Lang Liu

University of Washington

March 18, 2022

Team

Lang Liu

Soumik Pal

Zaid Harchaoui

Problem:

- Let $(X, Y) \sim P_{XY}$ on $\mathcal{X} \times \mathcal{Y}$ with marginals P_X and P_Y .
- Let $\{(X_i, Y_i)\}_{i=1}^n$ be i.i.d. copies of (X, Y).

 \mathbf{H}_0 : *X* and *Y* are independent $\leftrightarrow \mathbf{H}_1$: *X* and *Y* are dependent.

Problem:

- Let $(X, Y) \sim P_{XY}$ on $\mathcal{X} \times \mathcal{Y}$ with marginals P_X and P_Y .
- Let $\{(X_i, Y_i)\}_{i=1}^n$ be i.i.d. copies of (X, Y).

 \mathbf{H}_0 : *X* and *Y* are independent $\leftrightarrow \mathbf{H}_1$: *X* and *Y* are dependent.

Applications:

- ► Independent component analysis (Bach & Jordan '02, Gretton et al. '05).
- Causal inference (Pfister et al. '18, Chakraborty & Zhang '19).
- ► Self-supervised learning (Li et al. '21).

Strategy:

- Define an independence criterion T(X, Y) such that
 - ▷ $T(X, Y) \ge 0$, ▷ T(X, Y) = 0 iff X and Y are independent.
- Estimate the criterion from data $T_n(X, Y)$.
- Select a significance level α and choose a critical value $t_n(\alpha)$.
- Reject \mathbf{H}_0 if $T_n(X, Y) > t_n(\alpha)$.

Strategy:

- Define an independence criterion T(X, Y) such that
 - $\triangleright \ T(X,Y) \geq 0,$
 - \triangleright T(X, Y) = 0 iff X and Y are independent.
- Estimate the criterion from data $T_n(X, Y)$.
- Select a significance level α and choose a critical value $t_n(\alpha)$.
- Reject \mathbf{H}_0 if $T_n(X, Y) > t_n(\alpha)$.
- Evaluation metrics:
 - ▷ Type I error rate $\mathbb{P}(\text{reject} \mid \mathbf{H}_0) \lesssim \alpha$.
 - $\triangleright~$ Statistical power $\mathbb{P}(\text{reject}\mid H_1)$ as larger as possible.

Independence tests:

- Classical independence criterion (Hoeffding '48, Kruskal '58, Lehmann '66)
 - ▷ Pearson's correlation coefficient.
 - \triangleright Spearman's ρ .
 - $\triangleright\;$ Kendall's $\tau.$

Independence tests:

- Classical independence criterion (Hoeffding '48, Kruskal '58, Lehmann '66)
 - ▷ Pearson's correlation coefficient.
 - \triangleright Spearman's ρ .
 - $\triangleright\;$ Kendall's $\tau.$
- Distance-based independence criterion.
 - ▷ Hilbert-Schmidt independence criterion (HSIC) (Gretton et al. '05).
 - ▷ Distance covariance (dCov) (Székely et al. '07).

Independence tests:

- Classical independence criterion (Hoeffding '48, Kruskal '58, Lehmann '66)
 - ▷ Pearson's correlation coefficient.
 - \triangleright Spearman's ρ .
 - \triangleright Kendall's τ .
- Distance-based independence criterion.
 - ▷ Hilbert-Schmidt independence criterion (HSIC) (Gretton et al. '05).
 - ▷ Distance covariance (dCov) (Székely et al. '07).
- Optimal transport based independence criterion.
 - ▷ Wasserstein correlation coefficient (Wiesel '21, Mordant and Segers '21, Nies et al. '21).
 - ▷ Rank-based independence criterion (Shi et al. '20, Deb & Sen '21).

