# Introduction to unbalanced optimal transport

and its efficient computational solutions

Laetitia Chapel laetitia.chapel@irisa.fr

IRISA, Rennes, France Institut Agro Rennes-Angers

Kantorovich Initiative Seminar, May 2024

## **Table of Contents**

### **Optimal Transport**

Monge formulation Kantorovich formulation Some applications and limitations

### **Unbalanced Optimal Transport**

Definition Discrete formulation of UOT Partial OT UOT with KL UOT with quadratic penalty UOT with a geometric penalty

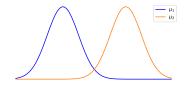
### Conclusion and some challenges

### Bibliography

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf \int c(x,\boldsymbol{t}(x)) d\mu_1(x)$$

where *t* is a **transport map** and  $t_{\#}\mu_1 = \mu_2$ 



Balanced optimal transport

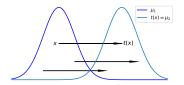
$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf \int c(x,\boldsymbol{t}(x)) d\mu_1(x)$$

where *t* is a **transport map** and  $t_{\#}\mu_1 = \mu_2$ 

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf \int c(x,\boldsymbol{t}(x)) d\mu_1(x)$$

where *t* is a **transport map** and  $t_{\#}\mu_1 = \mu_2$ 

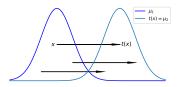


Defines for each particle located at x what is its destination t(x)

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf \int c(x,\boldsymbol{t}(x)) d\mu_1(x)$$

where *t* is a **transport map** and  $t_{\#}\mu_1 = \mu_2$ 



Defines for each particle located at x what is its destination t(x)

implies that  $\mu_1$  and  $\mu_2$  have the same masses (no mass creation nor destruction)

### **Balanced Optimal transport: Kantorovich formulation**

**Balanced** optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{\substack{\gamma \in \Gamma(\mu_1,\mu_2)}} \int_{X \times Y} c(x,y) d\gamma(x,y)$$

where  $\Gamma(\mu_1, \mu_2) \stackrel{\text{def}}{=} \{ \gamma \in \mathcal{M}_+(X \times Y) \text{ s.t. } | (\pi_x)_{\#} \gamma = \mu_1 \text{ and } (\pi_y)_{\#} \gamma = \mu_2 \} \text{ with } \pi_x : X \times Y \to X.$ 

Marginal constraints

### **Balanced Optimal transport: Kantorovich formulation**

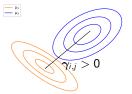
**Balanced** optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{\substack{\gamma \in \Gamma(\mu_1,\mu_2)}} \int_{X \times Y} c(x,y) d\gamma(x,y)$$

1.11

where  $\Gamma(\mu_1, \mu_2) \stackrel{\text{def}}{=} \{ \gamma \in \mathcal{M}_+(X \times Y) \text{ s.t. } | (\pi_x)_{\#} \gamma = \mu_1 \text{ and } (\pi_y)_{\#} \gamma = \mu_2 \} \text{ with } \pi_x : X \times Y \to X.$ 

Marginal constraints



with  $(\pi_x)_{\#} \gamma = \mu_1$ 

and  $(\pi_y)_{\#} \boldsymbol{\gamma} = \mu_2$ 

The **transport plan**  $\gamma(x, y)$  specifies for each pair (x, y) how many particles go from x to y still implies that  $\mu_1$  and  $\mu_2$  have the same masses

### OT Kantorovich formulation

## **Optimal transport** Balanced Optimal transport: Kantorovich formulation

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{\boldsymbol{\gamma} \in \Gamma(\mu_1,\mu_2)} \int_{X \times Y} c(x,y) d\boldsymbol{\gamma}(x,y)$$

where  $\Gamma(\mu_1, \mu_2) \stackrel{\text{def}}{=} \{ \gamma \in \mathcal{M}_+(X \times Y) \text{ s.t. } (\pi_x)_{\#} \gamma = \mu_1 \text{ and } (\pi_y)_{\#} \gamma = \mu_2 \}$  with  $\pi_x : X \times Y \to X$ . Can be rewritten with a penalty term

$$\mathcal{OT}(\mu_1,\mu_2) = \inf_{\gamma \ge 0} \int_{X \times Y} c(x,y) d\gamma(x,y) + l_{\{=\}} ((\pi_x)_{\#} \gamma | \mu_1) + l_{\{=\}} ((\pi_y)_{\#} \gamma | \mu_2)$$

with  $l_{\{=\}}(
u|\mu)$  is 0 if  $u = \mu$  and  $\infty$  otherwise.

