 0

—— stochastic

error S e_AtIE[HméN) = j”z] 100 —— deterministic

m stochastic:

" N) 2 C b
error < e ME[|m{") — z||*] + =
N
= same result for covariance, but not
0.0 25 5.0 75 10.0 125 15.0 175 200
other moments t
Observation:

Gaussian approx. = more accurate estimation of mean and variance

Question: does the observation generalize?
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Summary and proposed approach

Objective: numerically implement the gradient flow % =V- (prs—p)

= Most existing works (including ours) focus on deterministic approach
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Objective: numerically implement the gradient flow % =V- (pV(;—p)

= Most existing works (including ours) focus on deterministic approach

With the hope to trade-off computational effort with improvement in accuracy

Challenge: approximating the mean-field terms (e.g. Vlog(p:))
SVGD (Liu & Wang, 2016): kernel approximation

Vlog(p(z)) ~ / k(x,y)Vlog(p(y))p(y)dy = / Vyk(x, y)p(y)dy

score matching (Maoutsa et al., 2020)

Viog(r) = argmin { [ (G106 + - 6(a) ) pe)de |
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Summary and proposed approach

Objective: numerically implement the gradient flow % =V- (pV(;—p)

= Most existing works (including ours) focus on deterministic approach

With the hope to trade-off computational effort with improvement in accuracy

Challenge: approximating the mean-field terms (e.g. Vlog(p:))
SVGD (Liu & Wang, 2016): kernel approximation

Vlog(p(z)) ~ / k(x,y)Vlog(p(y))p(y)dy = / Vyk(x, y)p(y)dy

score matching (Maoutsa et al., 2020)

Viog(r) = argmin { [ (G106 + - 6(a) ) pe)de |

Proposed approach:
= Modify the objective function so that is well defined on empirical distributions

m Directly apply gradient flow on particles

m Achieved with variational characterization of the objective function
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m Variational approach
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Variational f-divergences

m Consider f-divergence objective functionals
p(z)
F =D = x)dz
(p) = Ds(pll9) /f(q(x))q( )

where f :[0,00] — R is convex and f(1) =0 (e.g. f(z) = zlog(z) — KL)
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Variational f-divergences

Consider f-divergence objective functionals

F(o) = Ds(ollo) = [ f(%)q(w)dw

where f :[0,00] — R is convex and f(1) =0 (e.g. f(z) = zlog(z) — KL)
m |t admits variational representation

Dol =sup { [ @it~ [ 1 (he)atoras

Approximate f-divergence

DY vlla) = sup { [ @it~ [ £ (heatolae

m It is well-defined for empirical distributions

DF (0" llg) = sup {}Vzhw‘) -/ f*(h(w))q(w)dw}
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Variational f-divergences

Consider f-divergence objective functionals
p(z)
F =D = z)dx
(p) = Ds(pll9) /f(q(x))q( )

where f :[0,00] — R is convex and f(1) =0 (e.g. f(z) = zlog(z) — KL)

m |t admits variational representation

Dol =sup { [ @it~ [ 1 (he)atoras

Approximate f-divergence
DY vlla) = sup { [ @it~ [ £ (heatolae
€
m It is well-defined for empirical distributions
1 X
D*p™|q) = sup { — hXi—/*hm z)dz
r @) sup N;( )= | 7 (h(x))q(z)

m Is the new objective function meaningful?
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Properties of the approximate f divergence

m upper-bound:

D7 (pllg) < Dys(pllg) with equality if f’<§>eH
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Properties of the approximate f divergence

m upper-bound:
D} (pla) < Ds(plla) - with equality it /(7)€ H

m positivity: If 7 contains all constant functions, then
D} (pllg) >0, Vp,q
m moment-matching: If for all h € H, a + bh € H for a,b € R
D¥(pllg) =0 <= /hpdx:/hqdac, VheH

m embedding: Additionally, if f is a-strongly convex and L-smooth, then

a L
5d(0,0)* < DF (plla) < 5 dn(p,q)”

where dz(p, q) is a type of integral probability metric

dwu(p,q) = sup S {/hpda: — /hqu}
nett [|hll2.q
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Variational Wasserstein gradient flow

m New optimization problem:

. H _ g _ &
min Dy (pllg) —rrgnr}peag{/hpdw /f (h)qdw}

V(p;h)
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Variational Wasserstein gradient flow
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Variational Wasserstein gradient flow

m New optimization problem:

. H _ g _ &
min Dy (pllg) —rrgngle%{/hpdw /f (h)qdw}

V(p;h)

m Gradient flow:

8pt
it A v h
e V - (p:Vhe)
where h; is the maximizer for p = p;
m Representation in terms of X
Xt — —vht (Xt)

Particle approximation
i N) i
Xi = -vh™ (x7)

N
(N) - _,m_1 i
where h;"’ is the maximizer for p =p;" ' = N ; X
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Variational Wasserstein gradient flow

m New optimization problem:

