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Multivariate distribution-free nonparametric testing

Consider the following nonparametric hypothesis testing problem:

Testing for equality of distributions (two-sample goodness-of-fit (GoF))

Data: {Xi}mi=1 iid P on Rd ; {Yj}nj=1 iid Q on Rd , d ≥ 1

Test if the two-samples came from the same distribution, i.e.,

H0 : P = Q versus H1 : P ̸= Q

When d = 1: Student’s t-test (1908), Wald and Wolfowitz
(1940), Mann and Whitney (1947), Kolmogorov-Smirnov (1939)

When d > 1: Hotelling’s T 2-statistic (1931), Weiss (1960),
Anderson (1962), Friedman and Raksky (1979), Schilling (1986),
Rosenbaum (2005), Gretton et al. (2012), Székely and Rizzo
(2013), Biswas et al. (2014), Li and Yuan (2019)
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When d = 1

Two-sample t-test: Compares X̄m and Ȳn

Reject if the statistic is larger than the (1−α)-th quantile of tm+n−2

(or use a permutation test)

Approximate (not valid for small sample sizes) level α test, requires
additional moment assumptions

Distribution-free tests: Null distribution of the test statistic Tn is
universal, i.e., P(Tn ≥ cn,α) = α where cn,α, the deterministic
rejection threshold can be obtained before observing the data

They are exact tests and valid for all sample sizes

Based on univariate ranks — advent of classical nonparametrics
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Comparison of Wilcoxon rank-sum (WRS) test with two-sample t-test

Pool (X1, . . . ,Xm,Y1, . . . ,Yn): (scaled) ranks R̂m,n(Xi )’s and R̂m,n(Yj)’s

1

n

n∑
j=1

R̂m,n(Yj)−
1

m

m∑
i=1

R̂m,n(Xi )

WRS test is distribution-free and exact for all F continuous

WRS test has 0.95 Pitman efficiency w.r.t. t-test when F is Gaussian

Non-trivial efficiency lower bound of 0.864 w.r.t. t-test [Hodges and
Lehmann (1956)]; efficiency can be +∞ (for heavy-tailed dist.)

Non-trivial efficiency lower bound of 1 w.r.t. t-test [Chernoff and
Savage (1958)] when the following revised statistic is used:

1

n

n∑
j=1

Φ−1(R̂m,n(Yj))−
1

m

m∑
i=1

Φ−1(R̂m,n(Xi ))

Generalize distribution-freeness, efficiency to multivariate data
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Question

Can we construct multivariate nonparametric
distribution-free tests?
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Outline

1 A (very) brief introduction to optimal transport

2 Multivariate ranks using optimal transport

3 Multivariate distribution-free tests using optimal transport
Rank Hotelling T 2 test and Pitman efficiency
Pitman efficiency, comparison with Hotelling T 2
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Optimal (measure) transportation

KL(P||Q) =
∫
log

(
p
q

)
p = ∞

TV (P,Q) = 1
2

∫
|p − q| = 1

Need a notion of distance — sensitive to geometry

Monge’s approach (1781): Given probability measures P,Q on Rd , find
an “optimal” map T0 : Rd → Rd satisfying

min
T#P=Q

∫
∥x − T (x)∥2 dP(x), T#P = Q ⇔ X ∼ P, T (X ) ∼ Q

Call optimizer TP,Q
0 ≡ T0 (if it exists) – optimal transport (OT) map
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W2
2(P,Q) = min

T#P=Q

∫
∥x−T (x)∥2 dP(x), T#P = Q ⇔ X ∼ P, T (X ) ∼ Q

Call optimizer TP,Q
0 ≡ T0 (if it exists) — optimal transport (OT) map

W2
2(P,Q) — squared Wasserstein distance
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Optimal (Measure) Transportation

W2
2(P,Q) = ∥b − a∥2, W2

2(P,R) = ∥c − a∥2

TP,Q
0 (x) = x + b − a, TP,R

0 (x) = x + c − a
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Applications of optimal transport — X ∼ P , T (X ) ∼ Q
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How to estimate the optimal transport map?
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Estimation — a plug-in approach

T0 = argmin
T#P=Q

∫
∥x − T (x)∥2 dP(x), T#P = Q ⇔ X ∼ P, T (X ) ∼ Q

T0 is unique (P a.s.) if P,Q are absolutely continuous (McCann (1995))

Data: X1,X2, . . . ,Xm iid P (unknown, absolutely continuous) and
Y1, . . . ,Yn iid Q (unknown, absolutely continuous)

Empirical distributions: Pm := 1
m

∑m
i=1 δXi , Qn := 1

n

∑n
j=1 δYj

When m = n

T̂ := argmin
T#Pn=Qn

∫
∥x − T (x)∥2 dPn(x)
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Recall T#Pn = Qn means if X ∼ Pn, then T (X ) ∼ Qn

T#Pn = Qn: (T (X1), . . . ,T (Xn)) is some permutation of (Y1, . . . ,Yn)
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Recall T#Pn = Qn means if X ∼ Pn, then T (X ) ∼ Qn

Assignment problem (linear program – exact algorithm with complexity
O(n3); parallel computing – Date and Nagi (2016))
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Estimation — a plug-in approach (Continued)

What happens when m < n?

