# Multivariate Symmetry: Distribution-free Testing via Optimal Transport

Bodhisattva Sen<sup>1</sup> Department of Statistics Columbia University, New York

Kantorovich Initiative Seminar

13 April, 2023

<sup>&</sup>lt;sup>1</sup>Supported by NSF grant DMS-2015376



### Zhen Huang PhD student (Columbia University, Statistics)

• **Data**:  $\{X_i\}_{i=1}^n$  iid  $X \sim P$  (abs. cont.) on  $\mathbb{R}$ 

• Test the hypothesis of symmetry, i.e.,

 $H_0: X \stackrel{d}{=} -X$  versus  $H_1: not H_0$ 

• **Data**:  $\{X_i\}_{i=1}^n$  iid  $X \sim P$  (abs. cont.) on  $\mathbb{R}$ 

• Test the hypothesis of symmetry, i.e.,

 $H_0: X \stackrel{d}{=} -X$  versus  $H_1: not H_0$ 

Distribution-free testing for symmetry

- Sign test [Arbuthnot (1710)]: "...the first use of significance tests..." (first nonparametric test)
- Wilcoxon signed-rank (WSR) test [Wilcoxon (1945)]: Created the field of (classical) nonparametrics

• **Data**:  $\{X_i\}_{i=1}^n$  iid  $X \sim P$  (abs. cont.) on  $\mathbb{R}$ 

• Test the hypothesis of symmetry, i.e.,

 $H_0: X \stackrel{d}{=} -X$  versus  $H_1: not H_0$ 

Distribution-free testing for symmetry

- Sign test [Arbuthnot (1710)]: "...the first use of significance tests..." (first nonparametric test)
- Wilcoxon signed-rank (WSR) test [Wilcoxon (1945)]: Created the field of (classical) nonparametrics
- Arises with paired (matched) data; when normality can be violated

• **Data**:  ${X_i}_{i=1}^n$  iid  $X \sim P$  (abs. cont.) on  $\mathbb{R}$ 

• Test the hypothesis of symmetry, i.e.,

 $H_0: X \stackrel{d}{=} -X$  versus  $H_1: not H_0$ 

Distribution-free testing for symmetry

- Sign test [Arbuthnot (1710)]: "...the first use of significance tests..." (first nonparametric test)
- Wilcoxon signed-rank (WSR) test [Wilcoxon (1945)]: Created the field of (classical) nonparametrics
- Arises with paired (matched) data; when normality can be violated

Long history: Arbuthnot (1710), Wilcoxon (1945), Hodges & Lehmann (1956), Chernoff & Savage (1958), McWilliams (1990) ...

Goal: Develop distribution-free testing for multivariate symmetry

There are many notions of symmetry in  $\mathbb{R}^p$ , for  $p \geq 2$ 

• Central: Test  $H_0: X \stackrel{d}{=} -X$ 

- Central: Test  $H_0: X \stackrel{d}{=} -X$
- Sign: Test  $H_0: X \stackrel{d}{=} DX$ ,  $D = diag(\pm 1, \dots, \pm 1) \in \mathbb{R}^{p \times p}$

- Central: Test  $H_0: X \stackrel{d}{=} -X$
- Sign: Test  $H_0: \mathbf{X} \stackrel{d}{=} D\mathbf{X}, \quad D = \operatorname{diag}(\pm 1, \dots, \pm 1) \in \mathbb{R}^{p \times p}$
- Spherical: Test  $H_0$ :  $X \stackrel{d}{=} QX$ ,  $Q \in \mathbb{R}^{p \times p}$  is any orthogonal matrix

- Central: Test  $H_0: X \stackrel{d}{=} -X$
- Sign: Test  $H_0: \mathbf{X} \stackrel{d}{=} D\mathbf{X}, \quad D = \operatorname{diag}(\pm 1, \dots, \pm 1) \in \mathbb{R}^{p \times p}$
- Spherical: Test  $H_0$ :  $X \stackrel{d}{=} QX$ ,  $Q \in \mathbb{R}^{p \times p}$  is any orthogonal matrix
- O(p): group of all orthogonal matrices on  $\mathbb{R}^{p \times p}$
- G: compact subgroup of O(p)
- Goal: Develop distribution-free testing for  $\mathcal{G}$ -symmetry, i.e.,  $H_0: \mathbf{X} \stackrel{d}{=} Q \mathbf{X} \quad \forall Q \in \mathcal{G}, \quad \text{versus} \quad H_1: \text{not} \ H_0$

There are many notions of symmetry in  $\mathbb{R}^p$ , for  $p \geq 2$ 

- Central: Test  $H_0: X \stackrel{d}{=} -X$
- Sign: Test  $H_0: \mathbf{X} \stackrel{d}{=} D\mathbf{X}, \quad D = \operatorname{diag}(\pm 1, \dots, \pm 1) \in \mathbb{R}^{p \times p}$
- Spherical: Test  $H_0$ :  $X \stackrel{d}{=} QX$ ,  $Q \in \mathbb{R}^{p \times p}$  is any orthogonal matrix
- O(p): group of all orthogonal matrices on  $\mathbb{R}^{p \times p}$
- G: compact subgroup of O(p)
- Goal: Develop distribution-free testing for  $\mathcal{G}$ -symmetry, i.e.,  $H_0: \mathbf{X} \stackrel{d}{=} Q \mathbf{X} \quad \forall Q \in \mathcal{G}, \quad \text{versus} \quad H_1: \text{not} \ H_0$

Long history: Weyl (1952), Hodges (1955), Watson (1961), Bickel (1965), Randles (1989), Baringhaus (1991), Chaudhuri & Sengupta (1993), Beran & Millar (1997), Marden (1999), Zuo & Serfling (2000), Hallin & Paindaveine (2002), Oja (2010), Serfling (2014), ...

**Data**:  $X_1, \ldots, X_n$  iid  $X \sim P$  (X abs. cont.) on  $\mathbb{R}$  (i.e., p = 1)

**Goal**: Distribution-free testing of  $H_0: X \stackrel{d}{=} -X$ 

### Sign test [Arbuthnot (1710)]

• Sign: 
$$S_i := \begin{cases} +1 & \text{if } X_i \ge 0 \\ -1 & \text{if } X_i < 0 \end{cases}$$

Jnder H<sub>0</sub>, 
$$S_i \stackrel{iid}{\sim} \pm 1$$
 w.p.  $\frac{1}{2}$ 

• Rejects  $H_0$  when  $\sum_{i=1}^{n} S_i$  is significantly different from 0

**Data**:  $X_1, \ldots, X_n$  iid  $X \sim P$  (X abs. cont.) on  $\mathbb{R}$  (i.e., p = 1)

**Goal**: Distribution-free testing of  $H_0: X \stackrel{d}{=} -X$ 

### Sign test [Arbuthnot (1710)]

• Sign: 
$$S_i := \begin{cases} +1 & \text{if } X_i \ge 0 \\ -1 & \text{if } X_i < 0 \end{cases}$$
 Under  $H_0$ ,  $S_i \stackrel{iid}{\sim} \pm 1$  w.p.  $\frac{1}{2}$ 

• Rejects  $H_0$  when  $\sum_{i=1}^{n} S_i$  is significantly different from 0

- Under H<sub>0</sub>:  $\frac{1}{2} \sum_{i=1}^{n} (S_i + 1) \sim Bin(n, \frac{1}{2})$
- **Distribution-freeness**: The null distribution of  $\sum_{i=1}^{n} S_i$  is universal does not depend on the underlying distribution of the data
- Leads to an exact and distribution-free test valid for all sample sizes

**Data**:  $X_1, \ldots, X_n$  iid  $X \sim P$  (X abs. cont.) on  $\mathbb{R}$  (i.e., p = 1)

**Goal**: Distribution-free testing of  $H_0: X \stackrel{d}{=} -X$ 

### Sign test [Arbuthnot (1710)]

• Sign: 
$$S_i := \begin{cases} +1 & \text{if } X_i \ge 0 \\ -1 & \text{if } X_i < 0 \end{cases}$$
 Under  $H_0$ ,  $S_i \stackrel{iid}{\sim} \pm 1$  w.p.  $\frac{1}{2}$ 

- Rejects  $H_0$  when  $\sum_{i=1}^{n} S_i$  is significantly different from 0
- Under H<sub>0</sub>:  $\frac{1}{2} \sum_{i=1}^{n} (S_i + 1) \sim Bin(n, \frac{1}{2})$
- **Distribution-freeness**: The null distribution of  $\sum_{i=1}^{n} S_i$  is universal does not depend on the underlying distribution of the data
- Leads to an exact and distribution-free test valid for all sample sizes
- Issue: Actually testing for H<sub>0</sub> : ℙ(X ≥ 0) = ½; does not take into account the magnitude of the X<sub>i</sub>'s

- Let  $R_i^+$  be the absolute rank of  $X_i$ , i.e., the rank of  $|X_i|$  in the sample of absolute values  $|X_1|, \ldots, |X_n|$
- Rejects H<sub>0</sub> when  $\sum_{i=1}^{n} S_i R_i^+$  is significantly different from 0

- Let  $R_i^+$  be the absolute rank of  $X_i$ , i.e., the rank of  $|X_i|$  in the sample of absolute values  $|X_1|, \ldots, |X_n|$
- Rejects H<sub>0</sub> when  $\sum_{i=1}^{n} S_i R_i^+$  is significantly different from 0 • Under H<sub>0</sub>, the distribution of  $\sum_{i=1}^{n} S_i R_i^+$  is completely known

- $(R_1^+, \ldots, R_n^+)$  are uniform over all *n*! permutations of  $\{\frac{1}{n}, \ldots, \frac{n}{n}\}$
- $(S_1, \ldots, S_n)$  independent of  $(R_1^+, \ldots, R_n^+)$  under  $H_0: X \stackrel{d}{=} -X$

- Let  $R_i^+$  be the absolute rank of  $X_i$ , i.e., the rank of  $|X_i|$  in the sample of absolute values  $|X_1|, \ldots, |X_n|$
- Rejects H<sub>0</sub> when  $\sum_{i=1}^{n} S_i R_i^+$  is significantly different from 0 • Under H<sub>0</sub>, the distribution of  $\sum_{i=1}^{n} S_i R_i^+$  is completely known

- $(R_1^+, \ldots, R_n^+)$  are uniform over all *n*! permutations of  $\{\frac{1}{n}, \ldots, \frac{n}{n}\}$
- $(S_1, \ldots, S_n)$  independent of  $(R_1^+, \ldots, R_n^+)$  under  $H_0: X \stackrel{d}{=} -X$
- Leads to an exact and distribution-free test valid for all sample sizes

- Let  $R_i^+$  be the absolute rank of  $X_i$ , i.e., the rank of  $|X_i|$  in the sample of absolute values  $|X_1|, \ldots, |X_n|$
- Rejects H<sub>0</sub> when  $\sum_{i=1}^{n} S_i R_i^+$  is significantly different from 0 • Under H<sub>0</sub>, the distribution of  $\sum_{i=1}^{n} S_i R_i^+$  is completely known

- $(R_1^+, \ldots, R_n^+)$  are uniform over all *n*! permutations of  $\{\frac{1}{n}, \ldots, \frac{n}{n}\}$
- $(S_1, \ldots, S_n)$  independent of  $(R_1^+, \ldots, R_n^+)$  under  $H_0: X \stackrel{d}{=} -X$
- Leads to an exact and distribution-free test valid for all sample sizes
- Consistent against location shift alternatives:  $X_1, \ldots, X_n$  iid  $f(\cdot \theta)$ ; here f (unknown) is symmetric ( $H_0: X \stackrel{d}{=} -X \Leftrightarrow H_0: \theta = 0$ )

- Let  $R_i^+$  be the absolute rank of  $X_i$ , i.e., the rank of  $|X_i|$  in the sample of absolute values  $|X_1|, \ldots, |X_n|$
- Rejects H<sub>0</sub> when  $\sum_{i=1}^{n} S_i R_i^+$  is significantly different from 0 • Under H<sub>0</sub>, the distribution of  $\sum_{i=1}^{n} S_i R_i^+$  is completely known

- $(R_1^+, \ldots, R_n^+)$  are uniform over all *n*! permutations of  $\{\frac{1}{n}, \ldots, \frac{n}{n}\}$
- $(S_1, \ldots, S_n)$  independent of  $(R_1^+, \ldots, R_n^+)$  under  $H_0: X \stackrel{d}{=} -X$
- Leads to an exact and distribution-free test valid for all sample sizes
- Consistent against location shift alternatives:  $X_1, \ldots, X_n$  iid  $f(\cdot \theta)$ ; here f (unknown) is symmetric ( $H_0: X \stackrel{d}{=} -X \Leftrightarrow H_0: \theta = 0$ )
- Powerful for heavy-tailed data, robust to outliers & contamination

### O Distribution-freeness:

- $S_i$ 's are iid uniform over  $\{-1, 1\}$ , under  $H_0: X \stackrel{d}{=} -X$
- $(R_1^+, \ldots, R_n^+)$  are uniform over all *n*! permutations of  $\{\frac{1}{n}, \ldots, \frac{n}{n}\}$