. H _ g o *
min Dy (pllg) —rrgngle%{/hpdw /f (h)qdw}

V(p;h)

m Gradient flow:

8pt
it A v h
e V - (p:Vhe)
where h; is the maximizer for p = p;
m Representation in terms of X
Xt — —vht (Xt)

m Particle approximation
i N) i
Xi = -vh™ (x7)

N
1 )
here h'™) is the maximizer for p = p™¥) = — X,
W t | XImiz P=D: N ;:1 t

m How about the sampling problem where we do not have access to ¢?
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Variational Wasserstein gradient flow
Sampling

m Objective function for sampling: (fs(z) = xlog(z))

D¥ (pllq) = gleag{/hpdx = /eh_lqdm}
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Variational Wasserstein gradient flow
Sampling

m Objective function for sampling: (fs(z) = xlog(z))

DZ(qu) = %ag{/hpd:c — /eh_lqdm}

= With change of variable h — h + 1 4 log(-)

<3

D¥ (pllg) = 1+/log(g)pdw+lgleaﬁ<{/hpdx—/ehndx}

where 7 is a distribution easy to sample (e.g. N(m¢, X¢))
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Variational Wasserstein gradient flow
Sampling

m Objective function for sampling: (fs(z) = xlog(z))

D}"s(qu) = glea;t({/hpdx — /eh_lqu}

= With change of variable h — h + 1 4 log(-)

<3

D¥ (pllg) = 1+/log(g)pdw+lg1eaﬁ<{/hpdm—/ehndx}

where 7 is a distribution easy to sample (e.g. N(m¢, X¢))
= Resulting gradient flow (¢ = e~ ")

)L(t = —VV(Xt) —+ Et_l(Xt — mt) — Vht(Xt)
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Variational Wasserstein gradient flow
Sampling

m Objective function for sampling: (fs(z) = xlog(z))

DF (pllg) Z%%{/hpdw—/eh_lqdw}

)

With change of variable h — h + 1 4 log(

<3

D¥ (pllg) = 1+/10g(g)pdw+lg1€aﬁ<{/hpdm—/ehndx}

where 7 is a distribution easy to sample (e.g. N(m¢, X¢))

Resulting gradient flow (¢ = e~ ")

)L(t = —VV(Xt) —+ Et_l(Xt — mt) — Vht(Xt)

It simplifies to the algorithm with Gaussian approx. when H = {0}
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Computational algorithms

m time discretization with JKO scheme
X1 = Vor(Xn),

. 1 _ _ _
br = sy r}yeag{EWg (r, Vo#pr) + V(h, Vo#pr)}

m results in min-max optimization at each time-step
m solve using stochastic optimization algorithms
m represent ¢ with input convex neural networks (ICNN) (Amos et al., 2017)

m represent h with feed-forward neural networks
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Numerical experiments
Sampling Gaussian mixture

Setup:
= objective function is D(p||q)

m target is Gaussian mixture with 10 components

Stationary measure Fitted measure (ours)

dimension = 128
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— D(P«|| Q)

—— Variational D (P«|| Q) ||

\

\

10 20

JKO steps k
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Numerical experiments
Minimizing generalized entropy (Porous media equation)

Setup:
1
m objective function is generalized entropy G(p) = e /pm (z)dz
p——
. .0
= gradient flow is o Ap™
ot
:g::ldenslw T : !
| — ascesoumon 3 —— Exact G (Py) I
) \ —— Variational G (Px)
2
AN
1 \

0.000 0.005 0.010 0.015 0.020 0.025
Diffusion time

comparison with exact solution convergence of the objective function
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Numerical experiments
Gradient flow on images

Setup:
I . . _ p+gq
m objective function is JS distance JSD(p||q) = D(p||T) + D(q|

m assuming access to samples from g (GAN setup)

~
1

-
)

I el P

A S

y-
v

o\
LI L
2|2
2>
(ks
2[5
d 4
raird
3|8
9

00
[/
22
NE
¢| 4
55
d€
77
5|8
ql9

/4
=
g
4

N

MNIST dataset CIFAR dataset
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Concluding remarks

Summary:

m Variational approach to construct gradient flows

in F —  mi V(p, h
min F(p) min max V(p, h)

m established elementary results about the variational divergence

m numerical results illustrating scalability with dimension
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Concluding remarks

Summary:

m Variational approach to construct gradient flows

in F —  mi V(p, h
min F(p) min max V(p, h)

m established elementary results about the variational divergence

m numerical results illustrating scalability with dimension
Open questions:

m Does the gradient flow converge
D}{(pth) —0, as t— o0

m Under what conditions we have log-Sobolev type inequality

d
31 D7 (2ellg) < —ADF (pellq)

m For sampling, what is the benefit compared to simulating Langevin eq.?
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