Can we still define

T̂ := argmin
T#Pm=Qn

∫
∥x − T (x)∥2 dPm(x)??

NOT FEASIBLE!

There is no function T such that T#Pm = Qn
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(Kantorovic relaxation)
Let Π(P,Q) be the set of
probability measures
(coupling) on Rd × Rd ,
with marginals P,Q.
Then

W 2
2 (P,Q) = inf

γ∈Π(P,Q)

∫
∥x−y∥2 dγ(x , y)

Examples: π ≡ P ⊗ Q,
π(x , y) ∝ 1(y = T0(x))
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W 2
2 (P,Q) = inf

γ∈Π(P,Q)

∫
∥x−y∥2 dγ(x , y)

Examples: π ≡ P ⊗ Q,
π(x , y) ∝ 1(y = T0(x))

Always has a minimizer
which matches T0 if P is
absolutely continuous
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Solve

γ̂ ∈ argmin
γ∈Π(Pm,Qn)

∫
∥x − y∥2 dγ(x , y)

via a linear program

D., Ghosal, and Sen (NeurIPS, 2021): Define our estimator
(barycentric projection) as

T̂ (x) = Eγ̂ [Y |X = x ] =

∫
y
y d γ̂(x , y)∫

y
d γ̂(x , y)

.

Both definitions coincide when m = n
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What is the rate of convergence of T̂ to T0?
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What is the rate of convergence of T̂ to T0?

When m = n ...

Empirical OT map:

T̂ := argmin
T#Pn=Qn

∫
∥x − T (x)∥2 dPn(x)

Population OT map:

T0 := argmin
T#P=Q

∫
∥x − T (x)∥2 dP(x)

Different parameter spaces
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What is the rate of convergence of T̂ to T0?

Rate of convergence (D., Ghosal, and Sen (NeurIPS, 2021))

Assume that T0 is Lipschitz, and both P and Q are compactly supported
(can be relaxed). Then, for d ≥ 4,

1

m

m∑
i=1

E∥T̂ (Xi )− T0(Xi )∥2 ≲ m− 2
d + n−

2
d .
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The proof requires convex analysis, chaining and Talagrand’s
concentration arguments

Minimax optimal for d ≥ 4 (Hütter and Rigollet (2019))
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1

m

m∑
i=1

E∥T̂ (Xi )− T0(Xi )∥2 ≲ m− 2
d + n−

2
d .

For d = 1, 2, 3, m = n, rates are n−4/5, n−2/3, n−4/7 (ongoing work)

The proof requires convex analysis, chaining and Talagrand’s
concentration arguments

Minimax optimal for d ≥ 4 (Hütter and Rigollet (2019))

These are the first rates for a practically computable estimator of
the OT map T0 (note T̂ requires no tuning) skip
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Question

Can we construct multivariate distribution-free
tests?
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Ranks: When d = 1

Rank map R̂n assigns {X1,X2, . . . ,Xn} to elements of { 1
n ,

2
n , . . . ,

n
n}

Define νn := 1
n

n∑
i=1

δXi and µn := 1
n

n∑
j=1

δ j
n

x(1) x(2) x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9) x(10)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

Data points

Empirical ranks

R̂n := argmax
T :T#νn=µn

1

n

n∑
i=1

Xi · T (Xi ) = argmin
T :T#νn=µn

1

n

n∑
i=1

|Xi − T (Xi )|2

R̂n is the empirical OT map from νn to µn
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Multivariate ranks (d ≥ 1)

Empirical rank map assigns {X1, . . . ,Xn} → {c1, . . . , cn} ⊂ Rd —
grid of “reference” points (e.g., a random sample from Unif[0, 1]d ,
N (0, Id) distribution, deterministic quasi-Monte Carlo sequences)

Sample rank map (Hallin (2017)) is defined as the empirical OT map:

R̂n := argmin
T :T#νn=µn

1

n

n∑
i=1

∥Xi − T (Xi )∥2

where T transports νn := 1
n

∑n
i=1 δXi to µn := 1

n

∑n
j=1 δcj

(1,1)(0,1)

(0,0) (1,0)

Data points

Empirical ranks
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Multivariate rank function as an OT map

X ∼ ν; ν is a probability measure in Rd (abs. cont.)

