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Motivation

Objective

Study large scale optimization problems that have permutation symmetries.

Exploiting symmetries allow taking limits of the size of optimization problems.

For n ∈ N, consider minimizing the following interaction energy Vn : Rn → R+

Vn(x) :=
1

n2

n∑
i,j=1

1

2
(xi − xj)

2 .

Starting from {Xi,0}ni=1

i.i.d.∼ ρ0, one can perform a gradient flow:

dXi,t = − 1

n

n∑
j=1

(Xi,t −Xj,t) dt , ∀ i ∈ [n], t ≥ 0 .

Notice that Vn is essentially a function of the empirical measure of its inputs!

Vn(x) = Var(Empn(x)) .

Can we approximate this problem by lifting it over the space of measures?
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Motivation Particle systems

Particle System to Measures

If a function Vn : Rn → R is invariant under permutations of its input,
then it can be extended to a function V : P(R) → R.

For the interaction energy Vn, we know that V (ρ) = Var(ρ) for ρ ∈ P(R).
Notice that for all n ∈ N:

min
Rn

Vn = min
P(R)

Var .

As well solve latter using Wasserstein gradient flows!
Consider the ODE

with an added diffusion process

dXi,t = −
1

n

n∑
j=1

(Xi,t −Xj,t) dt

, +
√
2 dBi,t ,

∀ i ∈ [n], t ≥ 0 ,

where Bt is the standard Brownian motion on Rn.
This SDE captures the Wasserstein gradient flow of Var + Ent: P(R) → R.

Upshot

Allows approximability to finite dimensional version, under mild assumptions.
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Motivation Large unlabeled Graphs

Optimization on Large Graphs

Q. What about optimization over dense unlabeled (weighted) graphs?

Triangle density

Let G be a finite simple graph with n vertices,

h△(G) =
|Number of triangles in G|

n3
.

Scalar Entropy

For a graph G with adjacency matrix A, let h(p) = p log p+ (1− p) log(1− p),

E(G) =
1

n2

n∑
i,j=1

h(Ai,j) .

A Problem on Large Graphs

Consider minimizing h△ +E over the set of all graphs. (e.g. Chatterjee & Varadhan)
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Motivation Large unlabeled Graphs

Is there a symmetry?

Notice that unlabeled graphs have a symmetry under vertex relabeling.

≡

1

2

3

4 ≡

3

2

4

1

Figure: Symmetry in unlabeled graphs.

I.e., for an unlabeled graph G with n vertices.
If A is its adjacency matrix, so is Aπ =

(
Aπ(i),π(j)

)
i,j
.

A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 ≡


0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0

 = Aπ .

This makes functions over graphs invariant under this symmetry.
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Motivation Large unlabeled Graphs

Neural Networks: Another Example

ŷ(x0)

x0

x1

d

n

Figure: NN with 1 hidden layer.

ŷ(x0) =
1

n

d∑
i=1

σ(Ai,jx0,j) , A ∈ Rn×d ,

Rn(A) := E(X,Y )∼µ[ℓ(Y, ŷ(X))] .

A Mean Field View of the Landscape of Two-Layer Neural Networks - Mei, Montanari &
Nguyen, 2018

On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal
Transport - Chizat & Bach, 2018
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Motivation Broad plan

What we need?

A common set that contains all unlabeled graphs Embedding

A suitable notation of ‘graph convergence’ Topology
Contains all graph limits Completion
A notion of ‘gradient flow’ on this space ‘Differentiable structure’

Oh, Pal, Somani & Tripathi (UW) Gradient flows on Graphons March 18, 2022 7 / 21



Motivation Broad plan

What we need?

A common set that contains all unlabeled graphs Embedding
A suitable notation of ‘graph convergence’ Topology

Contains all graph limits Completion
A notion of ‘gradient flow’ on this space ‘Differentiable structure’

Oh, Pal, Somani & Tripathi (UW) Gradient flows on Graphons March 18, 2022 7 / 21



Motivation Broad plan

What we need?

A common set that contains all unlabeled graphs Embedding
A suitable notation of ‘graph convergence’ Topology
Contains all graph limits Completion

A notion of ‘gradient flow’ on this space ‘Differentiable structure’

Oh, Pal, Somani & Tripathi (UW) Gradient flows on Graphons March 18, 2022 7 / 21



Motivation Broad plan

What we need?

A common set that contains all unlabeled graphs Embedding
A suitable notation of ‘graph convergence’ Topology
Contains all graph limits Completion
A notion of ‘gradient flow’ on this space ‘Differentiable structure’

Oh, Pal, Somani & Tripathi (UW) Gradient flows on Graphons March 18, 2022 7 / 21



Preparation/Preliminaries Embedding

Kernels and Graphons

Kernels W

A kernel is a measurable function W : [0, 1]2 → [−1, 1] such that W (x, y) = W (y, x).

Symmetric matrices can be converted into a kernel.