**3** Independence:  $(S_1, \ldots, S_n)$  independent of  $(R_1^+, \ldots, R_n^+)$  under  $H_0$ 

- $S_i$ 's are iid uniform over  $\{-1, 1\}$ , under  $H_0: X \stackrel{d}{=} -X$
- $(R_1^+, \ldots, R_n^+)$  are uniform over all *n*! permutations of  $\{\frac{1}{n}, \ldots, \frac{n}{n}\}$
- **3** Independence:  $(S_1, \ldots, S_n)$  independent of  $(R_1^+, \ldots, R_n^+)$  under  $H_0$
- Asymptotic normality: Both  $\sum_{i=1}^{n} S_i$  and  $\sum_{i=1}^{n} S_i R_i^+$  are asymptotically normal under  $H_0$

### O Distribution-freeness:

- $S_i$ 's are iid uniform over  $\{-1, 1\}$ , under  $H_0: X \stackrel{d}{=} -X$
- $(R_1^+, \ldots, R_n^+)$  are uniform over all *n*! permutations of  $\{\frac{1}{n}, \ldots, \frac{n}{n}\}$
- **a** Independence:  $(S_1, \ldots, S_n)$  independent of  $(R_1^+, \ldots, R_n^+)$  under  $H_0$
- Asymptotic normality: Both ∑<sup>n</sup><sub>i=1</sub> S<sub>i</sub> and ∑<sup>n</sup><sub>i=1</sub> S<sub>i</sub>R<sup>+</sup><sub>i</sub> are asymptotically normal under H<sub>0</sub>

Asymptotic relative efficiency (ARE) for location shift alternatives

- Hodges-Lehmann (1956): ARE of WSR test w.r.t. t-test ≥ 0.864
- Chernoff-Savage (1958): ARE of a Gaussian score transformed WSR test against the *t*-test is lower bounded by 1

### O Distribution-freeness:

- $S_i$ 's are iid uniform over  $\{-1, 1\}$ , under  $H_0: X \stackrel{d}{=} -X$
- $(R_1^+, \ldots, R_n^+)$  are uniform over all *n*! permutations of  $\{\frac{1}{n}, \ldots, \frac{n}{n}\}$
- **3** Independence:  $(S_1, \ldots, S_n)$  independent of  $(R_1^+, \ldots, R_n^+)$  under  $H_0$
- Asymptotic normality: Both ∑<sup>n</sup><sub>i=1</sub> S<sub>i</sub> and ∑<sup>n</sup><sub>i=1</sub> S<sub>i</sub>R<sup>+</sup><sub>i</sub> are asymptotically normal under H<sub>0</sub>

Asymptotic relative efficiency (ARE) for location shift alternatives

- Hodges-Lehmann (1956): ARE of WSR test w.r.t. t-test ≥ 0.864
- Chernoff-Savage (1958): ARE of a Gaussian score transformed WSR test against the *t*-test is lower bounded by 1
- Solution distribution-free confidence sets for the "center" of X

### Oistribution-freeness:

- $S_i$ 's are iid uniform over  $\{-1, 1\}$ , under  $H_0: X \stackrel{d}{=} -X$
- $(R_1^+, \ldots, R_n^+)$  are uniform over all *n*! permutations of  $\{\frac{1}{n}, \ldots, \frac{n}{n}\}$
- **3** Independence:  $(S_1, \ldots, S_n)$  independent of  $(R_1^+, \ldots, R_n^+)$  under  $H_0$
- Asymptotic normality: Both ∑<sup>n</sup><sub>i=1</sub> S<sub>i</sub> and ∑<sup>n</sup><sub>i=1</sub> S<sub>i</sub>R<sup>+</sup><sub>i</sub> are asymptotically normal under H<sub>0</sub>

Asymptotic relative efficiency (ARE) for location shift alternatives

- Hodges-Lehmann (1956): ARE of WSR test w.r.t. t-test ≥ 0.864
- Chernoff-Savage (1958): ARE of a Gaussian score transformed WSR test against the *t*-test is lower bounded by 1

• Obtain distribution-free confidence sets for the "center" of *X* 

**Question**: Can we derive tests with analogous properties when p > 1?

The distribution-free nature of signs and absolute ranks (under  $H_0$ ) were crucial to developing distribution-free inference for symmetry when p = 1

**Question**: Can we define distribution-free (generalized) signs and ranks and develop distribution-free multivariate tests for *G*-symmetry?

The distribution-free nature of signs and absolute ranks (under  $H_0$ ) were crucial to developing distribution-free inference for symmetry when p = 1

**Question**: Can we define distribution-free (generalized) signs and ranks and develop distribution-free multivariate tests for *G*-symmetry?

(Multivariate) ranks defined via optimal transport (OT) [Hallin (2017)] lead to distribution-free testing

Chernozhukov et al. (2017), De Valk & Segers (2018), Hallin, del Barrio, Cuesta-Albertos, Matrán (2018), Shi, Drton & Han (2019), Deb & S. (2019), Ghosal & S. (2019), Hallin, La Vecchia & Liu (2019), Hallin, Hlubinka, & Hudecová (2020), Deb, Ghosal & S. (2020), Shi, Hallin, Drton & Han (2020), Deb, Bhattacharya & S. (2021) ...

## 1 Generalized Signs and Ranks

- Connection to Optimal Transport
- Generalized Signs, Ranks and Signed-ranks
- Population Analogues

## 2 Multivariate Distribution-free tests for Symmetry

- Generalized Sign test and Wilcoxon Signed-rank test
- Lower bounds on Asymptotic (Pitman) Relative Efficiency

## Generalized Signs and Ranks

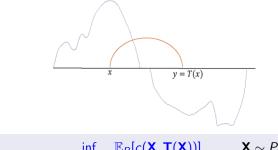
- Connection to Optimal Transport
- Generalized Signs, Ranks and Signed-ranks
- Population Analogues

### Multivariate Distribution-free tests for Symmetry

- Generalized Sign test and Wilcoxon Signed-rank test
- Lower bounds on Asymptotic (Pitman) Relative Efficiency

# Optimal Transport: Monge's problem

Gaspard Monge (1781): What is the cheapest way to transport a pile of sand to cover a sinkhole?



Goal:  $\inf_{\mathbf{T}:\mathbf{T}(\mathbf{X})\sim\nu} \mathbb{E}_{P}[c(\mathbf{X},\mathbf{T}(\mathbf{X}))] \qquad \mathbf{X}\sim P$ 

• P ("data" dist.) and  $\nu$  ("reference" dist.)

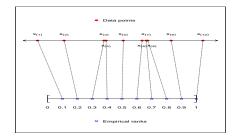
•  $c(\mathbf{x}, \mathbf{y}) \ge 0$ : cost of transporting **x** to **y** (e.g.,  $c(\mathbf{x}, \mathbf{y}) = \|\mathbf{x} - \mathbf{y}\|^2$ )

• **T** transports *P* to  $\nu$ :  $\mathbf{T}_{\#}P = \nu$  (i.e.,  $\mathbf{T}(\mathbf{X}) \sim \nu$  where  $\mathbf{X} \sim P$ )

# Sample Ranks as Optimal Transport (OT) maps

• **Data**: *X*<sub>1</sub>,..., *X<sub>n</sub>* iid *P* (cont. dist.) on ℝ

• Let 
$$P_n := \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$
 and  
 $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\frac{i}{n}}$ 



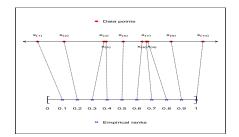
• Sample rank map:  $\hat{R}: \{X_1, X_2, \dots, X_n\} \longrightarrow \{\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\}$  solves

i.e., 
$$\hat{R} := \operatorname*{arg\,min}_{T:T_{\#}P_n = \nu_n} \frac{1}{n} \sum_{i=1}^n |X_i - T(X_i)|^2$$

# Sample Ranks as Optimal Transport (OT) maps

 Data: X<sub>1</sub>,..., X<sub>n</sub> iid P (cont. dist.) on ℝ

• Let 
$$P_n := \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$
 and  
 $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\frac{i}{n}}$ 



• Sample rank map:  $\hat{R}: \{X_1, X_2, \dots, X_n\} \longrightarrow \{\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\}$  solves

i.e., 
$$\hat{R} := \underset{T:T_{\#}P_n = \nu_n}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n |X_i - T(X_i)|^2 = \underset{T:T_{\#}P_n = \nu_n}{\operatorname{arg\,max}} \frac{1}{n} \sum_{i=1}^n X_{(i)} T(X_{(i)})$$

# Sample Ranks as Optimal Transport (OT) maps

• Data:  $X_1, \dots, X_n$  iid P(cont. dist.) on  $\mathbb{R}$ • Let  $P_n := \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$  and  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\frac{i}{n}}$ 

• Sample rank map:  $\hat{R}: \{X_1, X_2, \dots, X_n\} \longrightarrow \{\frac{1}{n}, \frac{2}{n}, \dots, \frac{n}{n}\}$  solves

×(10)

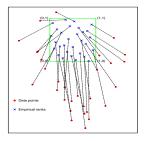
i.e., 
$$\hat{R} := \underset{T:T_{\#}P_n=\nu_n}{\operatorname{arg\,min}} \frac{1}{n} \sum_{i=1}^n |X_i - T(X_i)|^2 = \underset{T:T_{\#}P_n=\nu_n}{\operatorname{arg\,max}} \frac{1}{n} \sum_{i=1}^n X_{(i)} T(X_{(i)})$$

•  $\hat{\sigma} := \underset{\sigma \in S_n}{\arg \min} \frac{1}{n} \sum_{i=1}^{n} |X_{\sigma(i)} - \frac{i}{n}|^2$  where  $S_n$  is the set of all permutations of  $\{1, \dots, n\}$ 

• Sample rank map:  $\hat{R}(X_i) = \frac{\hat{\sigma}^{-1}(i)}{n}$ 

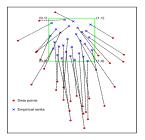
## Multivariate Ranks as OT maps in $\mathbb{R}^p$ $(p \ge 1)$

- Data:  $X_1, \ldots, X_n$  iid P (abs. cont.);  $\nu \sim \text{Unif}([0, 1]^p)$  or  $N(0, I_p)$
- Empirical rank map Â: {X<sub>1</sub>,..., X<sub>n</sub>} → {h<sub>1</sub>,..., h<sub>n</sub>} ⊂ [0,1]<sup>d</sup> sequence of "uniform-like" points (or quasi-Monte Carlo sequence)



# Multivariate Ranks as OT maps in $\mathbb{R}^p$ $(p \ge 1)$

- Data:  $X_1, \ldots, X_n$  iid P (abs. cont.);  $\nu \sim \text{Unif}([0, 1]^p)$  or  $N(0, I_p)$
- Empirical rank map Â: {X<sub>1</sub>,..., X<sub>n</sub>} → {h<sub>1</sub>,..., h<sub>n</sub>} ⊂ [0,1]<sup>d</sup> sequence of "uniform-like" points (or quasi-Monte Carlo sequence)



• Sample multivariate rank map [Hallin (2017), Deb & S. (2019)] is defined as the OT map s.t.

$$\hat{\sigma} := \operatorname*{arg\,min}_{\sigma \in S_n} \frac{1}{n} \sum_{i=1}^n \|\mathbf{X}_{\sigma(i)} - \mathbf{h}_i\|^2; \qquad \hat{R}(\mathbf{X}_i) := \mathbf{h}_{\hat{\sigma}^{-1}(i)}$$

• Assignment problem (can be reduced to a linear program  $-O(n^3)$ )

### Generalized Signs and Ranks

- Connection to Optimal Transport
- Generalized Signs, Ranks and Signed-ranks
- Population Analogues

## 2 Multivariate Distribution-free tests for Symmetry

- Generalized Sign test and Wilcoxon Signed-rank test
- Lower bounds on Asymptotic (Pitman) Relative Efficiency

# Signs and absolute ranks via OT when p = 1

• **Data**:  $X_1, \ldots, X_n$  iid P (cont. dist.) on  $\mathbb{R}$ 

• 
$$\operatorname{H}_{0}: X \stackrel{d}{=} QX \quad \forall Q \in \mathcal{G} = \{+1, -1\}$$

- Sign test:  $\sum_{i=1}^{n} S_i$  [recall:  $S_i := \operatorname{sign}(X_i)$ ]
- WSR test:  $\sum_{i=1}^{n} S_i R_i^+$

Question: Can the signs and absolute ranks be obtained via OT?

# Signs and absolute ranks via OT when p = 1

• **Data**:  $X_1, \ldots, X_n$  iid P (cont. dist.) on  $\mathbb{R}$ 

• 
$$\operatorname{H}_{0}: X \stackrel{d}{=} QX \quad \forall Q \in \mathcal{G} = \{+1, -1\}$$

- Sign test:  $\sum_{i=1}^{n} S_i$  [recall:  $S_i := \operatorname{sign}(X_i)$ ]
- WSR test:  $\sum_{i=1}^{n} S_i R_i^+$

Question: Can the signs and absolute ranks be obtained via OT?