Reference dist. U ∼ µ on S ⊂ Rd (µ = Unif([0, 1]d), N(0, Id))

Find OT map T s.t. T (X )
d
= U ∼ µ (µ abs. cont.)

Population rank function (a.k.a OT map) [Chernozhukov et al. (2017)]

If Eν∥X∥2 < ∞, rank fn. R : Rd → S is the population transport map

R := argmin
T :T#ν=µ

Eν∥X − T (X )∥2

Properties of population rank function [Brenier (1991), McCann (1995)]

R(·) characterizes distribution: R1(x) = R2(x) ∀ x ∈ Rd iff P1 = P2

R(·) is the gradient of a convex function and smoothly invertible

When d = 1, R(·) is the CDF of X , when µ = Unif([0, 1])
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Properties [D. and Sen (JASA 2020); D., Bhattacharya, and Sen (2021)]

Distribution-freeness: If ν is absolutely continuous, then

(R̂n(X1), . . . , R̂n(Xn))

is uniformly distributed over the n! permutations of {c1, . . . , cn}

Consistency: If µn := 1
n

∑n
j=1 δcj

d→ µ (abs. cont.), then

1

n

n∑
i=1

∥R̂n(Xi )− R(Xi )∥2
p−→ 0 as n → ∞,

where R is the unique OT map from ν to µ.

No moment assumptions needed on the model
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Testing for equality of two multivariate distributions

Data: {Xi}mi=1 iid P on Rd ; {Yj}nj=1 iid Q on Rd , d ≥ 1

Test if the two samples came from the same distribution, i.e.,

H0 : P = Q versus H1 : P ̸= Q

Let N = m + n and assume m
N → λ ∈ (0, 1)

Hotelling T 2 statistic [Hotelling (1931)]: The multivariate
analogue of Student’s t-statistic, given by

T2
m,n :=

mn

m + n

(
X̄ − Ȳ

)⊤
S−1
m,n

(
X̄ − Ȳ

)
;

where Sm,n is pooled covariance matrix

Reject H0 iff T2
m,n > cα [asymp. cut-off cα: (1− α) quantile of χ2

d ]

Consistency: P(T2
m,n > cα) → 1 when E[X1] ̸= E[Y1]
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)
;

where Sm,n is pooled covariance matrix

Reject H0 iff T2
m,n > cα [asymp. cut-off cα: (1− α) quantile of χ2

d ]

Consistency: P(T2
m,n > cα) → 1 when E[X1] ̸= E[Y1]

15 / 23



Testing for equality of two multivariate distributions

Data: {Xi}mi=1 iid P on Rd ; {Yj}nj=1 iid Q on Rd , d ≥ 1

Test if the two samples came from the same distribution, i.e.,

H0 : P = Q versus H1 : P ̸= Q

Let N = m + n and assume m
N → λ ∈ (0, 1)

Hotelling T 2 statistic [Hotelling (1931)]: The multivariate
analogue of Student’s t-statistic, given by

T2
m,n :=

mn

m + n

(
X̄ − Ȳ
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Data: {Xi}mi=1 iid P (abs. cont.), {Yj}nj=1 iid Q on Rd , d ≥ 1

Reference dist.: µ on S ⊂ Rd (abs. cont.; e.g., µ = Unif([0, 1]d))

Proposed tests [D. & Sen (JASA, 2020); D., Bhattacharya & Sen (2021)]

Joint rank map: The sample ranks of the pooled observations:

R̂m,n : {X1, . . . ,Xm,Y1, . . . ,Yn} → {c1, . . . , cm+n} ⊂ S

Rank Hotelling: RT2
m,n := T2

m,n

(
{R̂m,n(Xi )}, {R̂m,n(Yj)}

)

General principle: Start with a “good” test and replace the Xi ’s and
Yj ’s with their pooled multivariate ranks

This yields the Wilcoxon rank-sum test when applied to the t-test.
Therefore RT2

m,n is equivalent to Wilcoxon rank-sum when d = 1

Distribution-freeness [D. & Sen (JASA, 2020)]

Under H0, distributions of RT
2
m,n are free of P ≡ Q
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Rank Hotelling test: ϕm,n ≡ 1{RT2
m,n > c

(m,n)
α } — distribution-free

c
(m,n)
α depends on ci ’s, m, n, and d

Power (D., Bhattacharya, and Sen, 2021)

Under location shift alternatives, we have

lim
m,n→∞

EH1 [ϕm,n] = 1.

Asymptotic null distribution (D., Bhattacharya, and Sen, 2021)

Under H0, if µN := 1
N

∑N
j=1 δcj

d→ µ, then

RT2
m,n

d→ χ2
d .

Goal

How does rank Hotelling test compare with Hotelling T 2 test?
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Question: How to compare two consistent tests SN and TN?