#### OT Kantorovich formulation

### **Optimal transport** Balanced Optimal transport: Kantorovich formulation

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{\boldsymbol{\gamma} \in \Gamma(\mu_1,\mu_2)} \int_{X \times Y} c(x,y) d\boldsymbol{\gamma}(x,y)$$

where  $\Gamma(\mu_1, \mu_2) \stackrel{\text{def}}{=} \{ \gamma \in \mathcal{M}_+(X \times Y) \text{ s.t. } (\pi_x)_{\#} \gamma = \mu_1 \text{ and } (\pi_y)_{\#} \gamma = \mu_2 \}$  with  $\pi_x : X \times Y \to X$ . Can be rewritten with a penalty term

$$\mathcal{OT}(\mu_1,\mu_2) = \inf_{\gamma \ge 0} \int_{X \times Y} c(x,y) d\gamma(x,y) + l_{\{=\}} ((\pi_x)_{\#} \gamma | \mu_1) + l_{\{=\}} ((\pi_y)_{\#} \gamma | \mu_2)$$

with  $l_{\{=\}}(\nu|\mu)$  is 0 if  $\nu = \mu$  and  $\infty$  otherwise.

• When the distributions are discrete  $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$  and  $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$ , it is written

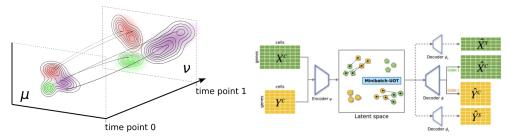
$$\mathcal{OT}(\mu_1,\mu_2) = \min_{\boldsymbol{\gamma} \in \Gamma(\mu_1,\mu_2)} \sum_{i,j} C_{i,j}\gamma_{i,j}$$

It is the same as the problem between their associated probability weight vectors **h** and **g**, with the cost matrix **C** depending on the support of  $\mu_1$  and  $\mu_2$ :

$$\mathcal{OT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) = \mathcal{OT}(\mu_1,\mu_2)$$

with  $C_{i,j} = C(x_i, y_j)$  and  $\gamma \in \mathbb{R}^{n \times m}$ 

- But, in many applications, we cannot/do not want to have the same masses and we may want to discard some outliers or limit the impact of the noise
  - In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to identify common genes [3].



### **Balanced Optimal transport in action**

- But, in many applications, we cannot/do not want to have the same masses and we may want to discard some outliers or limit the impact of the noise
  - In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to identify common genes [3].
  - In color transfer, to account for different proportions of colors [1]



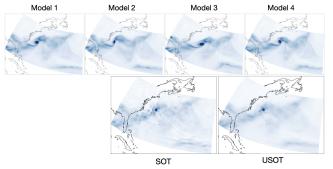






(c) Full histogram matching (d) Partial histogram matching L. Chapel • Introduction to UOT • Kantorovich Initiative Seminar, May 2024

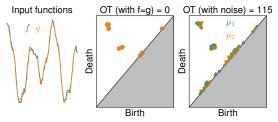
- But, in many applications, we cannot/do not want to have the same masses and we may want to discard some outliers or limit the impact of the noise
  - In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to identify common genes [3].
  - In color transfer, to account for different proportions of colors [1]
  - In geophysics, when averaging different models [7]



- But, in many applications, we cannot/do not want to have the same masses and we may want to discard some outliers or limit the impact of the noise
  - In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to identify common genes [3].
  - In color transfer, to account for different proportions of colors [1]
  - In geophysics, when averaging different models [7]
  - In machine learning, when some of the points are out of the distribution, for instance with WGAN [8]



- But, in many applications, we cannot/do not want to have the same masses and we may want to discard some outliers or limit the impact of the noise
  - In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to identify common genes [3].
  - In color transfer, to account for different proportions of colors [1]
  - In geophysics, when averaging different models [7]
  - In machine learning, when some of the points are out of the distribution, for instance with WGAN [8]
  - In topological analysis, to extract (topological) features such as gaps, connected component



## Optimal transport Balanced Optimal transport in action

But, in many applications, we cannot/do not want to have the same masses and we may want to discard some outliers or limit the impact of the noise