1

16


−16 −15 −12 −14
−15 −14 −11 1
−12 −11 −6 4
−7 1 4 9



Symmetric matrix A

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

x

y

−1

−0.5

0

0.5

1

Kernel representation of A

Therefore graphs can be made into kernel.

Figure: Example 4.1.6, Graph Theory and Additive Combinatorics, Yufei Zhao
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Preparation/Preliminaries Topology

Convergence of Graph(ons)

(a) Half Graph (Kernel)

(b) Limit of Half Graph

(a) Checkerboard

Q. Where does this sequence of
kernels converge?

(b) Checkerboard after vertex relabeling

A. The limit of a bipartite graph is
not the 1/2.

Graph Theory and Additive Combinatorics, Yufei Zhao
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Preparation/Preliminaries Topology

Graphons

We should identify two kernels if one can be obtained by ‘permuting’ the other.

W1
∼= W2 if there is a measure preserving transform φ : [0, 1] → [0, 1] such that

Wφ
1 (x, y) := W1(φ(x), φ(y)) = W2(x, y) .

Space of Graphons Ŵ (Lovász & Szegedy, 2006)

Ŵ := W/ ∼= .

A general recipe

Start with a norm ∥ · ∥ on W. Define δ as

δ(W1,W2) = inf
φ1,φ2

∥Wφ1
1 −Wφ2

2 ∥ ,

where Wφ(x, y) = W (φ(x), φ(y)).

Oh, Pal, Somani & Tripathi (UW) Gradient flows on Graphons March 18, 2022 10 / 21



Preparation/Preliminaries Topology

Cut Metric: δ□

∥W∥□ := sup
S,T

∣∣∣∣∫
S×T

W (x, y) dxdy

∣∣∣∣ .

Captures graph convergence.
(Gn)n converges in δ□ if

lim
n→∞

hF (Gn)

exists for all simple graphs F ∈ {−,∧,△,⋋,⊔,□,⊠,⋉,1, . . .}.

(Ŵ, δ□) is compact.1

1Lovász & Szegedy, 2006, using Szemerédi’s regularity lemma
Frieze & Kannan, 1999
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Preparation/Preliminaries Metric over Graphons

Invariant L2 metric δ2

For ∥ · ∥ = ∥ · ∥L2([0,1]2), we get the Invariant L2 metric δ2.

Stronger than the cut metric (i.e., δ□ ≤ δ2).

Gromov-Wasserstein distance between the metric measure spaces
([0, 1],Leb,W1) and ([0, 1],Leb,W2).

Provides geodesic metric structure on Ŵ. Allows notion of (geodesic) convexity.

Borgs, Chayes, Lovász, Sós & Vesztergombi, 2008
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Preparation/Preliminaries Differentiable structure

What is a ‘gradient flow’?

On Rd

The ‘gradient flow’ u of a function
F : Rd → R is given by solutions of

u′(t) = −∇F (u(t)) ,

d

dt
F (u(t)) =

〈
u′(t),∇F (u(t))

〉
≥ −1

2

∣∣u′∣∣2(t)− 1

2
|∇F (u(t))|2 .

A curve u is a gradient flow of F if

d
dt

F (u(t)) ≤ − 1
2
|u′|2(t)− 1

2
|∇F (u(t))|2.

On (Ŵ, δ2)

Consider a curve ω and a function F on Ŵ.

Speed of ω: Metric derivative |ω′|

Metric Derivative of ω∣∣ω′∣∣(t) = lim
s→t

δ2(ωt, ωs)

|t− s| .

Gradient of F : Fréchet-like derivative

Fréchet-like derivative of F : DF

Provides a local linear approximation of F .

A curve u is a gradient flow of F if

d
dt

F (ω(t)) ≤ − 1
2
|ω′|2(t)− 1

2
|DF (ω(t))|2.

Gradient Flows in Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli
& Savare, 2005
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Fréchet-like derivative of F : DF

Provides a local linear approximation of F .

A curve u is a gradient flow of F if

d
dt

F (ω(t)) ≤ − 1
2
|ω′|2(t)− 1

2
|DF (ω(t))|2.

Gradient Flows in Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli
& Savare, 2005

Oh, Pal, Somani & Tripathi (UW) Gradient flows on Graphons March 18, 2022 13 / 21



Preparation/Preliminaries Differentiable structure

What is a ‘gradient flow’?

On Rd

The ‘gradient flow’ u of a function
F : Rd → R is given by solutions of

u′(t) = −∇F (u(t)) ,

d

dt
F (u(t)) =

〈
u′(t),∇F (u(t))

〉
≥ −1

2

∣∣u′∣∣2(t)− 1

2
|∇F (u(t))|2 .

A curve u is a gradient flow of F if

d
dt

F (u(t)) ≤ − 1
2
|u′|2(t)− 1

2
|∇F (u(t))|2.

On (Ŵ, δ2)
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Fréchet-like derivative of F : DF

Provides a local linear approximation of F .

A curve u is a gradient flow of F if

d
dt

F (ω(t)) ≤ − 1
2
|ω′|2(t)− 1

2
|DF (ω(t))|2.