Asymptotic relative (Pitman) efficiency (ARE) [Pitman (1948),
Serfling (1980), Lehmann & Romano (2005), van der Vaart (1998)]

X1, . . . ,Xm
iid∼ Pθ1 & Y1, . . . ,Yn

iid∼ Pθ2 ; N = m+n; m
N ≈ λ ∈ (0, 1)

{Pθ}θ∈Θ⊂Rp : “smooth” (satisfies DQM) parametric family

Test H0 : θ2 = θ1 vs. H1 : θ2 = θ1 +∆; ∆ → 0

Fix α ∈ (0, 1) (level) and β ∈ (α, 1) (power)

Let N∆(T·) ≡ N∆ denote the minimum number of samples s.t.:

EH0 [TN∆
] = α and EH1 [TN∆

] ≥ β

The asymptotic (Pitman) efficiency of SN w.r.t. TN is given by

ARE (SN ,TN) := lim
∆→0

N∆(T·)

N∆(S·)

In principle, ARE (SN ,TN) can depend on α and β, but in many
interesting cases they don’t
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iid∼ Pθ2 ; N = m + n

{Pθ}θ∈Θ⊂Rp : “smooth” (satisfies DQM) parametric family

Consider H0 : θ2 = θ1 vs. H1 : θ2 = θ1 + hN−1/2; h ̸= 0 ∈ Rp

ARE (RT2
m,n,T

2
m,n) can be derived from the distribution of both test

statistics under above alternatives

Some observations

Expression of ARE (RT2
m,n,T

2
m,n) does not depend on α and β

Asymp. dist. of RT2
m,n can depend on the choice of µ

Can we lower bound ARE for sub-classes of multivariate dists., i.e.,

min
F

ARE (RT2
m,n,T

2
m,n) = ??
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X1, . . . ,Xm
iid∼ Pθ1 & Y1, . . . ,Yn

iid∼ Pθ2 ; N = m + n

Independent coordinates case

Find = {Pθ}θ∈Θ has density pθ(z1, . . . , zd) =
∏d

i=1 fi (zi − θi ), θ ∈ Rd

Theorem (D., Bhattacharya, and Sen (2021))

Suppose m
N → λ ∈ (0, 1). If µN := 1

N

∑N
j=1 δcj

d→ Unif([0, 1]d) ≡ µ, then

min
Find

ARE (RT2
m,n,T

2
m,n) = 0.864

If µN
d→ N(0, Id) ≡ µ, then

min
Find

ARE (RT2
m,n,T

2
m,n) = 1

Generalizes Hodges & Lehmann (1956), Chernoff & Savage (1958)

ARE can be arbitrarily large (can tend to +∞) for heavy tailed dists.
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Elliptically symmetric distributions

Fell = {Pθ}θ∈Θ is class of elliptically symmetric distributions on Rd , i.e.,

pθ(x) ∝ (det(Σ))−
1
2 f

(
(x − θ)⊤Σ−1(x − θ)

)
, for all x ∈ Rd .

Theorem (D., Bhattacharya, and Sen (2021))

Suppose: (i) µN
d→ N(0, Id) ≡ µ, (ii) m

N → λ ∈ (0, 1). Then,

min
Fell

ARE (RT2
m,n,T

2
m,n) = 1.

This generalizes the famous result of Chernoff and Savage (1958)
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Model for Independent Component Analysis (ICA)

FICA = {f1(· − θ) : f1 ∈ F}θ∈Rd where f1 ∈ F has the form

f1(x1, . . . , xd) =
d∏

i=1

f̃i

 d∑
j=1

ajixj


where f̃1, f̃2, . . . , f̃d are univariate densities, and A = (aij)d×d is an
orthogonal matrix (unknown)

Thus, f1 is the density of Xd×1 where

X = AW

with Wd×1 having independent components

Theorem (D., Bhattacharya, and Sen (2021))

Suppose: (i) µN
d→ N(0, Id) ≡ µ, (ii) m

N → λ ∈ (0, 1). Then,

min
FICA

ARE (RT2
m,n,T

2
m,n) = 1
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Recap

Exact distribution-free, nonparametric test, gives uniformly level α
test and high efficiency compared to Hotelling T 2 test

Provides the first comprehensive extension of classical nonparametric
testing to the multivariate setting skip

Using Gaussian reference distribution ensures
ARE (RT2

m,n,T
2
m,n) ≥ 1 for many popular subfamilies. Note that

the test is agnostic to the underlying subfamily skip

Robust against outliers and better finite-sample performance under
heavy-tailed distributions skip

Thank you. Questions?
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Multivariate two-sample goodness-of-fit test

Recall general strategy: Start with a “good” test and replace the
Xi ’s and Yj ’s with their pooled multivariate ranks
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Characterizes equality of distributions: E (P,Q) = 0 iff P = Q