- In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to identify common genes [3].
- In color transfer, to account for different proportions of colors [1]
- In geophysics, when averaging different models [7]
- In machine learning, when some of the points are out of the distribution, for instance with WGAN [8]
- In topological analysis, to extract (topological) features such as gaps, connected component
- How to define outlier and noise-robust OT?
  - define robust variants of OT (e.g. medians of means OT)
  - pick a dedicated ground cost to avoid too much influence of samples that are too far away from the distributions
  - allow for some mass variation

## **Table of Contents**

### **Optimal Transport**

Monge formulation Kantorovich formulation Some applications and limitations

### Unbalanced Optimal Transport

Definition Discrete formulation of UOT Partial OT UOT with KL UOT with quadratic penalty UOT with a geometric penalty

Conclusion and some challenges

### Bibliography

# Unbalanced Optimal Transport Definition

key idea: relax the mass conservation constraint

### NUMERICAL RESOLUTION OF AN "UNBALANCED" MASS TRANSPORT PROBLEM

### JEAN-DAVID BENAMOU<sup>1</sup>

Abstract. We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented Lagrangian numerical method introduced in [6] is adapted to this "unbalanced" problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.

Mathematics Subject Classification. 35J60, 65K10, 78A05, 90B99.

Received: April 1st, 2003.

### reg. parameter

### 2.4. The mixed distance

In this paper we propose to work on unbalanced data by considering the mixed Wasserstein/ $L^2$ -distance in the following sense: given two possibly unbalanced densities  $\rho_0$  and  $\rho_1$ , find  $\tilde{\rho}_1$  – the closest density to  $\rho_1$  in the  $L^2$ -sense – which minimizes the Wasserstein distance  $d_{\text{wass}}(\rho_0, \tilde{\rho}_1)$ . It can be formulated as

L. Chapel • Introduction to UOT • Kantorovich Initiative Seminar, May 2024

# Unbalanced Optimal Transport Definition

Regularizing the balanced optimal transport, by replacing the hard constraints with some divergence D

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \inf_{\substack{\gamma \geq 0}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \underbrace{\operatorname{reg}}_{\substack{reg \\ + \lambda}} \underbrace{c(x,y)}_{p(\pi^1) \# \gamma | \mu_1) + D((\pi^2)_{\#} \gamma | \mu_2)}$$
Marginal constraints

with  $\lambda \geq 0$ : relaxing the constraints. When  $\lambda \to \infty$  we recover the balanced OT problem.

# Unbalanced Optimal Transport Definition

Regularizing the **balanced** optimal transport, by replacing the hard constraints with some divergence *D* 

$$\mathcal{UOT}(\mu_{1},\mu_{2}) \triangleq \inf_{\substack{\gamma \geq 0}} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{c(x,y)}{reg} d\gamma(x,y) + \lambda \left( D((\pi^{1})_{\#}\gamma|\mu_{1}) + D((\pi^{2})_{\#}\gamma|\mu_{2}) \right)$$
  
Marginal constraints

with  $\lambda \ge 0$ : relaxing the constraints. When  $\lambda \to \infty$  we recover the balanced OT problem. When the masses are different



# Unbalanced Optimal Transport Definition

Regularizing the balanced optimal transport, by replacing the hard constraints with some divergence D

$$\mathcal{UOT}(\mu_{1},\mu_{2}) \triangleq \inf_{\substack{\gamma \geq 0}} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{c(x,y)}{reg} d\gamma(x,y) + \lambda \left( D((\pi^{1})_{\#}\gamma|\mu_{1}) + D((\pi^{2})_{\#}\gamma|\mu_{2}) \right)$$
  
Marginal constraints

with  $\lambda \ge 0$ : relaxing the constraints. When  $\lambda \to \infty$  we recover the balanced OT problem. When there are some outliers



# Unbalanced Optimal Transport Definition

Regularizing the balanced optimal transport, by replacing the hard constraints with some divergence D

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \inf_{\substack{\gamma \ge 0}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \underbrace{\operatorname{reg}}_{\substack{r \in \mathcal{I} \\ + \lambda}} \left( \underbrace{D((\pi^1)_{\#}\gamma|\mu_1) + D((\pi^2)_{\#}\gamma|\mu_2)}_{\operatorname{Marginal constraints}} \right)$$

with  $\lambda \geq 0$ : relaxing the constraints.

