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Overview

Triangular flows based on the Knöthe-Rosenblatt (KR) map have
been a major building block of normalizing flows for generative
modeling.1

We establish statistical consistency and convergence rates of
triangular flow estimators. We obtain novel statistical guarantees
for normalizing-flow-based generative models used in practice.

Our results identify the function classes at play and shed light on
model design.

1Kobyzev et al. Normalizing flows: An introduction and review of current methods.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.
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Generative Models

Setup Suppose we have an unknown density f on Rd , e.g., an image
dataset, that we wish to sample from.

Suppose Y is a random variable on Rd that we can sample from easily,
e.g., a normal distribution. Let g denote its density.

Goal Find a generator S : Rd → Rd that produces new images
distributed according to f :

1 Generate samples Yi ∼ g

2 Push forward Yi under S to produce Xi = S(Yi) ∼ f
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Generative Models

We refer to S as a pushforward or transport map from g to f and write
S#g = f .

By the change of variables formula, S#g = f implies

f (x) = g(S−1(x))| det(∇S−1(x))|. (1)

With an estimate of S we can also estimate the unknown density f .
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Examples from CelebA

Samples from Real NVP trained on CelebA2

2Dinh et al. Density estimation using Real NVP. ICLR, 2017.
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Knöthe-Rosenblatt (KR) Rearrangement

KR rearrangement S∗ is a transport map between multivariate
distributions that exists for any pair of Lebesgue densities f , g on Rd .3

The KR map is triangular in the sense that

S∗(x) =


S∗

1 (x1, . . . , xd)
S∗

2 (x2, . . . , xd)
...

S∗
d−1(xd−1, xd)

S∗
d(xd)

 .

3Carlier et al. From Knothe’s transport to Brenier’s map and a continuation method
for optimal transport. SIAM Journal on Mathematical Analysis, 2010
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Knöthe-Rosenblatt (KR) Rearrangement

The components of S∗ are defined recursively via the monotone
transport between the univariate conditional densities of f and g .

For k ∈ [d ], let Fk(xk |x(k+1):d) denote the cdf of the conditional density
fk(xk |x(k+1):d) (and similarly for g). We first define

S∗
d(xd) = G−1

d (Fd(xd)).

From here the kth component of S∗ is

S∗
k (xk , . . . , xd) = G−1

k

(
Fk(xk |x(k+1):d)

∣∣∣∣S∗
(k+1):d(x(k+1):d)

)
.
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Knöthe-Rosenblatt (KR) Rearrangement
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Knöthe-Rosenblatt (KR) Rearrangement
The KR map S∗ has the following properties:

S∗ is a transport map: S∗#f = g .

The Jacobian matrix ∇S∗ is defined a.s. and upper triangular.

∇S∗ has non-negative entries a.s. on the diagonal
(monotonicity).

S∗ is the unique map (up to null sets) satisfying the above.

S∗ is as smooth as the densities f , g .

S∗ is explicitly defined in terms of the conditional densities
of f and g .

There are d! ways to build the KR map, depending on the
order in which we condition the d coordinates.
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Triangular Flows

Triangular flows can be used to approximate the KR map between a source
density and a target density, given samples from the target density.

Due to their desirable computational properties, triangular flows have been
proposed and implemented as simple and expressive building blocks of
generative models based on normalizing flows.4

However, there are few results establishing statistical guarantees for
normalizing flow models.

4Kobyzev et al. (2020) Normalizing Flows: An Introduction and Review of Current
Methods.
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Triangular Flow Estimator

By the properties listed above, the KR map can be characterized as the
unique minimizer of the Kullback-Leibler (KL) divergence

min
S∈T

KL(S#f ∥g),

where T is the convex cone of increasing triangular maps.

By the change of variables formula, the KL objective can be rewritten

KL(S#f ∥g) = EX∼f

[
log f (X )− log g(S(X ))−

d∑
k=1

logDkSk(X )

]
. (2)
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Triangular Flow Estimator

Using our iid data {Xi}n
i=1

iid∼ f , we study triangular flow estimators
Sn ∈ T of the KR map derived from minimizing the sample average
approximation to the KL objective (2) (or, equivalently, the negative
log-likelihood):

K̂L(S#f ∥g) := 1
n

n∑
i=1

[
log f (Xi)− log g(S(Xi))−

d∑
k=1

logDkSk(Xi)

]
. (3)

Goal Study the statistical convergence properties of Sn as an estimator of
the KR map S∗.