E-statistic: E2
m,n

(
{Xi}mi=1, {Yj}nj=1

)
:= 2A− B − C where

A =
1

mn

m,n∑
i,j=1

K(Xi ,Yj), B =
1

m2

m∑
i,j=1

K(Xi ,Xj), C =
1

n2

n∑
i,j=1

K(Yi ,Yj)
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mn
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K(Xi ,Yj), B =
1

m2
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i,j=1

K(Xi ,Xj), C =
1

n2

n∑
i,j=1

K(Yi ,Yj)

Energy test: Reject H0 if Em,n

(
{Xi}mi=1, {Yj}nj=1

)
> κα (depends

on P; we can use permutation test)
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Proposed statistic

Rank energy statistic [D. and Sen (JASA, 2020)]

Joint rank map: The sample ranks of the pooled observations:

R̂m,n : {X1, . . . ,Xm,Y1, . . . ,Yn} → {c1, . . . , cm+n} ⊂ [0, 1]d

Rank energy: RE2
m,n := E2

m,n

(
{R̂m,n(Xi )}mi=1, {R̂m,n(Yj)}nj=1

)

Distribution-freeness

Under H0, distribution of REm,n is free of P ≡ Q, if P is abs. cont.

Dist. of REm,n just depends on ci ’s, m, n and d

Rank energy test: Reject H0 if REm,n > κα (universal threshold,
free of P = Q)

Simplification when d = 1

RE2
m,n is exactly equivalent to the two-sample Cramér-von Mises statistic
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Power [D. and Sen (JASA, 2020)]

Under (ii) and P ̸= Q, if m
m+n ≈ λ ∈ (0, 1) then,

P(REm,n > κ(m,n)
α ) → 1 as m, n → ∞.

Proposed test has asymptotic power 1, against all fixed alternatives

Limiting distribution under H0 [D. and Sen (JASA, 2020)]

If (i) P ≡ Q is abs. cont., and

(ii) 1
N

∑N
i=1 δci

d→ µ a.s. (N = m + n)

Then, under H0, ∃ a universal distribution s.t.

mn

m + n
RE2

m,n
d−→

∞∑
j=1

λjZ
2
j as min{m, n} → ∞ where λj ≥ 0.
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Pitman efficiency

Some observations

Efficiency of REm,n w.r.t. Em,n depends on the type I error α and
power β, which makes it hard obtain efficiency lower bounds

Existing tests which are both consistent and distribution-free usually
do not have Pitman efficiency

Fix a level parameter α ∈ (0, 1). Consider:

H0 : θ2 − θ1 = 0 versus H1 : θ2 − θ1 = hN−1/2

In Bhattacharya (2019), the author showed that for many
asymp. distribution-free tests

PH1(Tm,n rejects H0) −→ α (powerless)

Rank Energy REm,n [D., Bhattacharya, and Sen (working paper)]

lim
m,n→∞

PH1(REm,n rejects H0) > α

Only consistent, exactly dist.-free test that can distinguish H0 & H1
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Summary

Introduced optimal transport and obtained first tuning-free, minimax
optimal estimator of optimal transport map

Multivariate distribution-free nonparametric testing procedures with
high efficiency, constructed using optimal transport skip

Proposed a general framework, other examples include independence
testing, testing for symmetry, testing equality of K -distributions ...

Independence testing: In D., Bhattacharya, and Sen (2021) we
obtain multivariate distribution-free extensions of Spearman’s
correlation and kernel tests of dependence; obtain similar results

Tuning-free, robust, computationally feasible procedures, performs
particularly well under heavy-tailed data skip
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Nonparametric association/conditional association

Suppose (
X
Y

)
∼ N2

((
0
0

)
,

(
1 ρ
ρ 1

))
The correlation ρ measures association (linear) between X and Y

ρ = 0 iff X and Y are independent

ρ = ±1 iff Y is an exact, measurable (linear) function of X

Can we find a nonparametric measure of association between random
elements on topological spaces?

Goal: Given random elements (X1,Y1), . . . , (Xn,Yn)
i.i.d.∼ (X ,Y ), define

T (X ,Y ) and Tn (estimator), such that:

Tn,T (X ,Y ) ∈ [0, 1]

T (X ,Y ) = 0 iff X and Y are independent

T (X ,Y ) = 1 iff Y = f (X ) for (unknown) meas. function f (·)
Tn

a.s.−→ T (X ,Y )
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Measure of Association

We answer this question in the affirmative by combining ideas from
reproducing kernel Hilbert spaces (RKHS) and geometric graphs (e.g.,
nearest neighbors, minimum spanning trees), to come up with a large
class of such measures

Our measures are completely nonparametric (unlike ρ)

We can also extend this to measuring conditional association with
applications in variable selection, conditional independence testing ...