When  $\lambda \rightarrow \infty$  we recover the balanced OT problem.

has similar properties as OT (is a distance, weak convergence etc.)

# Unbalanced Optimal Transport Definition

Regularizing the balanced optimal transport, by replacing the hard constraints with some divergence D

$$\mathcal{UOT}(\mu_{1},\mu_{2}) \triangleq \inf_{\gamma \geq 0} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \underbrace{c(x,y)}_{reg} d\gamma(x,y) d\gamma(x,y) + \lambda \left( D((\pi^{1})_{\#}\gamma|\mu_{1}) + D((\pi^{2})_{\#}\gamma|\mu_{2}) \right)$$
Marginal constraints

with  $\lambda \geq 0$ : relaxing the constraints.

When  $\lambda \to \infty$  we recover the balanced OT problem.

has similar properties as OT (is a distance, weak convergence etc.)

questions:

How to write the problem for discrete distributions?

Which D?

how to solve the problem?

• We denote  $\hat{\mu}_1 = (\pi^1)_{\#} \gamma$  and  $\hat{\mu}_2 = (\pi^2)_{\#} \gamma$  the marginals of  $\gamma$ 

• When the distributions are discrete  $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$  and  $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$ , it is written

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left( D((\pi^1)_{\#} \boldsymbol{\gamma} | \mu_1) + D((\pi^2)_{\#} \boldsymbol{\gamma} | \mu_2) \right)$$

or

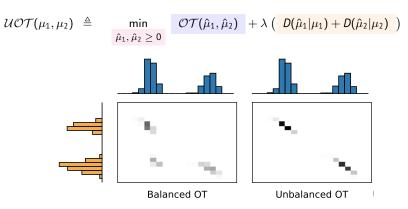
$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\substack{\hat{\mu}_1,\hat{\mu}_2 \geq 0}} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left( \frac{\mathcal{D}(\hat{\mu}_1|\mu_1) + \mathcal{D}(\hat{\mu}_2|\mu_2)}{\mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2)} \right)$$

• We denote  $\hat{\mu}_1 = (\pi^1)_{\#} \gamma$  and  $\hat{\mu}_2 = (\pi^2)_{\#} \gamma$  the marginals of  $\gamma$ 

• When the distributions are discrete  $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$  and  $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$ , it is written

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \qquad \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left( D((\pi^1)_{\#} \boldsymbol{\gamma} | \mu_1) + D((\pi^2)_{\#} \boldsymbol{\gamma} | \mu_2) \right)$$

or

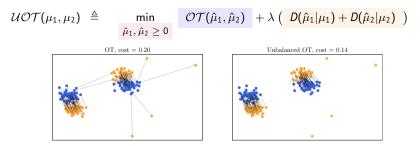


• We denote  $\hat{\mu}_1 = (\pi^1)_{\#} \gamma$  and  $\hat{\mu}_2 = (\pi^2)_{\#} \gamma$  the marginals of  $\gamma$ 

• When the distributions are discrete  $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$  and  $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$ , it is written

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left( D((\pi^1)_{\#} \boldsymbol{\gamma} | \mu_1) + D((\pi^2)_{\#} \boldsymbol{\gamma} | \mu_2) \right)$$

or



• We denote  $\hat{\mu}_1 = (\pi^1)_{\#} \gamma$  and  $\hat{\mu}_2 = (\pi^2)_{\#} \gamma$  the marginals of  $\gamma$ 

• When the distributions are discrete  $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$  and  $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$ , it is written

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left( D((\pi^1)_{\#} \boldsymbol{\gamma} | \mu_1) + D((\pi^2)_{\#} \boldsymbol{\gamma} | \mu_2) \right)$$

or

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\hat{\mu}_1,\hat{\mu}_2 \ge 0} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left( \frac{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)}{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)} \right)$$

It is very often restated as

$$\mathcal{UOT}_{\mathsf{c}}(\mathsf{h},\mathsf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda (\boldsymbol{\gamma}^\top \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_m | \mathsf{g})} \right)$$

in which the divergence does not depend on the support of  $\mu_1$  and  $\mu_2 \Rightarrow$  allow some mass variation