ETIC—define T(X, Y) by

$$\overline{S}_{\lambda}(P_{XY}, P_X \otimes P_Y) := S_{\lambda}(P_{XY}, P_X \otimes P_Y) - \frac{1}{2}S_{\lambda}(P_{XY}, P_{XY}) - \frac{1}{2}S_{\lambda}(P_X \otimes P_Y, P_X \otimes P_Y),$$

• S_{λ} Sinkhorn distance (Cuturi '13, Ferradans et al. '14)

$$\min_{\gamma \in \mathsf{CP}(P_{XY}, P_X \otimes P_Y)} \left[\int c((x, y), (x', y')) \mathrm{d}\gamma((x, y), (x', y')) + \lambda \mathrm{KL}(\gamma \| P_{XY} \otimes P_X \otimes P_Y) \right].$$

ETIC—define T(X, Y) by

$$\bar{S}_{\lambda}(P_{XY}, P_X \otimes P_Y) := S_{\lambda}(P_{XY}, P_X \otimes P_Y) - \frac{1}{2}S_{\lambda}(P_{XY}, P_{XY}) - \frac{1}{2}S_{\lambda}(P_X \otimes P_Y, P_X \otimes P_Y),$$

• S_{λ} Sinkhorn distance (Cuturi '13, Ferradans et al. '14)

$$\min_{\gamma \in \operatorname{CP}(P_{XY}, P_X \otimes P_Y)} \left[\int c((x, y), (x', y')) d\gamma((x, y), (x', y')) + \lambda \operatorname{KL}(\gamma \| P_{XY} \otimes P_X \otimes P_Y) \right].$$

• \bar{S}_{λ} Sinkhorn divergence (Ramdas et al. '17, Genevay et al. '18, Feydy et al. '19).

• Consider an *additive cost*:

$$c((x, y), (x', y')) = c_1(x, x') + c_2(y, y').$$

Define two Gibbs kernels

$$k_1(x,x'):=\exp(-c_1(x,x')/\lambda)$$
 and $k_2(y,y'):=\exp(-c_2(y,y')/\lambda).$

Theorem (Informal, LPH '22)

Assume that the cost c_i is Lipschitz continuous and the Gibbs kernel k_i is universal for $i \in \{1, 2\}$. Then the ETIC is a **valid independence criterion**.

Example: weighted quadratic cost

$$c((x, y), (x', y')) := w_1 ||x - x'||^2 + w_2 ||y - y'||^2$$
.

The objective in $S_{\lambda}(P_{XY}, P_X \otimes P_Y)$ is

$$\int c\big((x,y),(x',y')\big) \mathrm{d}\gamma\big((x,y),(x',y')\big) + \lambda \mathrm{KL}(\gamma \| P_{XY} \otimes P_X \otimes P_Y)$$

Example: weighted quadratic cost

$$c((x,y),(x',y')) := w_1 ||x-x'||^2 + w_2 ||y-y'||^2$$
.

The objective in $S_{\lambda}(P_{XY}, P_X \otimes P_Y)$ is

$$\int c((x,y),(x',y')) d\gamma((x,y),(x',y')) + \lambda KL(\gamma || P_{XY} \otimes P_X \otimes P_Y)$$

=
$$\int \left(w_1 || x - x' ||^2 + w_2 || y - y' ||^2 \right) d\gamma((x,y),(x',y')) + \lambda KL(\gamma || P_{XY} \otimes P_X \otimes P_Y)$$

Example: weighted quadratic cost

$$c((x,y),(x',y')) := w_1 \|x-x'\|^2 + w_2 \|y-y'\|^2$$
.

The objective in $S_{\lambda}(P_{XY}, P_X \otimes P_Y)$ is

$$\int c((x,y),(x',y')) d\gamma((x,y),(x',y')) + \lambda KL(\gamma || P_{XY} \otimes P_X \otimes P_Y)$$

=
$$\int (w_1 ||x-x'||^2 + w_2 ||y-y'||^2) d\gamma((x,y),(x',y')) + \lambda KL(\gamma || P_{XY} \otimes P_X \otimes P_Y)$$

=
$$w_1 \int ||x-x'||^2 d\gamma_1(x,x') + w_2 \int ||y-y'||^2 d\gamma_2(y,y') + \lambda KL(\gamma || P_{XY} \otimes P_X \otimes P_Y).$$

ETIC test statistic:

$$T_n(X, Y) = \bar{S}_{\lambda}(\hat{P}_{XY}, \hat{P}_X \otimes \hat{P}_Y),$$

where $\hat{P}_{XY} = \frac{1}{n} \sum_{i=1}^{n} \delta_{(X_i, Y_i)}$, $\hat{P}_X = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$, and $\hat{P}_Y = \frac{1}{n} \sum_{i=1}^{n} \delta_{Y_i}$.