References:

D., Ghosal, and Sen (2020). https://arxiv.org/pdf/2010.01768.pdf (RR at AoS)

Huang, D., and Sen (2021). https://arxiv.org/pdf/2012.14804.pdf (JMLR, to
appear)

Auddy, D., and Nandy (2021). https://arxiv.org/pdf/2104.15140.pdf (RR at

Bernoulli)
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Other works
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Rate of convergence result

T0 = argmin
T#P=Q

∫
∥x − T (x)∥2 dP(x),

W 2
2 (P,Q) = min

T#P=Q

∫
∥x − T (x)∥2 dP(x)

Data: X1,X2, . . . ,Xn iid P and Y1, . . . ,Yn iid Q

Estimator:

T̂ := argmin
T#Pn=Qn

∫
∥x − T (x)∥2 dPn(x)
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Rate of convergence (D., Ghosal, Sen, NeurIPS, 2021)

Assume that T0 is Lipschitz, and both P and Q are compactly supported
(can be relaxed). Then,

1

n

n∑
i=1

∥T̂ (Xi )− T0(Xi )∥2 ≲ n− 2
d

for d ≥ 4. For d = 1, 2, 3, the rates are n−1, n−2/3 and n−4/7.
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Nonparametric regression: Say Yi = f0(Xi ) + ϵi , i = 1, . . . , n, where ϵi ’s
are iid N (0, 1), and f0 ∈ F

f̂n := argmin
f∈F

n∑
i=1

(Yi − f (Xi ))
2

Both f̂n and f0 belong to F , which yields the basic inequality:

n∑
i=1

(Yi − f̂n(Xi ))
2 ≤

n∑
i=1

(Yi − f0(Xi ))
2
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Both f̂n and f0 belong to F , which yields the basic inequality:

n∑
i=1

(Yi − f̂n(Xi ))
2 ≤

n∑
i=1

(Yi − f0(Xi ))
2

OT problem:

T̂ := argmin
T#Pn=Qn

∫
∥x − T (x)∥2 dPn(x)

Constraint set: Tn := {T : T#Pn = Qn}.
T̂n ∈ Tn but T0 /∈ Tn
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Dual form

Alternatively,

W 2
2 (Pn,Qn) = min

T#Pn=Qn

∫
∥x − T (x)∥2 dPn(x) = min

f ,g

∫
f dPn +

∫
g dQn

such that f (x) + g(y) ≤ ∥x − y∥2 for all x , y ∈ Rd .

Note that the constraints are not data driven.

Basic inequality (D., Ghosal and Sen, 2021)

Suppose T0 is Lipschitz. Write T0 = ∇φ0 and Q̄n := T0#Pn. Then,

1

n

N∑
i=1

∥T̂n(Xi )− T0(Xi )∥2 ≲ W 2
2 (Pn,Qn)−W 2

2 (Pn, Q̄n) +

∫
g d(Qn − Q̄n)

where g(y) = φ∗
0(y)− (1/2)∥y∥2, φ∗

0(y) := supx∈Rd (⟨x , y⟩ − φ0(x))
(Legendre-Fenchel dual of φ0(·))

Proof requires arguments from convex analysis

Using the dual form of W 2
2 (·, ·), coupled with chaining and Talagrand’s

concentration inequality proves the rate of convergence result
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Thank you. Questions?
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Properties

T0
???
:= argmin

T#P=Q

∫
∥x−T (x)∥2 dP(x), T#P = Q ⇔ X ∼ P, T (X ) ∼ Q.

Does a solution always
exist?

Is the solution unique?
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No! Take
P = 0.5δp + 0.5δp∗ and
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Crossmatch test (Rosenbaum 2005)

Pitman asymptotics for crossmatch test (Rosenbaum 2005)

Consider the testing set-up from before (with additional regularity
assumptions). Then, for any h, we have:

lim
m,n→∞

PH1(Tm,n rejects H0) = α.

Therefore, crossmatch test does not distinguish between the null and
the alternative at the contiguous scale

The same phenomena happens for many other graph-based
asymptotically distribution-free tests, see Bhattacharya (2019,
Theorem 3.1)
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Power plot with varying sample size

Figure: X1,Y1 are i.i.d. Epanechnikov with location parameters 0 and 0.1
respectively. X2,X3 ∼ X1,Y2,Y3 ∼ Y1 and X := (X1,X2,X3),
Y := (Y1,Y2,Y3). Here

eff(RankUnif,Hotelling) = 0.864

and eff(RankGaussian,Hotelling) > 1 skip
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Power plot with varying location parameter

Log-normal location problem (slightly heavy-tailed)