# Unbalanced Optimal Transport Partial Optimal Transport

### **Unbalanced OT with** *L*<sub>1</sub> **penalty**

The divergence does not depend on the support

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) \triangleq \min_{\substack{\boldsymbol{\gamma} \geq \mathbf{0}}} \sum_{i,j} C_{i,j}\gamma_{i,j} + \lambda \left( \|\boldsymbol{\gamma}\mathbb{1}_m - \mathsf{h}\|_1 + \|\boldsymbol{\gamma}^{\top}\mathbb{1}_n - \mathsf{g}\|_1 \right)$$

is equivalent to writing

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) = \inf_{\boldsymbol{\gamma} \in \Gamma_{\leq}(\mathsf{h},\mathsf{g})} \sum_{i,j} C_{i,j} \gamma_{i,j}$$

# Unbalanced Optimal Transport Partial Optimal Transport

**Unbalanced OT with** *L*<sub>1</sub> **penalty** 

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) \triangleq \inf_{\boldsymbol{\gamma} \in \mathsf{\Gamma}_{\leq}(\mathsf{h},\mathsf{g})} \sum_{i,j} \mathsf{C}_{i,j} \gamma_{i,j}$$

where 
$$\Gamma_{\leq (\mathbf{h},\mathbf{g})} = \{ \boldsymbol{\gamma} \geq \mathbf{0}, \ \boldsymbol{\gamma} \mathbb{1}_m \leq \mathbf{h} \text{ and } \boldsymbol{\gamma}^\top \mathbb{1}_n \leq \mathbf{g} \text{ and } \mathbb{1}_n^\top \boldsymbol{\gamma} \mathbb{1}_m = s \}$$

Can be solved easily by adding *dummy* points  $h_{n+1} = ||g||_1 - s$  and  $g_{m+1} = ||h||_1 - s$  with null cost and solve the extended OT problem [4, 2]

### UOT Partial OT

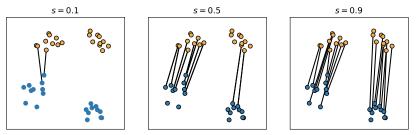
## Unbalanced Optimal Transport Partial Optimal Transport

Unbalanced OT with L<sub>1</sub> penalty

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) \triangleq \inf_{\boldsymbol{\gamma} \in \mathsf{\Gamma}_{\leq}(\mathsf{h},\mathsf{g})} \sum_{i,j} \mathsf{C}_{i,j} \gamma_{i,j}$$

where  $\Gamma_{\leq (\mathbf{h},\mathbf{g})} = \{ \gamma \geq 0, \ \gamma \mathbb{1}_m \leq \mathbf{h} \text{ and } \gamma^\top \mathbb{1}_n \leq \mathbf{g} \text{ and } \mathbb{1}_n^\top \gamma \mathbb{1}_m = s \}$ 

• Can be solved easily by adding *dummy* points  $h_{n+1} = ||g||_1 - s$  and  $g_{m+1} = ||h||_1 - s$  with null cost and solve the extended OT problem [4, 2]



### UOT Partial OT

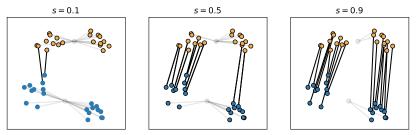
## Unbalanced Optimal Transport Partial Optimal Transport

Unbalanced OT with L<sub>1</sub> penalty

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) \triangleq \inf_{\boldsymbol{\gamma} \in \mathsf{\Gamma}_{\leq}(\mathsf{h},\mathsf{g})} \sum_{i,j} \mathsf{C}_{i,j} \gamma_{i,j}$$

where  $\Gamma_{\leq (\mathbf{h},\mathbf{g})} = \{ \gamma \geq 0, \ \gamma \mathbb{1}_m \leq \mathbf{h} \text{ and } \gamma^\top \mathbb{1}_n \leq \mathbf{g} \text{ and } \mathbb{1}_n^\top \gamma \mathbb{1}_m = s \}$ 

• Can be solved easily by adding *dummy* points  $h_{n+1} = ||g||_1 - s$  and  $g_{m+1} = ||h||_1 - s$  with null cost and solve the extended OT problem [4, 2]



### UOT Partial OT

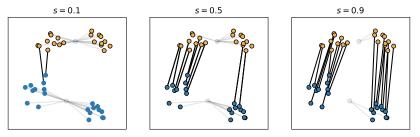
## Unbalanced Optimal Transport Partial Optimal Transport