Gradient Flows in Metric Spaces and in the Space of Probability Measures - Ambrosio, Gigli
& Savare, 2005

Oh, Pal, Somani & Tripathi (UW) Gradient flows on Graphons March 18, 2022 13 / 21



Preparation/Preliminaries Differentiable structure

Fréchet-like derivative and existence of gradient flow

Theorem [OPST ’21]

If F

has a Fréchet-like derivative,

is geodesically semiconvex in δ2,

then starting from any W0 ∈ Ŵ, the curve (Wt)t∈R+
defined as

Wt := W0 −
∫ t

0

DF (Ws) ds ,

is a gradient flow of F .

For the triangle density function h△,

(Dh△)(W )(x, y) = 3

∫ 1

0

W (x, z)W (z, y) dz .

For the scalar entropy function E, if 0 < W < 1, then

(DE)(W )(x, y) = log

(
W (x, y)

1−W (x, y)

)
.
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Preparation/Preliminaries Differentiable structure

Example

Given DhF and DE, we can now perform a gradient flow to minimize h△ + E
on the space of Graphons!
Given initial conditions, one needs to solve for all x, y ∈ [0, 1],

W ′
t (x, y) = −

[
3

∫ 1

0

W (x, z)W (z, y) dz + log

(
W (x, y)

1−W (x, y)

)]
.

Figure: Gradient flow of h△ + 10−1E
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Convergence of Euclidean Gradient flows

Euclidean Gradient flow and Gradient flow on Ŵ

Consider a function F : Ŵ → R that has following gradient flow

W (t) = W0 −
∫ t

0

DF (W (s)) ds .

Note that the function F can be regarded as a function Fn : Mn → R. Suppose
that Fn has a gradient flow. It is then given by

V (n)(t) = V
(n)
0 −

∫ t

0

∇nFn

(
V (n)(s)

)
ds .

Question?

Are the curves V (n) and W close (if n is large)?
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Convergence of Euclidean Gradient flows

Euclidean Gradient and Fréchet-like derivative

Fréchet-like derivative

A symmetric measurable function ϕ ∈ L∞([0, 1]2) is said to be Fréchet-like derivative

DF (W ) of F at W ∈ Ŵ if

lim
U∈W,

∥U−W∥2→0

F (U)− F (W )− ⟨ϕ,U −W ⟩L2([0,1]2)

∥U −W∥2
= 0 .

Recall that F : Ŵ → R can be regarded as a function Fn : Mn → R.
Let ∇nFn be Euclidean derivative of Fn : Mn → R.

The graphon corresponding to n2∇nFn(W ) equals DF (W ).
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Recall that F : Ŵ → R can be regarded as a function Fn : Mn → R.
Let ∇nFn be Euclidean derivative of Fn : Mn → R.

The graphon corresponding to n2∇nFn(W ) equals DF (W ).

Oh, Pal, Somani & Tripathi (UW) Gradient flows on Graphons March 18, 2022 17 / 21



Convergence of Euclidean Gradient flows

Euclidean gradient flow and gradient flow on Graphons

Gradient flow on Ŵ

d

dt
W (t) = −DF (W (t))

= −n2∇nF (W (t))

Gradient flow on Mn

d

dt
V (t) = −∇nF (V (t))

The curve W̃ (t) := V (n2t) satisfies

d

dt
W̃ (t) = −n2∇nF (W̃ (t)) = −DF (W̃ (t)) .

That is, it is reasonable to expect that the gradient flow on Graphons can be
obtained a scaling limit of Euclidean gradient flows.
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d

dt
W (t) = −DF (W (t))

= −n2∇nF (W (t))

Gradient flow on Mn

d

dt
V (t) = −∇nF (V (t))

The curve W̃ (t) := V (n2t) satisfies

d

dt
W̃ (t) = −n2∇nF (W̃ (t)) = −DF (W̃ (t)) .

That is, it is reasonable to expect that the gradient flow on Graphons can be
obtained a scaling limit of Euclidean gradient flows.

Oh, Pal, Somani & Tripathi (UW) Gradient flows on Graphons March 18, 2022 18 / 21



Convergence of Euclidean Gradient flows

Convergence of Euclidean Gradient Flow

Theorem [OPST ’21]

Let F : Ŵ → R be a function with gradient flow

W (t) := W0 −
∫ t

0

DŴF (W ) ds .

Consider the Euclidean gradient flow of Fn : Mn → R starting at V
(n)
0 , i.e.,

V (n)(t) := V (n)(0)−
∫ t

0

∇nFn

(
V (n)(s)

)
ds .

Set W (n)(t) = V (n)(n2t).

If W
(n)
0

δ□−−−→ W0, then

W (n)
δ□
⇒ W as n → ∞ ,

over compact time intervals.
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Future directions

Ongoing and Future directions

Study convergence of stochastic gradient descent with and without added noise.

Specialize the theory on optimization over multiple layer NNs.
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Questions and Answers

Thank you!

ArXiv version: https://arxiv.org/abs/2111.09459
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