ETIC test statistic:

$$T_n(X, Y) = \bar{S}_{\lambda}(\hat{P}_{XY}, \hat{P}_X \otimes \hat{P}_Y),$$

where $\hat{P}_{XY} = \frac{1}{n} \sum_{i=1}^{n} \delta_{(X_i, Y_i)}$, $\hat{P}_X = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$, and $\hat{P}_Y = \frac{1}{n} \sum_{i=1}^{n} \delta_{Y_i}$.

► Naïve Sinkhorn algorithm: $\tilde{O}(n^4)$ time and $O(n^4)$ space.

	Cost matrix	Computation per iteration
Sinkhorn	$n^2 \times n^2$	$n^2 \times n^2$ and $n^2 \times 1$

ETIC test statistic:

$$T_n(X, Y) = \bar{S}_{\lambda}(\hat{P}_{XY}, \hat{P}_X \otimes \hat{P}_Y),$$

where $\hat{P}_{XY} = \frac{1}{n} \sum_{i=1}^{n} \delta_{(X_i, Y_i)}$, $\hat{P}_X = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$, and $\hat{P}_Y = \frac{1}{n} \sum_{i=1}^{n} \delta_{Y_i}$.

- Naïve Sinkhorn algorithm: $\tilde{O}(n^4)$ time and $O(n^4)$ space.
- Tensor Sinkhorn algorithm: $\tilde{O}(n^3)$ time and $O(n^2)$ space.

	Cost matrix	Computation per iteration
Sinkhorn	$n^2 \times n^2$	$n^2 \times n^2$ and $n^2 \times 1$
Tensor Sinkhorn	Two $n \times n$	$n \times n$ and $n \times n$

ETIC test statistic:

$$T_n(X, Y) = \bar{S}_{\lambda}(\hat{P}_{XY}, \hat{P}_X \otimes \hat{P}_Y),$$

where $\hat{P}_{XY} = \frac{1}{n} \sum_{i=1}^{n} \delta_{(X_i, Y_i)}$, $\hat{P}_X = \frac{1}{n} \sum_{i=1}^{n} \delta_{X_i}$, and $\hat{P}_Y = \frac{1}{n} \sum_{i=1}^{n} \delta_{Y_i}$.

- Naïve Sinkhorn algorithm: $\tilde{O}(n^4)$ time and $O(n^4)$ space.
- Tensor Sinkhorn algorithm: $\tilde{O}(n^3)$ time and $O(n^2)$ space.
- Tensor Sinkhorn with random feature approximation: $\tilde{O}(pn^2)$ time and $O(n^2)$ space.

	Cost matrix	Computation per iteration
Sinkhorn	$n^2 \times n^2$	$n^2 \times n^2$ and $n^2 \times 1$
Tensor Sinkhorn	Two $n \times n$	$n \times n$ and $n \times n$
Tensor Sinkhorn with RF	Two $n \times p$	$n \times n$ and $n \times p$

The Tensor Sinkhorn Algorithm

- A and B distributions on $\{x_i\}_{i=1}^n \times \{y_i\}_{i=1}^n$.
- $K_1 = \exp(-C_1/\lambda)$ and $K_2 = \exp(-C_2/\lambda)$.
- Compute $S_{\lambda}(A, B)$.

Algorithm 1 Tensor Sinkhorn Algorithm 1: Input: A, B, K₁, and K₂. 2: Initialize $U \leftarrow \mathbf{1}_{\mathbf{n}\times\mathbf{n}}$ and $V \leftarrow \mathbf{1}_{\mathbf{n}\times\mathbf{n}}$. 3: while not converge do 4: $U \leftarrow A \oslash (K_1 V K_2^{\top})$ and $V = B \oslash (K_1^{\top} U K_2)$. 5: end while 6: Output: $\langle \varepsilon \log U, A \rangle_{\mathbf{F}} + \langle \varepsilon \log V, B \rangle_{\mathbf{F}}$.

Gradient Backpropagation through ETIC

What if ${X_i}_{i=1}^n$ are complicated objects, e.g., images?

- Obtain feature representations $Z_i = f_{\theta}(X_i)$, e.g., neural networks.
- Choose the squared Euclidean distance on the feature embedding space.
- Learn a representation via

$$\sup_{\theta} T_n(f_{\theta}(X), Y).$$

• ETIC is amenable to gradient backpropagation.