• Consider the optimization problem:

$$(\hat{Q},\hat{\sigma}) := \arg\min\left\{\sum_{i=1}^{n} \left| q_i X_{\sigma(i)} - \frac{i}{n} \right|^2 : Q = (q_i)_{i=1}^n \in \{\pm 1\}^n, \sigma \in \mathcal{S}_n\right\}$$

• The signs and absolute ranks are then given by:

$$S_i = \hat{Q}_{\hat{\sigma}^{-1}(i)}, \qquad R_i^+ = \frac{\hat{\sigma}^{-1}(i)}{n}$$

# Signs and absolute ranks via OT when p = 1

• **Data**:  $X_1, \ldots, X_n$  iid P (cont. dist.) on  $\mathbb{R}$ 

• 
$$\operatorname{H}_{0}: X \stackrel{d}{=} QX \quad \forall Q \in \mathcal{G} = \{+1, -1\}$$

- Sign test:  $\sum_{i=1}^{n} S_i$  [recall:  $S_i := \operatorname{sign}(X_i)$ ]
- WSR test:  $\sum_{i=1}^{n} S_i R_i^+$

Question: Can the signs and absolute ranks be obtained via OT?

• Consider the optimization problem:

$$(\hat{Q},\hat{\sigma}) := \arg\min\left\{\sum_{i=1}^{n} \left| q_{i} X_{\sigma(i)} - \frac{i}{n} \right|^{2} : Q = (q_{i})_{i=1}^{n} \in \{\pm 1\}^{n}, \sigma \in \mathcal{S}_{n}\right\}$$

• The signs and absolute ranks are then given by:

$$S_i = \hat{Q}_{\hat{\sigma}^{-1}(i)}, \qquad \qquad R_i^+ = \frac{\hat{\sigma}^{-1}(i)}{n}$$

• The signed-rank for  $X_i$  is then defined as  $S_i R_i^+$ 

- Data:  $X_1, \ldots, X_n$  iid P (abs. cont.) on  $\mathbb{R}^p$   $(p \ge 1)$ ;  $\mathcal{G} \subset O(p)$
- Consider the following optimization problem:

$$(\hat{Q}, \hat{\sigma}) := \arg\min\left\{\sum_{i=1}^{n} \|\boldsymbol{Q}_{i}^{\top} \boldsymbol{\mathsf{X}}_{\sigma(i)} - \boldsymbol{\mathsf{h}}_{i}\|^{2} : \boldsymbol{Q}_{i} \in \mathcal{G}, \sigma \in \mathcal{S}_{n}\right\} \qquad (\star)$$

where  $\{\mathbf{h}_1, \ldots, \mathbf{h}_n\}$  is discretization of the reference dist.  $\nu$ 

- Data:  $X_1, \ldots, X_n$  iid P (abs. cont.) on  $\mathbb{R}^p$   $(p \ge 1)$ ;  $\mathcal{G} \subset O(p)$
- Consider the following optimization problem:

$$(\hat{Q}, \hat{\sigma}) := \arg\min\left\{\sum_{i=1}^{n} \|\boldsymbol{Q}_{i}^{\top} \boldsymbol{\mathsf{X}}_{\sigma(i)} - \boldsymbol{\mathsf{h}}_{i}\|^{2} : \boldsymbol{Q}_{i} \in \mathcal{G}, \sigma \in \mathcal{S}_{n}\right\} \quad (\star)$$

where  $\{\mathbf{h}_1, \ldots, \mathbf{h}_n\}$  is discretization of the reference dist.  $\nu$ 

Question: Can the above be seen as an OT problem?

- Data:  $X_1, \ldots, X_n$  iid P (abs. cont.) on  $\mathbb{R}^p$   $(p \ge 1)$ ;  $\mathcal{G} \subset O(p)$
- Consider the following optimization problem:

$$(\hat{Q}, \hat{\sigma}) := \arg\min\left\{\sum_{i=1}^{n} \|\boldsymbol{Q}_{i}^{\top} \boldsymbol{\mathsf{X}}_{\sigma(i)} - \boldsymbol{\mathsf{h}}_{i}\|^{2} : \boldsymbol{Q}_{i} \in \mathcal{G}, \sigma \in \mathcal{S}_{n}\right\} \quad (\star)$$

where  $\{\mathbf{h}_1, \dots, \mathbf{h}_n\}$  is discretization of the reference dist.  $\nu$ 

Question: Can the above be seen as an OT problem?

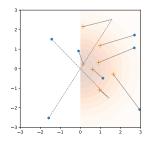
Define the cost function:

$$\boldsymbol{c}(\mathbf{x},\mathbf{h}) := \min_{\boldsymbol{Q} \in \mathcal{G}} \|\boldsymbol{Q}^\top \mathbf{x} - \mathbf{h}\|^2, \qquad \text{for } \mathbf{x}, \mathbf{h} \in \mathbb{R}^p.$$

Monge's problem (OT):  $(\star) = \inf_{\mathbf{T}:\mathbf{T}_{\#}P_n = \nu_n} \frac{1}{n} \sum_{i=1}^n c(\mathbf{X}_i, \mathbf{T}(\mathbf{X}_i))$ where **T** transports  $P_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{X}_i}$  to  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i}$ 

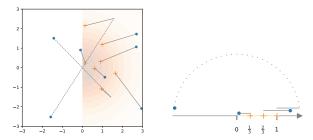
$$(\hat{Q}, \hat{\sigma}) := \arg\min\left\{\sum_{i=1}^{n} \|Q_{i}^{\top} \mathbf{X}_{\sigma(i)} - \mathbf{h}_{i}\|^{2} : Q_{i} \in \mathcal{G}, \sigma \in \mathcal{S}_{n}\right\} \quad (\star)$$

**Figure**: Data points ("•") and their ranks ("+"). Here  $\mathcal{G} = \{-I_p, I_p\}$ .



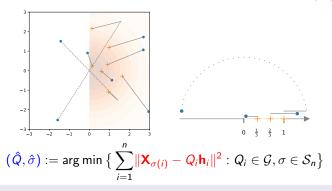
$$(\hat{Q}, \hat{\sigma}) := \arg\min\left\{\sum_{i=1}^{n} \|Q_{i}^{\top} \mathbf{X}_{\sigma(i)} - \mathbf{h}_{i}\|^{2} : Q_{i} \in \mathcal{G}, \sigma \in \mathcal{S}_{n}\right\} \quad (\star)$$

**Figure**: Data points ("•") and their ranks ("+"). Here  $\mathcal{G} = \{-I_p, I_p\}$ .



$$(\hat{Q}, \hat{\sigma}) := \arg\min\left\{\sum_{i=1}^{n} \|Q_{i}^{\top} \mathbf{X}_{\sigma(i)} - \mathbf{h}_{i}\|^{2} : Q_{i} \in \mathcal{G}, \sigma \in \mathcal{S}_{n}\right\} \quad (\star)$$

**Figure**: Data points ("•") and their ranks ("+"). Here  $\mathcal{G} = \{-I_p, I_p\}$ .



• Define the generalized sign and generalized rank as:

$$S_n(\mathbf{X}_i) := \hat{Q}_{\hat{\sigma}^{-1}(i)}, \qquad R_n(\mathbf{X}_i) := \mathbf{h}_{\hat{\sigma}^{-1}(i)}$$

The generalized signed-rank of X<sub>i</sub> is S<sub>n</sub>(X<sub>i</sub>)R<sub>n</sub>(X<sub>i</sub>) — it is the closest point to X<sub>i</sub> in the orbit of R<sub>n</sub>(X<sub>i</sub>) (i.e., {QR<sub>n</sub>(X<sub>i</sub>) : Q ∈ G})

Uniqueness of generalized ranks & signed-ranks [Huang & S. (2023+)]

• The generalized rank —  $R_n(X_i)$  — is a.s. unique,<sup>a</sup>  $\forall i \in [n]$ 

#### Uniqueness of generalized ranks & signed-ranks [Huang & S. (2023+)]

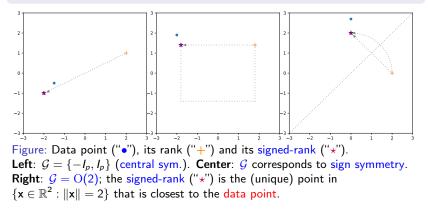
- The generalized rank  $R_n(\mathbf{X}_i)$  is a.s. unique,<sup>a</sup>  $\forall i \in [n]$
- The signed-rank  $S_n(X_i)R_n(X_i)$  is a.s. unique,  $\forall i \in [n]$
- **Recall**: the signed-rank is the point in the orbit of  $R_n(X_i)$  (i.e.,  $\{QR_n(X_i) : Q \in G\}$ ) that is closest to  $X_i$

<sup>a</sup>We assume that no two  $\mathbf{h}_j$ 's lie on a same orbit of  $\mathcal{G}$ .

#### Uniqueness of generalized ranks & signed-ranks [Huang & S. (2023+)]

- The generalized rank  $R_n(\mathbf{X}_i)$  is a.s. unique,<sup>a</sup>  $\forall i \in [n]$
- The signed-rank  $S_n(\mathbf{X}_i)R_n(\mathbf{X}_i)$  is a.s. unique,  $\forall i \in [n]$
- **Recall**: the signed-rank is the point in the orbit of  $R_n(X_i)$  (i.e.,  $\{QR_n(X_i) : Q \in G\}$ ) that is closest to  $X_i$

<sup>a</sup>We assume that no two  $\mathbf{h}_{j}$ 's lie on a same orbit of  $\mathcal{G}$ .



The sign 
$$S_n(\mathbf{X}_i) = \underset{Q \in \mathcal{G}}{\arg \min} \|\mathbf{X}_i - QR_n(\mathbf{X}_i)\|^2$$
 may be not unique

Result If  $\mathcal{G}$  is the group corresponding to central/sign symmetry, then the (generalized) sign  $S_n(X_i)$  is unique a.s.

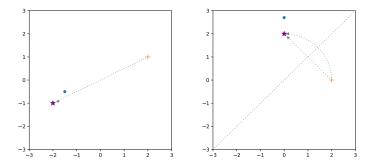


Figure: Data point ("•"), its rank ("+") and its signed-rank (" $\star$ "). Left: Here  $\mathcal{G} = \{-I_p, I_p\}$  and sign is unique! Right: Here  $\mathcal{G} = O(2)$  and sign is not unique!

The sign 
$$S_n(\mathbf{X}_i) = \underset{Q \in \mathcal{G}}{\arg \min} \|\mathbf{X}_i - QR_n(\mathbf{X}_i)\|^2$$
 may be not unique

Result If  $\mathcal{G}$  is the group corresponding to central/sign symmetry, then the (generalized) sign  $S_n(X_i)$  is unique a.s.

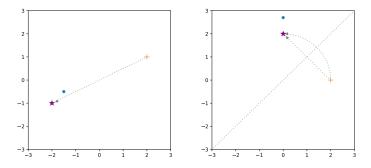


Figure: Data point ("•"), its rank ("+") and its signed-rank (" $\star$ "). Left: Here  $\mathcal{G} = \{-I_p, I_p\}$  and sign is unique! Right: Here  $\mathcal{G} = O(2)$  and sign is not unique!

Uniform Can choose  $S_n(\mathbf{X}_i)$  'uniformly' over all possible minimizing values

$$S_n(\mathbf{X}_i) = \arg\min_{Q \in \mathcal{G}} \|Q^\top \mathbf{X}_i - R_n(\mathbf{X}_i)\|^2 = \arg\min_{Q \in \mathcal{G}} \|\mathbf{X}_i - QR_n(\mathbf{X}_i)\|^2$$

Question: When can we identify the (generalized) sign?

$$S_n(\mathbf{X}_i) = \arg\min_{Q \in \mathcal{G}} \|Q^\top \mathbf{X}_i - R_n(\mathbf{X}_i)\|^2 = \arg\min_{Q \in \mathcal{G}} \|\mathbf{X}_i - QR_n(\mathbf{X}_i)\|^2$$

**Question**: When can we identify the (generalized) sign?

•  $\mathcal{G}$  acts freely if for  $\mathbf{x} \in \mathbb{R}^{p}$  and  $Q_{1}, Q_{2} \in \mathcal{G}$ ,

$$Q_1 \mathbf{x} = Q_2 \mathbf{x} \quad \Rightarrow \quad Q_1 = Q_2$$

(i.e., for any **x** in  $\mathbb{R}^p$ , we can identify the unique element in  $\mathcal{G}$  that maps  $\mathbf{x} \mapsto Q\mathbf{x}$ )

- Free group action is available for central / sign symmetry
- $\bullet$  For infinite groups  ${\mathcal G}$  we may not have a free group action

#### Proposition [Huang & S. (2023+)]

Suppose that  $\mathcal{G}$  acts freely and suppose no two  $\mathbf{h}_j$ 's lie on a same orbit of  $\mathcal{G}$ . Then  $S_n(\cdot)$  is a.s. unique.