Remark (convexity) Assuming the source density g is log-concave, the
objective (3) is convex in S.
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No Free Lunch

Slow rates
Without combining both

a tail condition (e.g., common compact support),

a smoothness condition (e.g., uniformly bounded derivatives)

on the hypothesis function class F of the target density f , convergence of
any estimator Sn of the KR map S∗ from f to g can occur at an
arbitrarily slow rate.
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No Free Lunch

Theorema Let F denote the class of C∞ Lebesgue densities on
[0, 1]d bounded by 2. Let g be any Lebesgue density on Rd .
For any n ∈ N, the minimax risk in terms of KL divergence is bounded
below as

inf
Sn

sup
f ∈F

Ef [KL(f ∥fn))] ≥ 1/2,

where Sn is any estimate of S∗, and fn = (Sn)−1#g is the density
estimate of f .

aBirgé (1986), see also Devroye (1983)
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Setup

Exploiting smoothness Based on our “no free lunch” theorem, we
restrict our estimator Sn to lying in an s-smooth Sobolev-type ball
T (s, d ,M) ⊂ T .

Assumptions
1 The target and source densities f , g > 0 have compact, convex

supports.
2 f , g have continuous derivatives up to order s.

Under these assumptions, the KR map S∗ lies in T (s, d ,M∗) for some
M∗ > 0.
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Weak consistency

Theorem (KL consistency) Let Sn ∈ T (s, d ,M∗) be any near-
optimizer of the sample objective (3). Then Sn converges to the
true KR map S∗ in KL divergence:

KL(Sn#f ∥g) p→ KL(S∗#f ∥g) = 0.

Proof idea Use metric entropy bounds on the complexity of the
Sobolev-type space T (s, d ,M) to bound the risk of the estimator

KL(Sn#f ∥g)− KL(S∗#f ∥g) ≤ 2∥K̂L − KL∥T (s,d ,M) + oP(1).
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Uniform Consistency

Theorem (uniform consistency) Let Sn ∈ T (s, d ,M∗) be any near-
optimizer of the sample objective (3). Then Sn is a uniformly con-
sistent estimator of S∗:

∥Sn − S∗∥∞,d
p→ 0.

Proof idea
Using (pre)compactness of T (s, d ,M∗) and lower semicontinuity of KL in
∥ · ∥∞,d , conclude that S∗ is a well-separated KL minimizer with respect to
∥ · ∥∞,d .

Combine this with the weak consistency theorem above to complete the
proof.
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Convergence Rates

Theorem (KL convergence rate)
Under a technical assumption, the expected KL divergence of Sn is
bounded as

E[KL(Sn#f ∥g)] ≲


n−1/2, d < 2s,
n−1/2 log n, d = 2s,
n−s/d , d > 2s.

These rates also hold for:
convergence Sn → S∗ in a Sobolev-type norm under strong
log-concavity of the source density g .
convergence of normalizing flows built from compositions of
triangular maps, e.g., Real NVP. (Some of the first statistical
guarantees for flow models.)
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Optimal Coordinate Ordering

Theorem Suppose the target f is anisotropically smooth. The
upper bound on the rate of convergence is minimized when we first
condition on the smoothest coordinate of f , then the second, etc.

Target density f

KL loss vs. sample size for different orderings
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Connections to Anisotropic OT

Our result on the optimal ordering of coordinates complements the
following theorem of Carlier et al. adapted to our setup.

Theorem (Theorem 2.1; Carlier, Galichon, and Santambrogio (2008))
Let f and g be compactly supported Lebesgue densities on Rd . Let ϵ > 0
and let γϵ be an optimal transport plan between f and g for the cost

cϵ(x , y) =
d∑

k=1
λk(ϵ)(xk − yk)

2,

for some weights λk(ϵ) > 0. Suppose that for all k ∈ {1, . . . , d − 1},
λk(ϵ)/λk+1(ϵ) → 0 as ϵ → 0. Let S∗ be the Knöthe-Rosenblatt map
between f and g and γ∗ = (id × S∗)#f the associated transport plan.
Then γϵ ⇝ γ∗ as ϵ → 0. Moreover, should the plans γϵ be induced by
transport maps Sϵ, then these maps would converge to S∗ in L2(f ) as
ϵ → 0.
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Connections to Anisotropic OT

With this theorem in mind, the KR map S∗ can be viewed as a limit of
optimal transport maps Sϵ for which transport in the dth direction is more
costly than in the (d − 1)st, and so on.

The anisotropic cost function cϵ(x , y) inherently promotes increasing
regularity of Sϵ in xk for larger k ∈ [d ]. Our dimension ordering theorem
establishes the same heuristic for learning triangular flows based on
Knöthe-Rosenblatt rearrangement to build generative models.
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Further Results

Finite sample rates of
convergence Sn → S∗ in a
Sobolev-type norm under
strong log-concavity of g .

Uniform consistency and
Sobolev-type convergence
rates of the inverse map
T n = (Sn)−1 → T ∗ = (S∗)−1,
which is used to sample from f .

Non-asymptotic
convergence rates of flows
built from compositions of
triangular maps, e.g., Real
NVP. Some of the first
statistical guarantees for flow
models.

Check out our paper here:
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