**Unbalanced OT with** *L*<sub>1</sub> **penalty** 

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) \triangleq \inf_{\boldsymbol{\gamma} \in \mathsf{\Gamma}_{\leq}(\mathsf{h},\mathsf{g})} \sum_{i,j} \mathsf{C}_{i,j} \gamma_{i,j}$$

where  $\Gamma_{\leq (\mathbf{h},\mathbf{g})} = \{ \gamma \geq 0, \ \gamma \mathbb{1}_m \leq \mathbf{h} \text{ and } \gamma^\top \mathbb{1}_n \leq \mathbf{g} \text{ and } \mathbb{1}_n^\top \gamma \mathbb{1}_m = s \}$ 

• Can be solved easily by adding *dummy* points  $h_{n+1} = ||g||_1 - s$  and  $g_{m+1} = ||h||_1 - s$  with null cost and solve the extended OT problem [4, 2]



Any OT solver can be used!

# Unbalanced Optimal Transport Unbalanced Optimal Transport with KL

**Unbalanced OT with** *KL* **penalty** 

$$\mathcal{UOT}_{\mathbf{c}}(\mathbf{h},\mathbf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left( \frac{\mathsf{KL}(\boldsymbol{\gamma} \mathbb{1}_m | \boldsymbol{h}) + \mathsf{KL}(\boldsymbol{\gamma}^\top \mathbb{1}_n | \boldsymbol{g})}{\mathsf{KL}(\boldsymbol{\gamma}^\top \mathbb{1}_n | \boldsymbol{g})} \right)$$

# Unbalanced Optimal Transport Unbalanced Optimal Transport with KL

Unbalanced OT with KL penalty

$$\mathcal{UOT}_{\mathbf{C}}(\mathbf{h}, \mathbf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left( \frac{\mathsf{KL}(\boldsymbol{\gamma} \mathbb{1}_m | \boldsymbol{h}) + \mathsf{KL}(\boldsymbol{\gamma}^\top \mathbb{1}_n | \boldsymbol{g})}{\mathsf{KL}(\boldsymbol{\gamma}^\top \mathbb{1}_n | \boldsymbol{g})} \right)$$

- Use a Majorize-Minimization algorithm to solve the problem [5]
  - Deterministic updates
  - Resembles the Sinkhorn algorithm, allows for GPU computation

$$\boldsymbol{\gamma}^{(k+1)} = \text{diag}\left(\frac{\boldsymbol{g}}{\boldsymbol{\gamma}^{(k)} \boldsymbol{1}_m}\right)^{\frac{1}{2}} \left(\boldsymbol{\gamma}^{(k)} \odot \exp\left(-\frac{\boldsymbol{C}}{2\lambda}\right)\right) \text{diag}\left(\frac{\boldsymbol{h}}{\boldsymbol{\gamma}^{(k)\top} \boldsymbol{1}_n}\right)^{\frac{1}{2}}$$

### UOT WITH KL

# Unbalanced Optimal Transport Unbalanced Optimal Transport with KL

Unbalanced OT with KL penalty

$$\mathcal{UOT}_{\mathbf{C}}(\mathbf{h}, \mathbf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} \zeta_{i,j} \gamma_{i,j} + \lambda \left( \frac{\mathsf{KL}(\boldsymbol{\gamma} \mathbb{1}_m | \boldsymbol{h}) + \mathsf{KL}(\boldsymbol{\gamma}^\top \mathbb{1}_n | \boldsymbol{g})}{\mathsf{I}_n | \boldsymbol{g}} \right)$$

Use a Majorize-Minimization algorithm to solve the problem [5]

- Deterministic updates
- Resembles the Sinkhorn algorithm, allows for GPU computation

$$\gamma^{(k+1)} = \operatorname{diag}\left(\frac{g}{\gamma^{(k)}1_m}\right)^{\frac{1}{2}} \left(\gamma^{(k)} \odot \exp\left(-\frac{C}{2\lambda}\right)\right) \operatorname{diag}\left(\frac{h}{\gamma^{(k)} \top 1_n}\right)^{\frac{1}{2}}$$
  