# Computational complexity

- Cost function:  $c_{i,j} \equiv c(\mathbf{X}_i, \mathbf{h}_j) := \min_{Q \in \mathcal{G}} \|Q^\top \mathbf{X}_i \mathbf{h}_j\|^2, \quad \forall i, j \in [n]$
- OT problem: min  $\{\sum_{i=1}^{n} c_{i,\sigma(i)} : \sigma \in S_n\}$  assignment problem
- If  $\mathcal{G}$  is a finite group then  $c_{i,j}$  can be computed in O(1) time
- $\{R_n(\mathbf{X}_i)\}_{i=1}^n$  can be found by solving the assignment problem of  $\{\mathbf{X}_1, \dots, \mathbf{X}_n\}$  to  $\{\mathbf{h}_1, \dots, \mathbf{h}_n\}$  under cost  $c(\cdot, \cdot)$  complexity  $O(n^3)$

• Sign: 
$$S_n(\mathbf{X}_i) \equiv S_n(\mathbf{X}_i, R_n(\mathbf{X}_i)) := \underset{\substack{Q \in \mathcal{G}}}{\arg \min} \|Q^\top \mathbf{X}_i - R_n(\mathbf{X}_i)\|^2$$

# Computational complexity

- Cost function:  $c_{i,j} \equiv c(\mathbf{X}_i, \mathbf{h}_j) := \min_{Q \in \mathcal{G}} \|Q^\top \mathbf{X}_i \mathbf{h}_j\|^2, \quad \forall i, j \in [n]$
- OT problem: min  $\{\sum_{i=1}^{n} c_{i,\sigma(i)} : \sigma \in S_n\}$  assignment problem
- If  $\mathcal{G}$  is a finite group then  $c_{i,j}$  can be computed in O(1) time
- $\{R_n(\mathbf{X}_i)\}_{i=1}^n$  can be found by solving the assignment problem of  $\{\mathbf{X}_1, \dots, \mathbf{X}_n\}$  to  $\{\mathbf{h}_1, \dots, \mathbf{h}_n\}$  under cost  $c(\cdot, \cdot)$  complexity  $O(n^3)$

• Sign: 
$$S_n(\mathbf{X}_i) \equiv S_n(\mathbf{X}_i, R_n(\mathbf{X}_i)) := \underset{\substack{Q \in \mathcal{G}}}{\arg \min} \|Q^\top \mathbf{X}_i - R_n(\mathbf{X}_i)\|^2$$

For some group  $\mathcal{G}$ , the computation can be much faster!

## Spherical symmetry $(\mathcal{G} = \mathrm{O}(p))$

• The computation time of the ranks (and signed-ranks):  $O(n \log n)$ 

• 
$$c(\mathbf{x}, \mathbf{h}) = \|\mathbf{x}\|^2 - 2 \max_{Q \in \mathcal{G}} \mathbf{x}^\top Q \mathbf{h} + \|\mathbf{h}\|^2 = (\|\mathbf{x}\| - \|\mathbf{h}\|)^2$$

## Spherical symmetry $(\mathcal{G} = \mathrm{O}(p))$

• The computation time of the ranks (and signed-ranks):  $O(n \log n)$ 

• 
$$c(\mathbf{x}, \mathbf{h}) = \|\mathbf{x}\|^2 - 2 \max_{Q \in \mathcal{G}} \mathbf{x}^\top Q \mathbf{h} + \|\mathbf{h}\|^2 = (\|\mathbf{x}\| - \|\mathbf{h}\|)^2$$

• If  $X_i$  has the *j*-th largest Euclidean norm among  $X_1, \ldots, X_n$  and  $\|\mathbf{h}_1\| < \ldots < \|\mathbf{h}_n\|$ , then  $X_i$  will have  $\mathbf{h}_j$  as its rank

## Spherical symmetry $(\mathcal{G} = \mathrm{O}(p))$

• The computation time of the ranks (and signed-ranks):  $O(n \log n)$ 

• 
$$c(\mathbf{x}, \mathbf{h}) = \|\mathbf{x}\|^2 - 2 \max_{Q \in \mathcal{G}} \mathbf{x}^\top Q \mathbf{h} + \|\mathbf{h}\|^2 = (\|\mathbf{x}\| - \|\mathbf{h}\|)^2$$

- If  $X_i$  has the *j*-th largest Euclidean norm among  $X_1, \ldots, X_n$  and  $\|\mathbf{h}_1\| < \ldots < \|\mathbf{h}_n\|$ , then  $X_i$  will have  $\mathbf{h}_j$  as its rank
- The signed-rank of X<sub>i</sub> is simply the vector in the direction of X<sub>i</sub> with length ||R<sub>n</sub>(X<sub>i</sub>)||, i.e.,

$$S_n(\mathbf{X}_i)R_n(\mathbf{X}_i) = \|R_n(\mathbf{X}_i)\| \frac{\mathbf{X}_i}{\|\mathbf{X}_i\|}$$

- Given  $X_1, \ldots, X_n$  iid P on  $\mathbb{R}^p$   $(p \ge 1)$ ;  $\mathcal{G} \subset \mathrm{O}(p)$
- $\{\mathbf{h}_1, \dots, \mathbf{h}_n\}$  is discretization of the reference dist.  $\nu$
- **OT**:  $(\hat{Q}, \hat{\sigma}) := \arg \min \left\{ \sum_{i=1}^{n} \| Q_i^\top \mathbf{X}_{\sigma(i)} \mathbf{h}_i \|^2 : Q_i \in \mathcal{G}, \sigma \in \mathcal{S}_n \right\}$
- Define the generalized sign and generalized rank as:

$$S_n(\mathbf{X}_i) := \hat{Q}_{\hat{\sigma}^{-1}(i)}, \qquad R_n(\mathbf{X}_i) := \mathbf{h}_{\hat{\sigma}^{-1}(i)}$$

- Given  $X_1, \ldots, X_n$  iid P on  $\mathbb{R}^p$   $(p \ge 1)$ ;  $\mathcal{G} \subset \mathrm{O}(p)$
- $\{\mathbf{h}_1, \dots, \mathbf{h}_n\}$  is discretization of the reference dist.  $\nu$
- **OT**:  $(\hat{Q}, \hat{\sigma}) := \arg \min \left\{ \sum_{i=1}^{n} \| Q_i^\top \mathbf{X}_{\sigma(i)} \mathbf{h}_i \|^2 : Q_i \in \mathcal{G}, \sigma \in \mathcal{S}_n \right\}$
- Define the generalized sign and generalized rank as:

$$S_n(\mathbf{X}_i) := \hat{Q}_{\hat{\sigma}^{-1}(i)}, \qquad R_n(\mathbf{X}_i) := \mathbf{h}_{\hat{\sigma}^{-1}(i)}$$

### Theorem [Huang & S. (2023+)]

**Result**:  $(R_n(\mathbf{X}_1), \dots, R_n(\mathbf{X}_n))$  is uniformly distributed over the set of all n! permutations of  $\{\mathbf{h}_1, \dots, \mathbf{h}_n\}$ 

Under  $\mathrm{H}_0: \mathbf{X} \stackrel{d}{=} Q\mathbf{X} \quad \forall Q \in \mathcal{G}$ ,

•  $S_n(\mathbf{X}_1), \ldots, S_n(\mathbf{X}_n)$  are iid Uniform( $\mathcal{G}$ )

 $\mathbf{O}$   $(R_n(\mathbf{X}_1), \dots, R_n(\mathbf{X}_n))$  and  $(S_n(\mathbf{X}_1), \dots, S_n(\mathbf{X}_n))$  are independent

- Given  $X_1, \ldots, X_n$  iid P on  $\mathbb{R}^p$   $(p \ge 1)$ ;  $\mathcal{G} \subset \mathrm{O}(p)$
- $\{\mathbf{h}_1, \dots, \mathbf{h}_n\}$  is discretization of the reference dist.  $\nu$
- **OT**:  $(\hat{Q}, \hat{\sigma}) := \arg \min \left\{ \sum_{i=1}^{n} \| Q_i^\top \mathbf{X}_{\sigma(i)} \mathbf{h}_i \|^2 : Q_i \in \mathcal{G}, \sigma \in \mathcal{S}_n \right\}$
- Define the generalized sign and generalized rank as:

$$S_n(\mathbf{X}_i) := \hat{Q}_{\hat{\sigma}^{-1}(i)}, \qquad R_n(\mathbf{X}_i) := \mathbf{h}_{\hat{\sigma}^{-1}(i)}$$

#### Theorem [Huang & S. (2023+)]

**Result**:  $(R_n(\mathbf{X}_1), \dots, R_n(\mathbf{X}_n))$  is uniformly distributed over the set of all n! permutations of  $\{\mathbf{h}_1, \dots, \mathbf{h}_n\}$ 

Under 
$$\mathrm{H}_0: \mathbf{X} \stackrel{d}{=} Q\mathbf{X} \quad \forall Q \in \mathcal{G},$$

•  $S_n(X_1), \ldots, S_n(X_n)$  are iid Uniform( $\mathcal{G}$ )

 $(R_n(\mathbf{X}_1), \dots, R_n(\mathbf{X}_n))$  and  $(S_n(\mathbf{X}_1), \dots, S_n(\mathbf{X}_n))$  are independent

Generalizes the distribution-freeness of signs and ranks beyond p = 1!

(Generalized) Wilcoxon signed-rank test:  $W_n := \sum_{i=1}^n S_n(\mathbf{X}_i) R_n(\mathbf{X}_i)$ 

## Generalized Signs and Ranks

- Connection to Optimal Transport
- Generalized Signs, Ranks and Signed-ranks
- Population Analogues

## 2 Multivariate Distribution-free tests for Symmetry

- Generalized Sign test and Wilcoxon Signed-rank test
- Lower bounds on Asymptotic (Pitman) Relative Efficiency

Population OT problem [Kantorovich's relaxation]

$$\inf_{(\mathbf{X},\mathbf{H}):\mathbf{X}\sim P,\mathbf{H}\sim \nu} \mathbb{E}\left[c(\mathbf{X},\mathbf{H})\right], \qquad c(\mathbf{x},\mathbf{h}) := \min_{Q\in\mathcal{G}} \|Q^{\top}\mathbf{x}-\mathbf{h}\|^2$$

and  $(\mathbf{X}, \mathbf{H})$  runs over all joint dist. with marginals  $\mathbf{X} \sim P$  and  $\mathbf{H} \sim \nu$ .

Population OT problem [Kantorovich's relaxation]

$$\inf_{(\mathbf{X},\mathbf{H}):\mathbf{X}\sim P,\mathbf{H}\sim \nu} \mathbb{E}\left[c(\mathbf{X},\mathbf{H})\right], \qquad c(\mathbf{x},\mathbf{h}) := \min_{Q\in\mathcal{G}} \|Q^{\top}\mathbf{x}-\mathbf{h}\|^2$$

and  $(\mathbf{X}, \mathbf{H})$  runs over all joint dist. with marginals  $\mathbf{X} \sim P$  and  $\mathbf{H} \sim \nu$ .

**Assumption (A)** (On  $\nu$  and  $\mathcal{G}$ ):  $\exists B \subset \mathbb{R}^p$  with  $\nu(B) = 1$  such that, for any  $\mathbf{h} \in \mathbb{R}^p$ , the orbit  $\{Q\mathbf{h} : Q \in \mathcal{G}\}$  intersects B at one point at most.

• Central symmetry: **h** and  $-\mathbf{h}$  cannot both be in B; we can take  $B = (0, \infty) \times \mathbb{R}^{p-1}$ ;

Population OT problem [Kantorovich's relaxation]

$$\inf_{(\mathbf{X},\mathbf{H}):\mathbf{X}\sim P,\mathbf{H}\sim \nu} \mathbb{E}\left[c(\mathbf{X},\mathbf{H})\right], \qquad c(\mathbf{x},\mathbf{h}) := \min_{Q\in\mathcal{G}} \|Q^{\top}\mathbf{x}-\mathbf{h}\|^2$$

and  $(\mathbf{X}, \mathbf{H})$  runs over all joint dist. with marginals  $\mathbf{X} \sim P$  and  $\mathbf{H} \sim \nu$ .

**Assumption (A)** (On  $\nu$  and  $\mathcal{G}$ ):  $\exists B \subset \mathbb{R}^p$  with  $\nu(B) = 1$  such that, for any  $\mathbf{h} \in \mathbb{R}^p$ , the orbit  $\{Q\mathbf{h} : Q \in \mathcal{G}\}$  intersects B at one point at most.

• Central symmetry: **h** and  $-\mathbf{h}$  cannot both be in B; we can take  $B = (0, \infty) \times \mathbb{R}^{p-1}$ ; when p = 1, B = (0, 1) and  $\nu = \text{Unif}(0, 1)$ 

Population OT problem [Kantorovich's relaxation]

$$\inf_{(\mathbf{X},\mathbf{H}):\mathbf{X}\sim P,\mathbf{H}\sim \nu} \mathbb{E}\left[c(\mathbf{X},\mathbf{H})\right], \qquad c(\mathbf{x},\mathbf{h}) := \min_{Q\in\mathcal{G}} \|Q^{\top}\mathbf{x}-\mathbf{h}\|^2$$

and  $(\mathbf{X}, \mathbf{H})$  runs over all joint dist. with marginals  $\mathbf{X} \sim P$  and  $\mathbf{H} \sim \nu$ .

**Assumption (A)** (On  $\nu$  and  $\mathcal{G}$ ):  $\exists B \subset \mathbb{R}^p$  with  $\nu(B) = 1$  such that, for any  $\mathbf{h} \in \mathbb{R}^p$ , the orbit  $\{Q\mathbf{h} : Q \in \mathcal{G}\}$  intersects B at one point at most.