Theorem (LPH '22)

Assume that c is the weighted quadratic cost and P_X and P_Y are supported on a **bounded** domain with radius R. Then we have, with probability at least $1 - \delta$,

$$|T_n(X,Y) - T(X,Y)| \leq C_d \left(\lambda + \frac{R^{5d+16}}{\lambda^{5d/2+7}} \sqrt{\log \frac{6}{\delta}}\right) \frac{1}{\sqrt{n}}$$

Theorem (LPH '22)

Assume that c is the weighted quadratic cost and P_X and P_Y are supported on a bounded domain with radius R. Then we have, with probability at least $1 - \delta$,

$$|T_n(X,Y) - T(X,Y)| \leq C_d \left(\lambda + \frac{R^{5d+16}}{\lambda^{5d/2+7}} \sqrt{\log \frac{6}{\delta}}\right) \frac{1}{\sqrt{n}}$$

Remark

- Rate of convergence $O(n^{-1/2})$.
- The choice of $\lambda = R^2$ gives $C_d \sqrt{\log(6/\delta)} R^2 / \sqrt{n}$.
- $T(X, Y) = T_{\lambda}(X, Y) \rightarrow 0 \text{ as } \lambda \rightarrow \infty.$

Theorem (LPH '22)

Assume that c is the weighted quadratic cost and P_X and P_Y are supported on a bounded domain with radius R. Then we have, with probability at least $1 - \delta$,

$$|T_n(X,Y) - T(X,Y)| \le C_d \left(\frac{\lambda + \frac{R^{5d+16}}{\lambda^{5d/2+7}} \sqrt{\log \frac{6}{\delta}} \right) \frac{1}{\sqrt{n}}$$

Remark

The above theorem implies that the power of the ETIC test is asymptotically one.

- Under \mathbf{H}_0 , T(X, Y) = 0 and thus the critical value $t_n(\alpha)$ should be of order $O(n^{-1/2})$.
- Under H_1 , T(X, Y) > 0 and thus $T_n(X, Y)$ will alway exceed $t_n(\alpha)$ as $n \to \infty$.

Theorem (LPH '22)

Assume that c is the weighted quadratic cost and P_X and P_Y are **sub-Gaussian with** parameter σ^2 . Then we have

$$\mathbb{E} |T_n(X,Y) - T(X,Y)| \leq C_d \left(\lambda + \frac{\sigma^{\lceil 5d/2 \rceil + 6}}{\lambda^{\lceil 5d/4 \rceil + 2}}\right) \frac{1}{\sqrt{n}}.$$

Theorem (LPH '22)

Assume that c is the weighted quadratic cost and P_X and P_Y are **sub-Gaussian with** parameter σ^2 . Then we have

$$\mathbb{E} \left| T_n(X,Y) - T(X,Y) \right| \leq C_d \left(\lambda + \frac{\sigma^{\lceil 5d/2 \rceil + 6}}{\lambda^{\lceil 5d/4 \rceil + 2}} \right) \frac{1}{\sqrt{n}}.$$

Remark

When
$$\lambda := \lambda_n = o(1)$$
 is chosen such that $\lambda_n = \omega(n^{-1/(\lceil 5d/2 \rceil + 4)})$, we have

$$T_n(X, Y) \rightarrow_{\mathbf{L}^1} W_2^2(P_{XY}, P_X \otimes P_Y).$$

Bilingual text

- ► Parallel European Parliament corpus (Koehn '05).
- Randomly select n = 64 English documents and a paragraph in each document.
 - ▷ **Dependent sample**: (English paragraph, same paragraph in French).
 - > Independent sample: (English paragraph, random paragraph in French).
 - ▷ **Partially dependent sample**: (English paragraph, random paragraph in the same document in French).
- ► Feature embedding of dimension 768 with LaBSE (Feng et al. '20).

Independence tests

• ETIC with a weighted quadratic cost inducing Gibbs kernels

$$k_1(x,x') := \exp\{-\|x-x'\|^2/\sigma_1\}$$
 and $k_2(y,y') := \exp\{-\|y-y'\|^2/\sigma_2\}.$

- ► HSIC with the same kernels.
- Median heuristic: $\sigma_1 = r_1 M_x$ and $\sigma_2 = r_2 M_y$ with $r_1, r_2 \in [0.25, 4]$.

