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Comparison of Distributions

• Question 1: Given distributions µi , i = 1, . . . ,N (or data points
sampled from µi ), find all pairwise distances

d(µi , µj) = ?

→ Unsupervised learning

Images as Distributions Gene expression data

3 / 27



Learning distributions

• Question 2: Given training data (µk , yk ), with classes yk ∈ C

Learn a function: f : P → C

Classify digits Transformation invariance
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Assumptions and goals
We address question 1 and 2 by embedding P into an L2-space using
optimal transport. Then use linear distance and linear classifier.

• Assumptions
• Distributions are generated by simple functions H ⊂ L2(Rd), i.e.
P = {h]µ : h ∈ H}

• H consists of shifts, scalings, shearings, perturbations
• Computation scales with complexity of H

• Goal for feature space
• Unsupervised: Euclidean distance in feature space approximates

Wasserstein distance between distributions
• Supervised: Separability of different families of distributions using

linear methods
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Optimal mass transport (OMT)
• Move mass from pile into hole in the cheapest way possible

respecting the underlying metric (Monge, 1781)

• Find function T with T]µ = ν that minimizes work

W2(µ, ν)
2 := min

T∈Πν
µ

∫
‖T (x)− x‖2 dµ(x).

• The argmin is the optimal transport, T ν
µ , the min is Wasserstein distance

• Exists and unique subject to regularity assumptions on µ, ν.
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Pros and Cons of OMT

• Pros: W2 is a metric on P(Rd ), well-developed theory,
interpolation, incorporates geometry of space

• Con: Computation of T ν
µ usually slow (linear program).

• Help: add regularizer, Sinkhorn algorithm

• Still: pairwise distances between µk , k = 1, . . . ,N needs
(N

2

)
OMT

computations.

• Con: Complexity independent of the family of distributions

• Learning? unsupervised: Wasserstein distance!
supervised: Embedding needed!

[Cuturi, NIPS 2013], Book: “Computational optimal transport” by Peyré, Cuturi, 2019

9 / 27



Outline

1 Learning on Distributions

2 Optimal Transport Theory and Embedding
Optimal Mass Transport
Linear Optimal Transport

3 Theoretical results

4 Experiments

5 Summary

10 / 27



Linear optimal transport (LOT)
Think of transport plan as a new set of features.
• LOT embedding: Pick a reference distribution σ:

Fσ : P(Rd )→ L2(Rd , σ)

µ 7→ Tµ
σ

• Distance: W LOT
2 (µ, ν) = ‖Tµ

σ − T ν
σ ‖σ

• Learning:

fµ : P(Rd )→ C
µ 7→ f (Tµ

σ ) for f : L2(Rd , σ)→ C

Questions: For which distributions P(Rd )? W LOT
2 (µ, ν) ≈W2(µ, ν)?

[Rohde et al. 2013, 2016, 2018], [Aldroubi, et al. 2021]
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For which distributions?

Consider distributions µ created by simple deformations of a template
distribution τ :
• Shifts: µ = (Sa)#τ for Sa(x) = x − a
• Scalings: µ = (Rc)#τ for Rc(x) = c · x , c > 0

• Why? They satisfy S = T S#τ
τ (S is already optimal!)

Shifts and scalings of template σ Shifts of template 1 and 2
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Compatible Transformations

• Need to find families of group actions that “interact nicely” with
optimal transport
• Easy to show that (S ◦ Tµσ )#σ = S#µ
• Problem: is S ◦ Tµσ the optimal map from σ to S#µ?
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Key observations

• This composition is the identity

P(Rd )→ L2(Rd , τ)→ P(Rd )

µ 7→ Tµ
τ 7→ Tµ

τ #τ = µ

i.e. the pushforward map is the left-inverse to LOT.
• Is it also right-inverse?

L2(Rd , τ)→ P(Rd )→ L2(Rd , τ)

h 7→ h#τ 7→ T h#τ
τ

?
= h,

• In general: no! Yes for shifts + scalings, and for shears with
symmetric positive definite matrix. Others?