- Central symmetry: **h** and  $-\mathbf{h}$  cannot both be in B; we can take  $B = (0, \infty) \times \mathbb{R}^{p-1}$ ; when p = 1, B = (0, 1) and  $\nu = \text{Unif}(0, 1)$
- Sign symmetry: We can take  $B = (0,\infty)^p$
- Spherical symmetry ( $\mathcal{G} = O(p)$ ): We can take  $B = (0, \infty) \times \{0\}^{p-1}$ ;

Population OT problem [Kantorovich's relaxation]

$$\inf_{(\mathbf{X},\mathbf{H}):\mathbf{X}\sim P,\mathbf{H}\sim \nu} \mathbb{E}\left[c(\mathbf{X},\mathbf{H})\right], \qquad c(\mathbf{x},\mathbf{h}) := \min_{Q\in\mathcal{G}} \|Q^{\top}\mathbf{x}-\mathbf{h}\|^2$$

and  $(\mathbf{X}, \mathbf{H})$  runs over all joint dist. with marginals  $\mathbf{X} \sim P$  and  $\mathbf{H} \sim \nu$ .

**Assumption (A)** (On  $\nu$  and  $\mathcal{G}$ ):  $\exists B \subset \mathbb{R}^p$  with  $\nu(B) = 1$  such that, for any  $\mathbf{h} \in \mathbb{R}^p$ , the orbit  $\{Q\mathbf{h} : Q \in \mathcal{G}\}$  intersects B at one point at most.

- Central symmetry: **h** and  $-\mathbf{h}$  cannot both be in B; we can take  $B = (0, \infty) \times \mathbb{R}^{p-1}$ ; when p = 1, B = (0, 1) and  $\nu = \text{Unif}(0, 1)$
- Sign symmetry: We can take  $B = (0,\infty)^p$
- Spherical symmetry (G = O(p)): We can take B = (0, ∞) × {0}<sup>p-1</sup>; thus ν is not abs. cont. here

# Quotient map for cost $c(\mathbf{x}, \mathbf{h}) := \min_{Q \in \mathcal{G}} \|\mathbf{x} - Q\mathbf{h}\|^2$

• Orbit of **h** is  $\{Qh : Q \in G\}$ ; every point in an orbit has the same cost

# Quotient map for cost $c(\mathbf{x}, \mathbf{h}) := \min_{Q \in \mathcal{G}} \|\mathbf{x} - Q\mathbf{h}\|^2$

- Orbit of **h** is  $\{Qh : Q \in G\}$ ; every point in an orbit has the same cost
- Image of group action of  $\mathcal{G}$  on B:  $\mathcal{G}B = \{Q\mathbf{h} : Q \in \mathcal{G}, \mathbf{h} \in B\} \subset \mathbb{R}^p$

For any point in  $\mathcal{GB}$ , quotient map picks the representative point in B:

 $q: \mathcal{G}B \to B$  where  $q(Q\mathbf{h}) = \mathbf{h}$  for  $\mathbf{h} \in B, Q \in \mathcal{G}$ .

If Assumption (A) holds, then  $q(\cdot)$  is well-defined

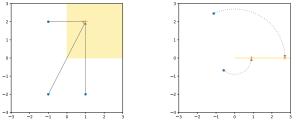


Figure: Shows the action of the quotient map q on: (i) (Left) 3 points when  $\mathcal{G}$  corresponds to the group for sign symmetry, and (ii) (Right) on 2 points for  $\mathcal{G}$  corresponding to the group for spherical symmetry (here  $q(\mathbf{x}) = (||\mathbf{x}||, 0)$ )

### Population generalized rank map [Huang & S. (2023+)]

Let  $X \sim P$  (abs. cont.),  $H \sim \nu$  and suppose Assumption (A) holds.

Then,  $\exists (P\text{-a.e.})$  unique map  $R : \mathbb{R}^{p} \to \mathbb{R}^{p}$  that solves the OT problem of transporting P to  $\nu (R_{\#}P = \nu)$ , i.e., Monge's problem = Kantorovich's relaxation:

 $\inf_{(\mathbf{X},\mathbf{H})\sim\pi\in\Pi(P,\nu)} \mathbb{E}_{\pi}\left[c(\mathbf{X},\mathbf{H})\right] = \mathbb{E}_{P}\left[c(\mathbf{X},R(\mathbf{X}))\right], \ c(\mathbf{x},\mathbf{h}) := \min_{Q\in\mathcal{G}} \|\mathbf{x}-Q\mathbf{h}\|^{2}$ 

### Population generalized rank map [Huang & S. (2023+)]

Let  $X \sim P$  (abs. cont.),  $H \sim \nu$  and suppose Assumption (A) holds.

Then,  $\exists$  (*P*-a.e.) unique map  $R : \mathbb{R}^p \to \mathbb{R}^p$  that solves the OT problem of transporting *P* to  $\nu$  ( $R_{\#}P = \nu$ ), i.e., Monge's problem = Kantorovich's relaxation:

 $\inf_{(\mathbf{X},\mathbf{H})\sim\pi\in\Pi(P,\nu)} \mathbb{E}_{\pi}\left[c(\mathbf{X},\mathbf{H})\right] = \mathbb{E}_{P}\left[c(\mathbf{X},R(\mathbf{X}))\right], \ c(\mathbf{x},\mathbf{h}) := \min_{Q\in\mathcal{G}} \|\mathbf{x}-Q\mathbf{h}\|^{2}$ 

Even if P and  $\nu$  do not have second order moments, the following hold:

(i)  $\exists$  a *P*-a.e. unique map  $R : \mathbb{R}^p \to \mathbb{R}^p$  s.t.  $(\mathbf{X}, R(\mathbf{X}))$  has the unique distribution in  $\Pi(P, \nu)$  with a *c*-cyclically monotone support.

(ii)  $\exists$  a l.s.c. convex function  $\psi$  such that  $R(\mathbf{x}) = q(\nabla \psi(\mathbf{x}))$  (*P*-a.e.)

 $X \sim P$  (abs. cont.),  $H \sim \nu$  and suppose Assumption (A) holds.

**Cost function**:  $c(\mathbf{x}, \mathbf{h}) := \min_{Q \in \mathcal{G}} \|\mathbf{x} - Q\mathbf{h}\|^2$ 

Population rank and signed-rank maps [Huang & S. (2023+)]

- (i)  $\exists$  a *P*-a.e. unique map  $R : \mathbb{R}^p \to \mathbb{R}^p$  s.t.  $(\mathbf{X}, R(\mathbf{X}))$  has the unique distribution in  $\Pi(P, \nu)$  with a *c*-cyclically monotone support.
- (ii)  $\exists$  a l.s.c. convex function  $\psi$  such that  $R(\mathbf{x}) = q(\nabla \psi(\mathbf{x}))$  (*P*-a.e.)
- (iii) Here,  $\nabla \psi(\cdot)$  is the *P*-a.e. unique gradient of a convex function s.t.  $\nabla \psi(G\mathbf{X}) \sim G\mathbf{H}$ , where  $G \sim \text{Uniform}(\mathcal{G})$  is indep. of  $\mathbf{X} \& \mathbf{H}$

 $X \sim P$  (abs. cont.),  $H \sim \nu$  and suppose Assumption (A) holds.

**Cost function**:  $c(\mathbf{x}, \mathbf{h}) := \min_{Q \in \mathcal{G}} \|\mathbf{x} - Q\mathbf{h}\|^2$ 

Population rank and signed-rank maps [Huang & S. (2023+)]

(i)  $\exists$  a *P*-a.e. unique map  $R : \mathbb{R}^{p} \to \mathbb{R}^{p}$  s.t.  $(\mathbf{X}, R(\mathbf{X}))$  has the unique distribution in  $\Pi(P, \nu)$  with a *c*-cyclically monotone support.

(ii)  $\exists$  a l.s.c. convex function  $\psi$  such that  $R(\mathbf{x}) = q(\nabla \psi(\mathbf{x}))$  (*P*-a.e.)

- (iii) Here,  $\nabla \psi(\cdot)$  is the *P*-a.e. unique gradient of a convex function s.t.  $\nabla \psi(G\mathbf{X}) \sim G\mathbf{H}$ , where  $G \sim \text{Uniform}(\mathcal{G})$  is indep. of  $\mathbf{X} \& \mathbf{H}$
- (iv) ∇ψ(X) <sup>a.s.</sup> S(X, R(X))R(X) the (generalized) signed-rank; here
   S(x, h) := arg min ||x Qh||<sup>2</sup>
   (v) ∇ψ(·) is equivariant under the group action of G, i.e.,

 $abla \psi(Q\mathbf{x}) = Q \nabla \psi(\mathbf{x})$  for all  $Q \in \mathcal{G}$ , and  $\mathbf{x}$  (a.e.)

## Convergence of generalized signs, ranks and signed-ranks

Fix some k > 0. Assume: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  as  $n \to \infty$ ; (ii) for  $\mathbf{H}_n \sim \nu_n$ ,  $\mathbb{E}[||\mathbf{H}_n||^k] \to \mathbb{E}[||\mathbf{H}||^k]$ , as  $n \to \infty$ .

• (Convergence of signed-ranks)

$$\frac{1}{n}\sum_{i=1}^{n}\|S_n(\mathbf{X}_i)R_n(\mathbf{X}_i)-\nabla\psi(\mathbf{X}_i)\|^k\xrightarrow{a.s.}0.$$

## Convergence of generalized signs, ranks and signed-ranks

Fix some k > 0. Assume: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  as  $n \to \infty$ ; (ii) for  $\mathbf{H}_n \sim \nu_n$ ,  $\mathbb{E}[||\mathbf{H}_n||^k] \to \mathbb{E}[||\mathbf{H}||^k]$ , as  $n \to \infty$ .

• (Convergence of signed-ranks)

$$\frac{1}{n}\sum_{i=1}^{n}\|S_n(\mathbf{X}_i)R_n(\mathbf{X}_i)-\nabla\psi(\mathbf{X}_i)\|^k\xrightarrow{a.s.}0.$$

(Convergence of ranks) If  $q(\cdot)$  is continuous, then

$$\frac{1}{n}\sum_{i=1}^n \|R_n(\mathbf{X}_i) - R(\mathbf{X}_i)\|^k \xrightarrow{a.s.} 0.$$

### Convergence of generalized signs, ranks and signed-ranks

Fix some k > 0. Assume: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  as  $n \to \infty$ ; (ii) for  $\mathbf{H}_n \sim \nu_n$ ,  $\mathbb{E}[||\mathbf{H}_n||^k] \to \mathbb{E}[||\mathbf{H}||^k]$ , as  $n \to \infty$ .

(Convergence of signed-ranks)

$$\frac{1}{n}\sum_{i=1}^{n}\|S_n(\mathbf{X}_i)R_n(\mathbf{X}_i)-\nabla\psi(\mathbf{X}_i)\|^k\xrightarrow{a.s.}0.$$

(Convergence of ranks) If  $q(\cdot)$  is continuous, then

$$\frac{1}{n}\sum_{i=1}^{n}\|R_n(\mathbf{X}_i)-R(\mathbf{X}_i)\|^k\xrightarrow{a.s.}0.$$

**(**Convergence of signs) If  $\mathcal{G}$  acts freely<sup>a</sup> on  $\mathcal{G}B$ , then

$$\frac{1}{n}\sum_{i=1}^{n}\|S_n(\mathbf{X}_i)-S(\mathbf{X}_i,R(\mathbf{X}_i))\|_F^k\xrightarrow{a.s.}0,$$

where  $S(\mathbf{x}, \mathbf{h}) := \underset{Q \in \mathcal{G}}{\arg\min} \|Q^{\top}\mathbf{x} - \mathbf{h}\|^2$ ;  $\|\cdot\|_F$  is the Frobenius norm.

 ${}^{a}\mathcal{G}$  acts freely on  $\mathcal{G}B$ , if for  $\mathbf{h} \in B$  and  $Q \in \mathcal{G}$ ,  $Q\mathbf{h} = \mathbf{h} \quad \Rightarrow \quad Q = I_{p}$ .

# Generalized Signs and Ranks

- Connection to Optimal Transport
- Generalized Signs, Ranks and Signed-ranks
- Population Analogues

# 2 Multivariate Distribution-free tests for Symmetry

- Generalized Sign test and Wilcoxon Signed-rank test
- Lower bounds on Asymptotic (Pitman) Relative Efficiency

**Data**:  $\{\mathbf{X}_i\}_{i=1}^n$  iid  $\mathbf{X} \sim P$  (abs. cont.) on  $\mathbb{R}^p$ ; test  $\mathrm{H}_0 : \mathbf{X} \stackrel{d}{=} Q\mathbf{X} \quad \forall Q \in \mathcal{G}$ 

Under H<sub>0</sub>, the generalized signs  $S_n(X_1), \ldots, S_n(X_n)$  are iid Uniform( $\mathcal{G}$ )

#### Generalized sign test: When $\mathcal{G}$ is finite

Suppose  $\mathcal{G} = \{g_1, \dots, g_m\}$  is a finite group of size m which acts freely. Let n

$$Y_j := \sum_{i=1} \mathbf{1}(S_n(\mathbf{X}_i) = \mathbf{g}_j), \qquad j = 1, \dots, m.$$

Under  $H_0$ ,

$$(Y_1,\ldots,Y_m) \sim \operatorname{Multinomial}\left(n,\frac{1}{m}\mathbf{1}_m\right)$$

Distribution-free: Generalizes the usual sign test beyond p = 1!