- All tests have power one on the dependent sample.
- ► All tests have desired type I error rate on the independent sample.

ETIC outperforms HSIC for many r_1 and r_2 on the partially dependent sample.

ETIC with random feature approximation

- Principal component analysis (PCA) to reduce the dimension to $d' \in \{10, 20\}$.
- Use p' = 700 random features.

ETIC-RF with PCA performs similarly with enough random features.

Conclusion

- A new independence criterion ETIC and the associated test.
- An efficient algorithm to compute empirical ETIC.
- Amenable to gradient backpropagation.
- ► Finite-sample guarantees for its statistical properties.
- Higher power with a large range of hyperparameters.

Thank you!

Paper (AISTATS 2022): arxiv.org/abs/2112.15265

Appendix

The Schrödinger Bridge Problem and Entropy Regularized OT

The Schrödinger bridge (SCB) problem

- Schrödinger's lazy gas experiment (Schrödinger '32).
- ► The SCB problem in continuum (Föllmer '88, Léonard '12).
- Survey on SCB (Léonard '14, Chen et al. '21).

Discrete entropy regularized optimal transport (EOT)

- Discrete EOT (Cuturi '13, Ferradans et al. '14).
- ► Limit laws (Bigot et al. '19, Klatt et al. '20).
- ► Finite-sample bounds (Genevay et al. '19, Mena and Weed '19).

Discrete Schrödinger bridge

- Discrete SCB for a particular cost (Pal and Wong '20).
- ► Discrete SCB for general costs (HLP '20).

Properties of ETIC

Proposition (LPH '22)

Let c be a continuous cost function. If either c is bounded or P_{XY} and $P_X \otimes P_Y$ have compact support, it holds that

$$T_{\lambda}(X,Y) \to \begin{cases} 0 & \text{if } c = c_1 \oplus c_2 \\ -\frac{1}{2} HSIC_{c_1,c_2}(X,Y) & \text{if } c = c_1 \otimes c_2, \end{cases} \quad \text{as } \lambda \to \infty$$

Moreover, if both P_{XY} and $P_X \otimes P_Y$ are densities (or discrete measures), then

$$T_{\lambda}(X,Y) \to C_{OT}(P_{XY},P_X \otimes P_Y), \quad as \ \lambda \to 0.$$

The Tensor Sinkhorn Algorithm

- A and B distributions on $\{x_i\}_{i=1}^n \times \{y_i\}_{i=1}^n$.
- $K_1 = \exp(-C_1/\lambda)$ and $K_2 = \exp(-C_2/\lambda)$.
- Compute $S_{\lambda}(A, B)$.

Algorithm 1 Tensor Sinkhorn Algorithm 1: Input: A, B, K₁, and K₂. 2: Initialize $U \leftarrow \mathbf{1}_{\mathbf{n}\times\mathbf{n}}$ and $V \leftarrow \mathbf{1}_{\mathbf{n}\times\mathbf{n}}$. 3: while not converge do 4: $U \leftarrow A \oslash (K_1 V K_2^{\top})$ and $V = B \oslash (K_1^{\top} U K_2)$. 5: end while 6: Output: $\langle \varepsilon \log U, A \rangle_{\mathbf{F}} + \langle \varepsilon \log V, B \rangle_{\mathbf{F}}$.

The Tensor Sinkhorn Algorithm

Tensor Sinkhorn algorithm

$$U = A \oslash (K_1 V K_2^{\top})$$

$$U = A \oslash \begin{bmatrix} (K_2)_{1,1} & \dots & (K_1)_{1,n} \\ \vdots & & \vdots \\ (K_1)_{n,1} & \dots & (K_1)_{n,n} \end{bmatrix} \begin{pmatrix} V_{1,1} & \dots & V_{1,n} \\ \vdots & & \vdots \\ V_{n,1} & \dots & V_{n,n} \end{pmatrix} \begin{pmatrix} (K_2)_{1,1} & \dots & (K_2)_{n,1} \\ \vdots & & \vdots \\ (K_2)_{1,n} & \dots & (K_2)_{n,n} \end{pmatrix} \end{bmatrix}$$

Sinkhorn algorithm

$$\operatorname{Vec}(U) = \operatorname{Vec}(A) \oslash \operatorname{Vec}(K_1 V K_2^{\top}) = \operatorname{Vec}(A) \oslash ((K_2 \otimes K_1) \operatorname{Vec}(V))$$
$$u = a \oslash \left[\begin{pmatrix} (K_2)_{1,1} K_1 & \dots & (K_2)_{1,n} K_1 \\ \vdots & \dots & \vdots \\ (K_2)_{n,1} K_1 & \dots & (K_2)_{n,n} K_1 \end{pmatrix} v \right].$$

.