Figure: U1,U2 are iid standard normal, and V1,V2 are normal with variance 1
and varying mean. Define Xi := exp(Ui ) and Yi := exp(Vi ). Set X := (X1,X2)
and Y := (Y1,Y2) — sample size n = 200 skip
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Power plot with varying location parameter
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Figure: (Left panel) X1,Y1 are i.i.d. normal with mean 0 and µ respectively
(and unit variance). X2,X3 ∼ X1,Y2,Y3 ∼ Y1 and X := (X1,X2,X3). Similarly
define Y . skip

(Right panel) U := (U1,U2,U3) and V := (V1,V2,V3) where Ui = exp(Xi ),
Vi = exp(Yi ) and X1,X2,X3,Y1,Y2,Y3 has the same distribution as above.
Red - Rank energy, Black - Crossmatch, Blue - Energy, Green - HHG.
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More simulations

(RB) (HHG) (EN) (REN)

V1 0.13 0.15 0.13 0.34

V2 0.34 0.94 0.94 0.89

V3 0.41 0.34 0.34 0.46

V4 0.34 0.31 0.33 0.32

V5 0.73 0.70 0.56 0.93

V6 0.90 0.88 0.82 0.99

V7 0.13 0.51 0.65 0.63

V8 0.11 0.39 0.35 0.43

V9 0.06 1.00 0.97 1.00

V10 0.28 0.99 1.00 0.59

Table: Proportion of times the null hypothesis was rejected across 10 settings.
Here n = 200, d = 3. Here RB - Rosenbaum’s crossmatch test (Rosenbaum,
2005), HHG - Heller, Heller and Gorfine (Heller et al., 2013), En - energy
statistic (Székely and Rizzo, 2013).
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Asymptotic stabilization

(100) (300) (500) (700) (900)

0.05 0.39 0.40 0.39 0.40 0.40

0.1 0.36 0.36 0.36 0.36 0.36

Table: Thresholds for α = 0.05, 0.1 and n = 100, 300, 500, 700, 900, d = 2.

(100) (300) (500) (700) (900)

0.05 1.37 1.38 1.38 1.38 1.38

0.1 1.34 1.35 1.35 1.35 1.35

Table: Thresholds for α = 0.05, 0.1 and n = 100, 300, 500, 700, 900, d = 8.
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What happens for d = 1?

T0
???
:= argmin

T#P=Q

∫
|x − T (x)|2 dP(x).

Assume Q = Unif[0, 1] and X ∼ P with cdf F

Given x1 ≤ x2 ∈ R, note that

(x1 − T0(x1))
2 + (x2 − T0(x2))

2 ≤ (x1 − T0(x2))
2 + (x2 − T0(x1))

2

⇔ T0(x1) ≤ T0(x2)

Expect T0(·) to be monotone and T0(X )
d
= Unif[0, 1].

T0(·) is the distribution function of X , say F (·)

Note that increasing functions can be viewed as “derivatives” of
convex functions.
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Suppose T0 ∈ Cα (Hölder or Sobolev class), α > 1

The minimax rate of convergence is

n−
2α

2α−2+d + n−1

In ongoing work, we can show that using a kernel density based
estimator yields the optimal rate (up to log-factors)

1

n

n∑
i=1

E∥T̂ (Xi )− T0(Xi )∥2 ≲ n−
2α

2α−2+d + n−1

In Manole et al. (2021), Hütter and Rigollet (2019), wavelet based
estimators have been used to get optimal rates skip
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T0(X ) ∼ Y , X ∼ µ with density f , Y ∼ ν with density g . Then
change of variable formula implies

g(T (x))det(JT0(x)) = f (x)

Estimating anti-derivative of f , g related to estimating T0

(Caffarelli Regularity, 1992, 1996) — T0 ∈ Cα corresponds to
f , g ∈ Cα−1, α > 1

Goal is to estimate the anti-derivative of Cα−1 functions

(Müller and Gasser, 1979) — optimal minimax lower bounds for
estimating k-th derivative of β-smooth functions is

n−
2(β−k)
2β+d

Use β = α− 1 and k = −1 (anti-derivative), the lower bound
reduces to 2α

2α−2+d
skip
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Choose the reference distribution µ as spherical uniform

If X is spherically symmetric, then

R(X ) =
X

∥X∥
G (∥X∥)

where G is the dist. fn. of ∥X∥

Pooled: ∥X1∥, . . . , ∥Xm∥, ∥Y1∥, . . . , ∥Yn∥. Let Gm,n be the empirical
cdf of the pooled data

Modified Rank Hotelling T 2:

RT2
m,n := T 2

m,n

(
X1

∥X1∥
Gm,n(∥X1∥), . . . ,

Y1

∥Y1∥
Gm,n(∥Y1∥), . . . ,

)
Test is distribution-free — if Y

d
= X − θ then detection boundary at

∥θ∥ ∼
√
d/n skip
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d > 1 — A step in the right direction

Brenier, ’91, McCann ’95, Polar Factorization Theorem

Assume that P is absolutely continuous on Rd , Then there exists a
unique (P a.s.) T0 : Rd → Rd such that T0(·) is the gradient of a convex
function and

T0#P = Q.