**Data**:  $\{\mathbf{X}_i\}_{i=1}^n$  iid  $\mathbf{X} \sim P$  (abs. cont.) on  $\mathbb{R}^p$ ; test  $\mathrm{H}_0 : \mathbf{X} \stackrel{d}{=} Q\mathbf{X} \quad \forall Q \in \mathcal{G}$ 

Under H<sub>0</sub>, the generalized signs  $S_n(X_1), \ldots, S_n(X_n)$  are iid Uniform( $\mathcal{G}$ )

## Generalized sign test: When ${\mathcal G}$ is finite

Suppose  $\mathcal{G} = \{g_1, \dots, g_m\}$  is a finite group of size m which acts freely. Let n

$$Y_j := \sum_{i=1}^{n} \mathbf{1}(S_n(\mathbf{X}_i) = \mathbf{g}_j), \qquad j = 1, \dots, m.$$

Under H<sub>0</sub>,

$$(Y_1,\ldots,Y_m) \sim \operatorname{Multinomial}\left(n,\frac{1}{m}\mathbf{1}_m\right)$$

Distribution-free: Generalizes the usual sign test beyond p = 1!

If m is large, take generalized sign test based on  $V_n := \frac{1}{\sqrt{n}} \sum_{i=1}^n S_n(\mathbf{X}_i)$ 

Central symmetry:  $\frac{1}{p} \|V_n\|_F^2 \stackrel{d}{\to} \chi_1^2$ Sign symmetry:  $\|V_n\|_F^2 \stackrel{d}{\to} \chi_p^2$ Spherical symmetry:  $p\|V_n\|_F^2 \stackrel{d}{\to} \chi_{p^2}^2$ 

# Generalized Wilcoxon Signed-rank test

• The generalized Wilcoxon signed-rank statistic is

$$\mathbf{W}_n := \frac{1}{\sqrt{n}} \sum_{i=1}^n S_n(\mathbf{X}_i) R_n(\mathbf{X}_i)$$

•  $\mathbf{W}_n$  is distribution-free under  $\mathrm{H}_0 : \mathbf{X} \stackrel{d}{=} Q\mathbf{X} \quad \forall \ Q \in \mathcal{G}$ 

# Generalized Wilcoxon Signed-rank test

• The generalized Wilcoxon signed-rank statistic is

$$\mathbf{W}_n := \frac{1}{\sqrt{n}} \sum_{i=1}^n S_n(\mathbf{X}_i) R_n(\mathbf{X}_i)$$

•  $\mathbf{W}_n$  is distribution-free under  $\mathrm{H}_0: \mathbf{X} \stackrel{d}{=} Q\mathbf{X} \ \forall Q \in \mathcal{G}$ 

Asymptotic normality of  $\mathbf{W}_n$  [Huang & S. (2023+)]

Suppose: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  & 2nd moment convergence; (ii)  $\mathbb{E}[G] = \mathbf{0}_{p \times p}$  where  $G \sim \text{Uniform}(\mathcal{G})$ ; Then:

$$\mathbf{W}_{n} \stackrel{d}{\rightarrow} N\left(\mathbf{0}_{p}, \Sigma_{\mathrm{GH}}\right),$$

where  $\Sigma_{\rm GH}$  be the covariance matrix of **GH**, with  $G \perp \mathbf{H}$  (here  $\mathbf{H} \sim \nu$ ).

# Generalized Wilcoxon Signed-rank test

• The generalized Wilcoxon signed-rank statistic is

$$\mathbf{W}_n := \frac{1}{\sqrt{n}} \sum_{i=1}^n S_n(\mathbf{X}_i) R_n(\mathbf{X}_i)$$

•  $\mathbf{W}_n$  is distribution-free under  $\mathrm{H}_0: \mathbf{X} \stackrel{d}{=} Q\mathbf{X} \ \forall Q \in \mathcal{G}$ 

Asymptotic normality of  $\mathbf{W}_n$  [Huang & S. (2023+)]

Suppose: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  & 2nd moment convergence; (ii)  $\mathbb{E}[G] = \mathbf{0}_{p \times p}$  where  $G \sim \text{Uniform}(\mathcal{G})$ ; Then:

$$\mathbf{W}_{n} \stackrel{d}{\rightarrow} N\left(\mathbf{0}_{p}, \Sigma_{\mathrm{GH}}\right),$$

where  $\Sigma_{\rm GH}$  be the covariance matrix of **GH**, with **G**  $\perp \!\!\!\perp$  **H** (here **H**  $\sim \nu$ ).

 $\bullet\,$  The Wilcoxon signed-rank test rejects  ${\rm H}_0$  for

$$\mathbf{W}_n^{ op} \mathbf{\Sigma}_{\mathrm{GH}}^{-1} \mathbf{W}_n \geq c_{\alpha}$$

•  $c_{\alpha}$  is the universal cut-off; well-approximable by the  $\chi^2_p$ -quantile

The generalized Wilcoxon signed-rank statistic is

$$\mathbf{W}_n := \frac{1}{\sqrt{n}} \sum_{i=1}^n S_n(\mathbf{X}_i) R_n(\mathbf{X}_i)$$

Test for  $\mathcal{G}$ -symmetry:  $H_0 : \mathbf{X} \stackrel{d}{=} Q\mathbf{X} \quad \forall \ Q \in \mathcal{G}, \quad vs. \quad H_1 : not \quad H_0$ 

Consistency of WSR for testing G-symmetry [Huang & S. (2023+)]

Assume: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$ ; (ii) 1st moment convergence Then, the Wilcoxon signed-rank test which rejects  $H_0$  for

 $\mathbf{W}_n^{ op} \mathbf{\Sigma}_{\mathrm{GH}}^{-1} \mathbf{W}_n \geq c_{lpha}$ 

is consistent against all alternatives for which

 $\mathbb{E}[
abla\psi(\mathbf{X})] 
eq \mathbf{0}.^{\mathsf{a}}$ 

 ${}^{a}\mathbb{E}[\nabla\psi(X)] \neq \mathbf{0}$  holds for location shift models if  $\psi(\cdot)$  is strictly convex &  $-I_{p} \in \mathcal{G}$ .

Asymptotics under local alternatives [Huang & S. (2023+)]

Let  $X_1, \ldots, X_n$  be iid  $f(\cdot - \theta)$  on  $\mathbb{R}^p$ ; here f is *G*-symmetric distribution. Consider testing:

$$\mathrm{H}_{0}: \boldsymbol{\theta} = \mathbf{0}_{p}$$
 versus  $\mathrm{H}_{1}: \boldsymbol{\theta} = \frac{\mu}{\sqrt{n}}; \quad \mu \neq \mathbf{0}_{p} \in \mathbb{R}^{p}$ 

Under 'suitable' assumptions<sup>a</sup> and standard regularity conditions of the parametric family  $\{f(\cdot - \theta)\}_{\theta \in \mathbb{R}^p}$  (e.g., QMD), we have, under H<sub>1</sub>:

 $\mathbf{W}_{n} \xrightarrow{d} \mathcal{N}(\gamma, \Sigma_{CH}).$ 

where  $\gamma := \mathbb{E}_{\mathrm{H}_{\mathbf{0}}}\left[\nabla \psi(\mathbf{X}) \frac{\mu^{\top} \nabla f(\mathbf{X})}{f(\mathbf{X})}\right] \in \mathbb{R}^{p}.$ 

<sup>a</sup>(i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  & 2nd moment convergence; (ii)  $\mathbb{E}[G] = \mathbf{0}_{p \times p}$ 

• Generalized WSR test:  $\mathbf{W}_n^{\top} \Sigma_{\mathrm{GH}}^{-1} \mathbf{W}_n \xrightarrow{d} \left\| \Sigma_{\mathrm{GH}}^{-1/2} \gamma + N(\mathbf{0}, I_p) \right\|^2$ 

• The non-centrality parameter of generalized WSR test is  $\|\sum_{CH}^{-1/2} \gamma\|^2$ 

Asymptotics under local alternatives [Huang & S. (2023+)]

Let  $X_1, \ldots, X_n$  be iid  $f(\cdot - \theta)$  on  $\mathbb{R}^p$ ; here f is *G*-symmetric distribution. Consider testing:

$$\mathrm{H}_{0}: \boldsymbol{\theta} = \mathbf{0}_{p}$$
 versus  $\mathrm{H}_{1}: \boldsymbol{\theta} = \frac{\mu}{\sqrt{n}}; \quad \mu \neq \mathbf{0}_{p} \in \mathbb{R}^{p}$ 

Under 'suitable' assumptions<sup>a</sup> and standard regularity conditions of the parametric family  $\{f(\cdot - \theta)\}_{\theta \in \mathbb{R}^p}$  (e.g., QMD), we have, under H<sub>1</sub>:

 $\mathbf{W}_{n} \xrightarrow{d} \mathcal{N}(\gamma, \Sigma_{CH}).$ 

where  $\gamma := \mathbb{E}_{\mathrm{H}_{\mathbf{0}}}\left[\nabla \psi(\mathbf{X}) \frac{\mu^{\top} \nabla f(\mathbf{X})}{f(\mathbf{X})}\right] \in \mathbb{R}^{p}.$ 

<sup>a</sup>(i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  & 2nd moment convergence; (ii)  $\mathbb{E}[G] = \mathbf{0}_{\rho \times \rho}$ 

- Generalized WSR test:  $\mathbf{W}_n^{\top} \Sigma_{\mathrm{GH}}^{-1} \mathbf{W}_n \xrightarrow{d} \left\| \Sigma_{\mathrm{GH}}^{-1/2} \gamma + N(\mathbf{0}, I_p) \right\|^2$
- The non-centrality parameter of generalized WSR test is  $\|\sum_{CH}^{-1/2} \gamma\|^2$

**Question**: How does this compare with Hotelling's  $T^2$  test?

# Generalized Signs and Ranks

- Connection to Optimal Transport
- Generalized Signs, Ranks and Signed-ranks
- Population Analogues

# 2 Multivariate Distribution-free tests for Symmetry

- Generalized Sign test and Wilcoxon Signed-rank test
- Lower bounds on Asymptotic (Pitman) Relative Efficiency

- **Question**: How to compare two consistent tests  $S_n$  and  $T_n$ ?
- Asymptotic relative (Pitman) efficiency (ARE) [Pitman (1948), Serfling (1980), Lehmann & Romano (2005), van der Vaart (1998)]

- **Question**: How to compare two consistent tests  $S_n$  and  $T_n$ ?
- Asymptotic relative (Pitman) efficiency (ARE) [Pitman (1948), Serfling (1980), Lehmann & Romano (2005), van der Vaart (1998)]
- Data:  $X_1, \ldots, X_n \stackrel{iid}{\sim} P_{\theta}$
- $\{P_{\theta}\}_{\theta \in \Theta \subset \mathbb{R}^{p}}$ : "smooth" (satisfies DQM) parametric family

- **Question**: How to compare two consistent tests  $S_n$  and  $T_n$ ?
- Asymptotic relative (Pitman) efficiency (ARE) [Pitman (1948), Serfling (1980), Lehmann & Romano (2005), van der Vaart (1998)]
- Data:  $X_1, \ldots, X_n \stackrel{iid}{\sim} P_{\theta}$
- $\{P_{\theta}\}_{\theta \in \Theta \subset \mathbb{R}^{p}}$ : "smooth" (satisfies DQM) parametric family
- Test  $H_0: \theta = 0$  vs.  $H_1: \theta = \Delta; \quad \Delta \to 0$

- **Question**: How to compare two consistent tests  $S_n$  and  $T_n$ ?
- Asymptotic relative (Pitman) efficiency (ARE) [Pitman (1948), Serfling (1980), Lehmann & Romano (2005), van der Vaart (1998)]
- Data:  $X_1, \ldots, X_n \stackrel{iid}{\sim} P_{\theta}$
- $\{P_{\theta}\}_{\theta \in \Theta \subset \mathbb{R}^{p}}$ : "smooth" (satisfies DQM) parametric family
- Test  $H_0: \theta = 0$  vs.  $H_1: \theta = \Delta; \quad \Delta \to 0$
- Fix  $\alpha \in (0,1)$  (level) and  $\beta \in (\alpha,1)$  (power)

- **Question**: How to compare two consistent tests  $S_n$  and  $T_n$ ?
- Asymptotic relative (Pitman) efficiency (ARE) [Pitman (1948), Serfling (1980), Lehmann & Romano (2005), van der Vaart (1998)]
- Data:  $X_1, \ldots, X_n \stackrel{iid}{\sim} P_{\theta}$
- $\{P_{\theta}\}_{\theta \in \Theta \subset \mathbb{R}^{p}}$ : "smooth" (satisfies DQM) parametric family
- **Test**  $H_0: \theta = 0$  vs.  $H_1: \theta = \Delta; \quad \Delta \to 0$
- Fix  $\alpha \in (0,1)$  (level) and  $\beta \in (\alpha,1)$  (power)