Random Feature Approximation

ETIC with Random Features

► Consider Gibbs kernels of the form

$$k_1(x,x') = \int \varphi(x,u)^\top \varphi(x',u) d
ho_1(u)$$
 and $k_2(y,y') = \int \psi(y,v)^\top \psi(y',v) d
ho_2(v).$

• Obtain an i.i.d. sample $\boldsymbol{u} := \{u_k\}_{k=1}^p$ and approximate $k_1(x, x')$ by

$$k_{1,\boldsymbol{u}}(\boldsymbol{x},\boldsymbol{x}') := \frac{1}{p} \sum_{k=1}^{p} \varphi(\boldsymbol{x},\boldsymbol{u}_k)^{\top} \varphi(\boldsymbol{x}',\boldsymbol{u}_k).$$

• Obtain an i.i.d. sample $\mathbf{v} := \{v_k\}_{k=1}^p$ and approximate $k_2(y, y')$ by

$$k_{2,\mathbf{v}}(\mathbf{y},\mathbf{y}') := \frac{1}{p} \sum_{k=1}^{p} \psi(\mathbf{y},\mathbf{v}_k)^{\top} \psi(\mathbf{y}',\mathbf{v}_k).$$

ETIC with Random Features

Approximate c((x, y), (x', y')) by

$$c_{oldsymbol{u},oldsymbol{v}}((x,y),(x',y')) := -\lambda \log k_{1,oldsymbol{u}}(x,x') - \lambda \log k_{2,oldsymbol{v}}(y,y').$$

Proposition (LPH '22)

Let $p = \Omega(\tau^{-2} \log (n/\delta))$. Under appropriate assumptions, it holds that, with probability at least $1 - \delta$,

$$\left|S_{\lambda,c_{\boldsymbol{u},\boldsymbol{v}}}(A,B)-S_{\lambda,c}(A,B)\right|\leq au.$$

ETIC-Based Tests

The ETIC test with regularization parameter λ :

$$\psi(\alpha) := \mathbb{1}\{T_{n,\lambda}(X,Y) > t_{n,\lambda}(\alpha)\},\$$

where α is the significance level and $H_{n,\lambda}(\alpha)$ is the critical value.

The adaptive ETIC test:

$$\psi_a(\alpha) := \mathbb{1}\left\{\max_{\lambda \in \Lambda} \overline{\mathcal{T}}_{n,\lambda}(X,Y) > t_{n,\Lambda}(\alpha)
ight\}$$

- Λ a finite set of regularization parameters.
- $\overline{T}_{n,\lambda}(X,Y) = [T_{n,\lambda}(X,Y) \mathbb{E}[T_{n,\lambda}(X,Y)]]/Sd(T_{n,\lambda}(X,Y))$ the studentized version.

Empirical Sinkhorn divergence

$$\bar{S}_{\lambda}\left(\frac{1}{n}\sum_{i=1}^{n}\delta_{U_{i}},\frac{1}{n}\sum_{i=1}^{n}\delta_{V_{i}}\right).$$

$$\bar{S}_{\lambda}\left(\frac{1}{n}\sum_{i=1}^{n}\delta_{(\boldsymbol{X}_{i},\boldsymbol{Y}_{i})},\frac{1}{n^{2}}\sum_{i=1}^{n}\sum_{j=1}^{n}\delta_{(\boldsymbol{X}_{i},\boldsymbol{Y}_{j})}\right).$$

	First marginnal	Second marginal	Are two marginals independent?
SD	Sum of i.i.d. point masses	Sum of i.i.d. point masses	Yes
ETIC	Sum of i.i.d. point masses	Sum of dependent point masses	No