• Compatibility condition: T h#τ
τ = h.

• Almost compatibility condition:

‖T h#τ
τ − h‖τ < ε.

Hence we allow perturbations of affine transformations.
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Distances in LOT embedding space

Theorem (Almost Isometry (M., Cloninger 2022))

Let σ, τ absolutely continuous and satisfy Caffarelli’s regularity
assumptions (convex supports). Let g,h be ε-perturbations of
elementary transformations. Then we have

0 ≤ W LOT
2 (g#τ, h#τ) − W2(g#τ, h#τ) ≤ Cσ,τ · ε+ Cσ,τ · ε1/2

LOT L2 Dist. Wasserstein-2 Dist.

• Corollary: If g,h only shifts and scalings (ε = 0), then LOT is
isometry.

• Key proof ingredient: 1
2−Hölder type regularity:

W LOT
2 (g#τ,h#τ) ≤ c1‖g − h‖τ + c2‖g − h‖1/2

τ

Basically follows from results by N. Gigli (2011). No regularity,
but weaker bound in [Merigot et al. 2020].

• Computational improvement: To compute the
(N

2

)
distances

between N distributions gi #τ need only N expensive OTs and(N
2

)
cheap Euclidean distances.
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Learning in LOT embedding space

Theorem (Linear Classifiers for Distributions (M., Cloninger 2022))

Let σ, τ1, τ2 absolutely continuous in P(Rd ), H convex set of
ε-perturbations of elementary transformations. If
• H]τ1, H]τ2 compact, and
• minimal distance W2(h1#τ1,h2#τ2) > δ,

then Fσ(H]τ1) and Fσ(H]τ2) are linearly separable in L2(Rd , σ).

• δ can be given explicitly based on σ, τ1, τ2, ε.
• First version of this result by Rohde et. al. 2018 for d = 1 and
ε = 0 (δ = 0 in this case).

• Uses Hahn-Banach theorem. Key proof ingredient: Convexity of
H is preserved via LOT.

• Subresult: If H is convex and Fσ is (almost) compatible with
action by H, then Fσ(H]τ) is (almost) convex.
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Theorem (Conditions on transformations (2022))

Same assumptions as above. If the Jacobian of Tµ
σ has a constant

orthonormal basis given by an orthogonal matrix P (i.e.
JTµ

σ
(x) = P>D(x)P), then

F(P) =

{
x 7→ P>


f1((Px)1)
f2((Px)2)

...
fn((Px)n))

+ b :
fj :R→R is monotonically

increasing and differentiable
and b ∈ Rn

}
.

is the set of transformations for which the compatibility condition
holds.

• In particular S(x) = Ax + b with A = PT DP (diagonalizable by
P).

• Comes down to maintaining convexity of ∇ϕ
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Experimental Validation
MNIST Classification Between 1’s and 2’s
• Data sampled from MNIST images
• Each image additionally augmented by random shift and scaling
• Sample k labeled examples of each class for training
• σ is centered normal distribution
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Experimental Validation (mild shearing)
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Experimental Validation (severe shearing)

MNIST Classification Between 7’s and 9’s
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Active learning in LOT space

• Iteratively choose 5 labels per step
• Refine sampling based of margin of remaining possible

separators
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Multiple embeddings, different references

• Use multiple embeddings to improve separability
• Quantify number of embeddings needed to achieve given

separation level δ > 0 allowing functions bounded by L
• References from the data set achieve better separation
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Summary

LOT feature space

• Pro: In shift/scalings/perturbation set-up, requires only N
expensive OT computations, instead of

(N
2

)
• Pro: Apply linear methods in embedding space to separate

classes of distributions, can be learned efficiently.
• Current research: Active learning

• Con: What happens beyond an ε perturbation?
• Current research: Redefine compatibility, deal with references

which are not absolutely continuous

• Con: Still: Slow to compute each of N embeddings
• Current research: Combine with entropic regularization on grid

• Current research: Deal with samples, find error bounds
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Thank you!

Questions?
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