• Let  $N_{\Delta}(T_{\cdot}) \equiv N_{\Delta}$  denote the minimum number of samples s.t.:

 $\mathbb{E}_{\mathrm{H}_{\mathbf{0}}}[\mathcal{T}_{\mathcal{N}_{\Delta}}] = \alpha \qquad \text{and} \qquad \mathbb{E}_{\mathrm{H}_{\mathbf{1}}}[\mathcal{T}_{\mathcal{N}_{\Delta}}] \geq \beta$ 

- **Question**: How to compare two consistent tests  $S_n$  and  $T_n$ ?
- Asymptotic relative (Pitman) efficiency (ARE) [Pitman (1948), Serfling (1980), Lehmann & Romano (2005), van der Vaart (1998)]

• Data: 
$$X_1, \ldots, X_n \stackrel{iid}{\sim} P_{\theta}$$

- $\{P_{\theta}\}_{\theta \in \Theta \subset \mathbb{R}^{p}}$ : "smooth" (satisfies DQM) parametric family
- **Test**  $H_0: \theta = 0$  vs.  $H_1: \theta = \Delta; \quad \Delta \to 0$
- Fix  $\alpha \in (0,1)$  (level) and  $\beta \in (\alpha,1)$  (power)

• Let  $N_{\Delta}(T_{\cdot}) \equiv N_{\Delta}$  denote the minimum number of samples s.t.:

 $\mathbb{E}_{\mathrm{H}_{\mathbf{0}}}[\mathcal{T}_{\mathcal{N}_{\Delta}}] = \alpha \qquad \text{and} \qquad \mathbb{E}_{\mathrm{H}_{\mathbf{1}}}[\mathcal{T}_{\mathcal{N}_{\Delta}}] \geq \beta$ 

• The asymptotic (Pitman) efficiency of  $S_n$  w.r.t.  $T_n$  is given by  $N_{\Delta}(T_n)$ 

$$\operatorname{ARE}(S_n, T_n) := \lim_{\Delta \to 0} \frac{N_{\Delta}(T_n)}{N_{\Delta}(S_n)}$$

- **Question**: How to compare two consistent tests  $S_n$  and  $T_n$ ?
- Asymptotic relative (Pitman) efficiency (ARE) [Pitman (1948), Serfling (1980), Lehmann & Romano (2005), van der Vaart (1998)]

• Data: 
$$X_1, \ldots, X_n \stackrel{iid}{\sim} P_{\theta}$$

- $\{P_{\theta}\}_{\theta \in \Theta \subset \mathbb{R}^{p}}$ : "smooth" (satisfies DQM) parametric family
- Test  $H_0: \theta = 0$  vs.  $H_1: \theta = \Delta; \quad \Delta \to 0$
- Fix  $\alpha \in (0,1)$  (level) and  $\beta \in (\alpha,1)$  (power)

• Let  $N_{\Delta}(T_{\cdot}) \equiv N_{\Delta}$  denote the minimum number of samples s.t.:

 $\mathbb{E}_{\mathrm{H}_{\mathbf{0}}}[\mathcal{T}_{\mathcal{N}_{\Delta}}] = \alpha \qquad \text{and} \qquad \mathbb{E}_{\mathrm{H}_{\mathbf{1}}}[\mathcal{T}_{\mathcal{N}_{\Delta}}] \geq \beta$ 

• The asymptotic (Pitman) efficiency of  $S_n$  w.r.t.  $T_n$  is given by  $ARE(S_n, T_n) := \lim_{\Delta \to 0} \frac{N_{\Delta}(T_n)}{N_{\Delta}(S_n)}$ 

ARE  $(S_n, T_n)$  can depend on  $\alpha$  and  $\beta$ , but in some cases they don't!

Hotelling  $T^2$ :  $n\overline{\mathbf{X}}^{\top} S_n^{-1} \overline{\mathbf{X}}$  where  $S_n := \frac{1}{n-1} \sum_{i=1}^n (\mathbf{X}_i - \overline{\mathbf{X}}) (\mathbf{X}_i - \overline{\mathbf{X}})^{\top} \xrightarrow{p} \Sigma_{\mathbf{X}} := \mathbb{E} (\mathbf{X} - \mathbb{E}\mathbf{X}) (\mathbf{X} - \mathbb{E}\mathbf{X})^{\top}.$ 

Generalized WSR:  $W_n^{\top} \Sigma_{GH}^{-1} W_n$ 

• 
$$X_1, \ldots, X_n \stackrel{iid}{\sim} f(\cdot - \theta)$$
; f is *G*-symmetric

- $\{f(\cdot \theta)\}$ : "smooth" (satisfies DQM) parametric family
- Consider  $H_0: \theta = \mathbf{0}_p$  vs.  $H_1: \theta = \frac{\mu}{\sqrt{n}}; \quad \mu \neq \mathbf{0} \in \mathbb{R}^p$

**Result**: ARE 
$$(\mathbf{W}_n, \bar{\mathbf{X}}_n) = \frac{\|\boldsymbol{\Sigma}_{GH}^{-1/2} \boldsymbol{\gamma}\|^2}{\|\boldsymbol{\Sigma}_{\mathbf{X}}^{-1/2} \boldsymbol{\mu}\|^2}; \quad \boldsymbol{\gamma} = \mathbb{E}_{H_0} \left[ \nabla \psi(\mathbf{X}) \frac{\boldsymbol{\mu}^\top \nabla f(\mathbf{X})}{f(\mathbf{X})} \right].$$

Hotelling  $T^2$ :  $n\overline{\mathbf{X}}^{\top} S_n^{-1} \overline{\mathbf{X}}$  where  $S_n := \frac{1}{n-1} \sum_{i=1}^n (\mathbf{X}_i - \overline{\mathbf{X}}) (\mathbf{X}_i - \overline{\mathbf{X}})^{\top} \xrightarrow{p} \Sigma_{\mathbf{X}} := \mathbb{E} (\mathbf{X} - \mathbb{E}\mathbf{X}) (\mathbf{X} - \mathbb{E}\mathbf{X})^{\top}.$ 

Generalized WSR:  $W_n^{\top} \Sigma_{GH}^{-1} W_n$ 

• 
$$X_1, \ldots, X_n \stackrel{iid}{\sim} f(\cdot - \theta)$$
; f is *G*-symmetric

- $\{f(\cdot \theta)\}$ : "smooth" (satisfies DQM) parametric family
- Consider  $H_0: \theta = \mathbf{0}_p$  vs.  $H_1: \theta = \frac{\mu}{\sqrt{n}}; \quad \mu \neq \mathbf{0} \in \mathbb{R}^p$

**Result**: ARE 
$$(\mathbf{W}_n, \bar{\mathbf{X}}_n) = \frac{\|\boldsymbol{\Sigma}_{GH}^{-1/2} \boldsymbol{\gamma}\|^2}{\|\boldsymbol{\Sigma}_{\mathbf{X}}^{-1/2} \boldsymbol{\mu}\|^2}; \quad \boldsymbol{\gamma} = \mathbb{E}_{H_0} \left[ \nabla \psi(\mathbf{X}) \frac{\boldsymbol{\mu}^\top \nabla f(\mathbf{X})}{f(\mathbf{X})} \right].$$

### Some observations

- Expression of ARE  $(\mathbf{W}_n, \bar{\mathbf{X}}_n)$  does not depend on  $\alpha$  and  $\beta$
- ARE  $(\mathbf{W}_n, \bar{\mathbf{X}}_n)$  can depend on  $\nu$  [Deb, Bhattacharya & S. (2021)]

Hotelling  $T^2$ :  $n\overline{\mathbf{X}}^{\top} S_n^{-1} \overline{\mathbf{X}}$  where  $S_n := \frac{1}{n-1} \sum_{i=1}^n (\mathbf{X}_i - \overline{\mathbf{X}}) (\mathbf{X}_i - \overline{\mathbf{X}})^{\top} \xrightarrow{p} \Sigma_{\mathbf{X}} := \mathbb{E} (\mathbf{X} - \mathbb{E}\mathbf{X}) (\mathbf{X} - \mathbb{E}\mathbf{X})^{\top}.$ 

Generalized WSR:  $W_n^{\top} \Sigma_{GH}^{-1} W_n$ 

• 
$$X_1, \ldots, X_n \stackrel{iid}{\sim} f(\cdot - \theta)$$
; f is *G*-symmetric

- $\{f(\cdot \theta)\}$ : "smooth" (satisfies DQM) parametric family
- Consider  $H_0: \theta = \mathbf{0}_p$  vs.  $H_1: \theta = \frac{\mu}{\sqrt{n}}; \quad \mu \neq \mathbf{0} \in \mathbb{R}^p$

**Result**: ARE 
$$(\mathbf{W}_n, \bar{\mathbf{X}}_n) = \frac{\|\boldsymbol{\Sigma}_{GH}^{-1/2} \boldsymbol{\gamma}\|^2}{\|\boldsymbol{\Sigma}_{\mathbf{X}}^{-1/2} \boldsymbol{\mu}\|^2}; \quad \boldsymbol{\gamma} = \mathbb{E}_{H_0} \left[ \nabla \psi(\mathbf{X}) \frac{\boldsymbol{\mu}^\top \nabla f(\mathbf{X})}{f(\mathbf{X})} \right].$$

### Some observations

- Expression of ARE  $(\mathbf{W}_n, \bar{\mathbf{X}}_n)$  does not depend on  $\alpha$  and  $\beta$
- ARE  $(\mathbf{W}_n, \bar{\mathbf{X}}_n)$  can depend on  $\nu$  [Deb, Bhattacharya & S. (2021)]

Can we lower bound ARE for sub-classes of multivariate dists., i.e.,

 $\min_{\mathcal{F}} \operatorname{ARE} \left( \mathbf{W}_n, \bar{\mathbf{X}}_n \right) = ??$ 

**Gaussian case:** f is density of  $N(\mathbf{0}_p, \Sigma_X)$ , where  $\Sigma_X$  is p.d. (unknown)

## Theorem [Huang & S. (2023+)]

Suppose: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  & 2nd moment convergence; (ii)  $\mathbb{E}[G] = \mathbf{0}_{p \times p}$  where  $G \sim \text{Uniform}(\mathcal{G})$ .

If  $GH \sim N(\mathbf{0}_p, I_p)$ , then

ARE  $(\mathbf{W}_n, \bar{\mathbf{X}}_n) = 1$ .

**Gaussian case:** f is density of  $N(\mathbf{0}_p, \Sigma_X)$ , where  $\Sigma_X$  is p.d. (unknown)

## Theorem [Huang & S. (2023+)]

Suppose: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  & 2nd moment convergence; (ii)  $\mathbb{E}[G] = \mathbf{0}_{p \times p}$  where  $G \sim \text{Uniform}(\mathcal{G})$ .

If  $GH \sim N(\mathbf{0}_p, I_p)$ , then

ARE  $(\mathbf{W}_n, \bar{\mathbf{X}}_n) = 1$ .

If **GH** has the spherical uniform distribution<sup>a</sup>, then

$$\operatorname{ARE}\left(\mathbf{W}_{n}, \bar{\mathbf{X}}_{n}\right) = \kappa_{p} \geq \begin{cases} 0.95, & \text{for } p < 5\\ 0.648, & \forall p \end{cases}$$

 ${}^{a}\kappa_{1} = 3/\pi$  reduces to the classical ARE of the WSR test against the *t*-test.

**Gaussian case:** f is density of  $N(\mathbf{0}_p, \Sigma_X)$ , where  $\Sigma_X$  is p.d. (unknown)

## Theorem [Huang & S. (2023+)]

Suppose: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  & 2nd moment convergence; (ii)  $\mathbb{E}[G] = \mathbf{0}_{p \times p}$  where  $G \sim \text{Uniform}(\mathcal{G})$ .

If  $GH \sim N(\mathbf{0}_p, I_p)$ , then

ARE  $(\mathbf{W}_n, \bar{\mathbf{X}}_n) = 1$ .

If **GH** has the spherical uniform distribution<sup>a</sup>, then

$$\operatorname{ARE}\left(\mathbf{W}_{n}, \bar{\mathbf{X}}_{n}\right) = \kappa_{p} \geq \begin{cases} 0.95, & \text{for } p < 5\\ 0.648, & \forall p \end{cases}$$

 ${}^{a}\kappa_{1} = 3/\pi$  reduces to the classical ARE of the WSR test against the *t*-test.

- Generalizes Chernoff & Savage (1958)
- ARE can be arbitrarily large (can tend to  $+\infty$ ) for heavy tailed dists.

$$X_1, \ldots, X_n$$
 be iid  $f(\cdot - \theta)$  on  $\mathbb{R}^p$ ; here  $f$  is density of a  $\mathcal{G}$ -symmetric dist.

## Independent components

$$\mathcal{F}_{\text{ind}} = \{f(\cdot - \theta)\}$$
 has density  $f(z_1, \ldots, z_p) = \prod_{i=1}^p f_i(z_i)$ 

# Theorem [Huang & S. (2023+)]

Suppose: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  & 2nd moment convergence; (ii)  $\mathbb{E}[G] = \mathbf{0}_{p \times p}$  where  $G \sim \text{Uniform}(\mathcal{G})$ .