If both P and Q have finite second moments, then T0(·) solves

min
T#P=Q

∫
∥x − T (x)∥2 dP(x).

Existence of T0(·) does not require any moment assumptions

Uniqueness: T0#P = Q and T0#R = Q will imply P = R

19 / 24



Rank functions as transport maps: When d = 1

X ∼ F on R, F abs. cont. c.d.f.

Rank: The rank of x ∈ R is F (x) (aka the c.d.f. at x)

Property: F (X ) ∼ Uniform([0, 1])

Thus, F transports the distribution of X to U ∼ Uniform([0, 1])

In fact, if E[X 2] < ∞, c.d.f. F is the optimal transport map as

F = argmin
T :T (X )

d
=U

E|X − T (X )|2

Sample rank map (aka empirical c.d.f.) is also a transport map:

R̂n := argmin
σ∈Sn

1

n

n∑
i=1

∣∣∣Xi −
σ(i)

n

∣∣∣2 = argmin
T

1

n

n∑
i=1

|Xi − T (Xi )|2

where T transports 1
n

∑n
i=1 δXi to

1
n

∑n
i=1 δ i

n
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Multivariate rank functions as transport maps

X ∼ ν; ν is a probability measure in Rd (abs. cont.)

U ∼ Uniform([0, 1]d)

Goal: Find the “optimal” transport map T s.t. T(X)
d
= U

If E∥X∥2 < ∞, the population rank function R(·) is the transport
map s.t.

R := argmin
T:T(X)

d
=U,X∼ν

E∥X − T(X)∥2

Data: X1, . . . ,Xn iid ν (abs. cont.) on Rd

{c1, . . . , cn} ⊂ Rd — grid of “reference” points

Sample multivariate rank map is defined as the tranport map s.t.

R̂n = argmin
σ∈Sn

1

n

n∑
i=1

∥Xi − cσ(i)∥2 ≡ argmin
T

1

n

n∑
i=1

∥Xi − T(Xi )∥2

where T transports 1
n

∑n
i=1 δXi to

1
n

∑n
i=1 δci
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If E∥X∥2 < ∞, the population rank function R(·) is defined as

R := argmin
T:T(X)

d
=U,X∼ν

E∥X − T(X)∥2

Even when E∥X∥2 = +∞, population rank function R(·) can also be
defined More details

Sample multivariate rank map R̂n(·) is defined as

R̂n = argmin
T

1

n

n∑
i=1

∥Xi − T(Xi )∥2

where T transports 1
n

∑n
i=1 δXi to

1
n

∑n
i=1 δci

Regularity: L2-convergence [D. and Sen, JASA 2020]

X1, . . . ,Xn iid ν (abs. cont.). If 1
n

∑n
i=1 δci

w→ Unif([0, 1]d), then

1

n

n∑
i=1

∥R̂n(Xi )− R(Xi )∥
a.s.−→ 0 as n → ∞.

Result gives the required regularity of the empirical multivariate rank map
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Population version

Assume m/(m + n) = λ ∈ (0, 1).

Rank energy distance [D. and Sen, JASA 2020]

Joint rank map: The “pooled” population rank map:

Rλ : Rλ(Z) ∼ Uniform([0, 1]d)

where Z ∼ λP + (1− λ)Q.

Rank energy: RE2
λ(P,Q) := E 2(Rλ(X ),Rλ(Y )).

REλ = 0 iff P = Q provided P, Q are absolutely continuous.

Our general principle could have been used with any other procedure
for testing equality of distributions, e.g., the MMD statistic [Gretton
et al. (2008)] which uses ideas from RKHS, ...

For d = 1, we prove that RE2
m,n and RE2

λ are exactly equivalent to
the sample and population two-sample Cramér-von Mises statistic.
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Pitman efficiency

Consider X1, . . . ,Xn ∼ Pθ1 and Y1, . . . ,Ym ∼ Pθ2 , with
m/(m + n) = λ ∈ (0, 1). We want to test:

H0 : θ2 − θ1 = 0 versus H1 : θ2 − θ1 = h(m + n)−1/2.

Fix α (size) and γ > α (power).

Two test functions Tm,n and Sm,n.

K (Tm,n) denotes minimum number of samples such that:

EH0(Tm,n) ≤ α and EH1(Tm,n) ≥ γ.

The Pitman efficiency of Sm,n with respect to Tm,n is given by

lim
m+n→∞

K (Tm,n)

K (Sm,n)
.
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