If  $GH \sim \text{Uniform}(-1,1)^p$ , then

$$\min_{\mathcal{F}_{\mathrm{ind}}} \mathrm{ARE}\left(\mathbf{W}_n, \bar{\mathbf{X}}_n\right) = 0.864.$$

$$X_1, \ldots, X_n$$
 be iid  $f(\cdot - \theta)$  on  $\mathbb{R}^p$ ; here  $f$  is density of a  $\mathcal{G}$ -symmetric dist.

#### Independent components

$$\mathcal{F}_{\text{ind}} = \{f(\cdot - \theta)\}$$
 has density  $f(z_1, \ldots, z_p) = \prod_{i=1}^p f_i(z_i)$ 

# Theorem [Huang & S. (2023+)]

Suppose: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  & 2nd moment convergence; (ii)  $\mathbb{E}[G] = \mathbf{0}_{p \times p}$  where  $G \sim \text{Uniform}(\mathcal{G})$ .

If  $GH \sim \text{Uniform}(-1,1)^p$ , then

$$\min_{\mathcal{F}_{\mathrm{ind}}} \mathrm{ARE}\left(\mathbf{W}_n, \bar{\mathbf{X}}_n\right) = 0.864.$$

If  $GH \sim N(\mathbf{0}_p, I_p)$ , then

 $\min_{\mathcal{F}_{\mathrm{ind}}} \mathrm{ARE}\left(\mathbf{W}_n, \bar{\mathbf{X}}_n\right) = \mathbf{1}.$ 

$$X_1, \ldots, X_n$$
 be iid  $f(\cdot - \theta)$  on  $\mathbb{R}^p$ ; here  $f$  is density of a  $\mathcal{G}$ -symmetric dist.

#### Independent components

$$\mathcal{F}_{\text{ind}} = \{f(\cdot - \theta)\}$$
 has density  $f(z_1, \ldots, z_p) = \prod_{i=1}^p f_i(z_i)$ 

## Theorem [Huang & S. (2023+)]

Suppose: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  & 2nd moment convergence; (ii)  $\mathbb{E}[G] = \mathbf{0}_{p \times p}$  where  $G \sim \text{Uniform}(\mathcal{G})$ .

If  $GH \sim \text{Uniform}(-1,1)^p$ , then

$$\min_{\mathcal{F}_{\mathrm{ind}}} \mathrm{ARE}\left(\mathbf{W}_n, \bar{\mathbf{X}}_n\right) = 0.864.$$

If  $GH \sim N(\mathbf{0}_p, I_p)$ , then

 $\min_{\mathcal{F}_{\mathrm{ind}}} \mathrm{ARE}\left(\mathbf{W}_n, \bar{\mathbf{X}}_n\right) = 1.$ 

- Generalizes Hodges & Lehmann (1956), Chernoff & Savage (1958)
- ARE can be arbitrarily large (can tend to  $+\infty$ ) for heavy tailed dists.

## Elliptically symmetric distributions

 $\mathcal{F}_{ell} = \{f(\cdot - \theta)\}$  is class of elliptically symmetric distributions on  $\mathbb{R}^p$ , i.e.,

 $f(\mathbf{x}) \propto (\det(\Sigma_X))^{-\frac{1}{2}} \underline{f} \left( \mathbf{x}^\top \Sigma_X^{-1} \mathbf{x} \right), \quad \text{for all } \mathbf{x} \in \mathbb{R}^{\rho}$ 

# Elliptically symmetric distributions

 $\mathcal{F}_{ell} = \{f(\cdot - \theta)\}$  is class of elliptically symmetric distributions on  $\mathbb{R}^p$ , i.e.,

$$f(\mathbf{x}) \propto (\det(\Sigma_X))^{-rac{1}{2}} \underline{f}\left(\mathbf{x}^{ op} \Sigma_X^{-1} \mathbf{x}
ight), \quad ext{for all } \mathbf{x} \in \mathbb{R}^p$$

## Theorem [Huang & S. (2023+)]

Suppose: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  & 2nd moment convergence; (ii)  $\mathbb{E}[G] = \mathbf{0}_{p \times p}$  where  $G \sim \text{Uniform}(\mathcal{G})$ .

If  $GH \sim N(\mathbf{0}_p, I_p)$ , then  $\min_{\mathcal{F}_{ell}} ARE(\mathbf{W}_n, \bar{\mathbf{X}}_n) = 1.$ 

### Elliptically symmetric distributions

 $\mathcal{F}_{ell} = \{f(\cdot - \theta)\}$  is class of elliptically symmetric distributions on  $\mathbb{R}^p$ , i.e.,

 $f(\mathbf{x}) \propto (\det(\Sigma_X))^{-\frac{1}{2}} \underline{f} \left( \mathbf{x}^\top \Sigma_X^{-1} \mathbf{x} \right), \quad \text{for all } \mathbf{x} \in \mathbb{R}^{\rho}$ 

## Theorem [Huang & S. (2023+)]

Suppose: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  & 2nd moment convergence; (ii)  $\mathbb{E}[G] = \mathbf{0}_{p \times p}$  where  $G \sim \text{Uniform}(\mathcal{G})$ .

If  $GH \sim N(\mathbf{0}_p, I_p)$ , then  $\min_{\mathcal{F}_{ell}} ARE(\mathbf{W}_n, \bar{\mathbf{X}}_n) = 1.$ 

If GH has the spherical uniform distribution, then

 $\min_{\mathcal{F}_{\mathrm{ell}}} \mathrm{ARE}\left(\mathbf{W}_{n}, \bar{\mathbf{X}}_{n}\right) \geq 0.648.$ 

## Elliptically symmetric distributions

 $\mathcal{F}_{ell} = \{f(\cdot - \theta)\}$  is class of elliptically symmetric distributions on  $\mathbb{R}^p$ , i.e.,

$$f(\mathbf{x}) \propto (\det(\Sigma_X))^{-rac{1}{2}} \underline{f}\left(\mathbf{x}^{ op} \Sigma_X^{-1} \mathbf{x}
ight), \quad ext{for all } \mathbf{x} \in \mathbb{R}^p$$

## Theorem [Huang & S. (2023+)]

Suppose: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  & 2nd moment convergence; (ii)  $\mathbb{E}[G] = \mathbf{0}_{p \times p}$  where  $G \sim \text{Uniform}(\mathcal{G})$ .

If  $GH \sim N(\mathbf{0}_p, I_p)$ , then  $\min_{\mathcal{F}_{ell}} ARE(\mathbf{W}_n, \bar{\mathbf{X}}_n) = 1.$ 

If GH has the spherical uniform distribution, then

 $\min_{\mathcal{F}_{\mathrm{ell}}} \mathrm{ARE}\left(\mathbf{W}_n, \bar{\mathbf{X}}_n\right) \geq 0.648.$ 

This generalizes the famous result of Chernoff and Savage (1958)

## Elliptically symmetric distributions

 $\mathcal{F}_{ell} = \{f(\cdot - \theta)\}$  is class of elliptically symmetric distributions on  $\mathbb{R}^{p}$ , i.e.,

$$f(\mathbf{x}) \propto (\det(\Sigma_X))^{-rac{1}{2}} \underline{f}\left(\mathbf{x}^{ op} \Sigma_X^{-1} \mathbf{x}
ight), \quad ext{for all } \mathbf{x} \in \mathbb{R}^p$$

## Theorem [Huang & S. (2023+)]

Suppose: (i)  $\nu_n := \frac{1}{n} \sum_{i=1}^n \delta_{\mathbf{h}_i} \xrightarrow{d} \nu$  & 2nd moment convergence; (ii)  $\mathbb{E}[G] = \mathbf{0}_{p \times p}$  where  $G \sim \text{Uniform}(\mathcal{G})$ .

If  $GH \sim N(\mathbf{0}_p, I_p)$ , then  $\min_{\mathcal{F}_{ell}} ARE(\mathbf{W}_n, \bar{\mathbf{X}}_n) = 1.$ 

If GH has the spherical uniform distribution, then

 $\min_{\mathcal{F}_{\mathrm{ell}}} \mathrm{ARE}\left(\mathbf{W}_{n}, \bar{\mathbf{X}}_{n}\right) \geq 0.648.$ 

This generalizes the famous result of Chernoff and Savage (1958)

Similar lower bounds can also be obtained for other sub-classes of multivariate distributions (e.g., the model for ICA)

# Distribution-free confidence set for the center of symmetry

X ~ P on ℝ<sup>p</sup> has a G-symmetric distribution with center of symmetry θ<sup>\*</sup> (unknown) if

$$(\mathbf{X} - \boldsymbol{\theta}^*) \stackrel{d}{=} Q(\mathbf{X} - \boldsymbol{\theta}^*), \qquad \forall Q \in \mathcal{G}$$

Goal: Given data X<sub>1</sub>,..., X<sub>n</sub> iid P, find a distribution-free confidence set for θ\*

# Distribution-free confidence set for the center of symmetry

X ~ P on ℝ<sup>p</sup> has a G-symmetric distribution with center of symmetry θ<sup>\*</sup> (unknown) if

$$(\mathbf{X} - \boldsymbol{ heta}^*) \stackrel{d}{=} Q(\mathbf{X} - \boldsymbol{ heta}^*), \qquad orall Q \in \mathcal{G}$$

- Goal: Given data X<sub>1</sub>,..., X<sub>n</sub> iid P, find a distribution-free confidence set for θ\*
- Idea: Invert the collection of hypothesis tests
- Fix  $\boldsymbol{\theta} \in \mathbb{R}^{p}$ , and test

$$\mathrm{H}_{\mathbf{0},\boldsymbol{\theta}}: (\mathbf{X} - \boldsymbol{\theta}) \stackrel{d}{=} Q(\mathbf{X} - \boldsymbol{\theta}), \quad \forall Q \in \mathcal{G}$$

using generalized Wilcoxon signed-rank test with  $\{\mathbf{X}_i - \boldsymbol{\theta}\}_{i=1}^n$ 

•  $C := \{ \boldsymbol{\theta} : H_{0, \boldsymbol{\theta}} \text{ is accepted} \}$  — exact  $(1 - \alpha)$  confidence set for  $\boldsymbol{\theta}^*$ 

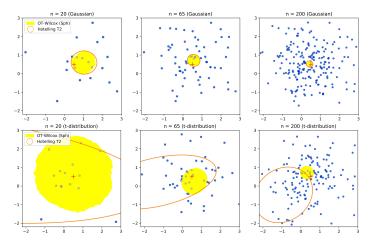


Figure: Confidence sets for  $\theta^*$  as the sample size *n* varies, obtained from (i) normal data (first row) and (ii) data from multivariate *t*-distribution with 1 degree of freedom (second row), for  $\mathcal{G}$  corresponding to spherical symmetry.



- Framework for distribution-free testing for multivariate symmetry
- Developed notions of generalized signs, ranks and signed-ranks
- Proposed generalizations of sign and Wilcoxon signed-rank tests

- Framework for distribution-free testing for multivariate symmetry
- Developed notions of generalized signs, ranks and signed-ranks
- Proposed generalizations of sign and Wilcoxon signed-rank tests
- Proposed tests are: (i) distribution-free and have good efficiency, (ii) computationally feasible, (iii) more powerful for distributions with heavy tails, and (iv) robust to outliers and contamination

- Framework for distribution-free testing for multivariate symmetry
- Developed notions of generalized signs, ranks and signed-ranks
- Proposed generalizations of sign and Wilcoxon signed-rank tests
- Proposed tests are: (i) distribution-free and have good efficiency, (ii) computationally feasible, (iii) more powerful for distributions with heavy tails, and (iv) robust to outliers and contamination
- Can develop universally consistent, distribution-free tests for multivariate symmetry using kernel methods (ongoing work)

Thank you very much!

**Questions?** 

Question: How to generate

$$S_n(\mathbf{X}_i) \equiv S(\mathbf{X}_i, R_n(\mathbf{X}_i)) := \underset{\substack{Q \in \mathcal{G}}}{\arg \min} \|Q^\top \mathbf{X}_i - R_n(\mathbf{X}_i)\|^2$$

when it is not unique?

Spherical symmetry  $\mathcal{G} = \mathrm{O}(p)$ 

Let

$$S(\mathbf{x}, \mathbf{h}) := \operatorname*{arg\,min}_{Q \in \mathcal{G}} \|Q^{\top}\mathbf{x} - \mathbf{h}\|^2.$$

If  $h, x \neq 0$ , let  $w = \frac{h}{\|h\|}$ , and  $v = \frac{x}{\|x\|}$ . Then, S(x, h) should be chosen uniformly from:

 $\{\boldsymbol{Q} \in \mathcal{O}(\boldsymbol{p}): \ \boldsymbol{v} = \boldsymbol{Q}\boldsymbol{w}\} = \{\boldsymbol{v}\boldsymbol{w}^\top + \boldsymbol{V}\boldsymbol{U}\boldsymbol{W}^\top: \ \boldsymbol{U} \in \mathcal{O}(\boldsymbol{p}-1)\},\$ 

where V and W are  $p \times (p-1)$  matrices such that  $V^{\top}V = W^{\top}W = I_{p-1}, V^{\top}\mathbf{v} = W^{\top}\mathbf{w} = 0.$