KL UOT with  $\lambda^u = 0.1$ 
  
KL UOT with  $\lambda^u = 1$ 
  
KL UOT with  $\lambda^u = 1$ 
  
KL UOT with  $\lambda^u = 1$ 
  
KL UOT with  $\lambda^u = 10$ 
  
KL UOT with  $\lambda^u = 10$ 

# Unbalanced Optimal Transport Unbalanced Optimal Transport with L2

### Unbalanced OT with L2 penalty

$$\mathcal{UOT}_{\boldsymbol{c}}(\mathbf{h},\mathbf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left( \|\boldsymbol{\gamma} \mathbb{1}_m - \mathbf{h}\|_2^2 + \|\boldsymbol{\gamma}^\top \mathbb{1}_n - \mathbf{g}\|_2^2 \right)$$

## Unbalanced Optimal Transport Unbalanced Optimal Transport with L2

Unbalanced OT with L2 penalty

$$\mathcal{UOT}_{\boldsymbol{c}}(\mathbf{h},\mathbf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left( \|\boldsymbol{\gamma} \mathbb{1}_m - \mathbf{h}\|_2^2 + \|\boldsymbol{\gamma}^\top \mathbb{1}_n - \mathbf{g}\|_2^2 \right)$$

When rewritten in a vectorial form:

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \quad \|\boldsymbol{H}\boldsymbol{\gamma}_{\boldsymbol{\nu}} - \boldsymbol{y}\|_{2}^{2} + \frac{1}{\lambda}\boldsymbol{c}^{\top}\|\boldsymbol{\gamma}_{\boldsymbol{\nu}}\|_{1}$$

where  $\boldsymbol{c} = \text{vec}(\boldsymbol{C}), \, \boldsymbol{\gamma}_{\scriptscriptstyle V} = \text{vec}(\boldsymbol{\gamma}), \, \boldsymbol{y}^{\top} = [\boldsymbol{h}^{\top}, \boldsymbol{g}^{\top}]$  and  $\boldsymbol{H}$  is a design matrix.

## Unbalanced Optimal Transport Unbalanced Optimal Transport with L2

Unbalanced OT with L2 penalty

$$\mathcal{UOT}_{\mathbf{C}}(\mathbf{h},\mathbf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left( \| \boldsymbol{\gamma} \mathbb{1}_m - \mathbf{h} \|_2^2 + \| \boldsymbol{\gamma}^\top \mathbb{1}_n - \mathbf{g} \|_2^2 \right)$$

When rewritten in a vectorial form:

$$\mathcal{UOT}_{\boldsymbol{c}}(\boldsymbol{\mathsf{h}},\boldsymbol{\mathsf{g}}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \quad \|\boldsymbol{H}\boldsymbol{\gamma}_{\boldsymbol{\nu}} - \boldsymbol{y}\|_{2}^{2} + \frac{1}{\lambda}\boldsymbol{c}^{\top}\|\boldsymbol{\gamma}_{\boldsymbol{\nu}}\|_{1}$$

where  $\boldsymbol{c} = \text{vec}(\boldsymbol{C}), \, \boldsymbol{\gamma}_{\scriptscriptstyle V} = \text{vec}(\boldsymbol{\gamma}), \, \boldsymbol{y}^{\top} = [\boldsymbol{h}^{\top}, \boldsymbol{g}^{\top}]$  and  $\boldsymbol{H}$  is a design matrix.

- is a *classical* linear regression with positivity constraints, a sparse design matrix and a weighted L1 (Lasso) regularization
- we can borrow the tools from a large literature on solving those problems!

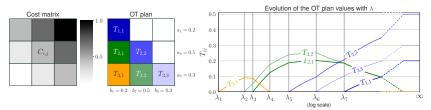
## Unbalanced Optimal Transport Unbalanced Optimal Transport with L2

### Regularization path of UOT: a LARS-like algorithm

- With quadratic divergence, solutions are piecewise linear with  $\frac{1}{\lambda}$
- We can find the set of all solutions for all  $\lambda$  values

```
1. start with \lambda = 0
```

- 2. loop
- 3. increase  $\lambda$  until there is a change on the support of  $\gamma_{v}$
- 4. update  $\gamma_{V}$  (incremental resolution of linear equations)
- 5. repeat until  $\lambda = \infty$



# Unbalanced Optimal Transport

## **Unbalanced Optimal Transport with L2**

- Regularization path of UOT: a LARS-like algorithm
- With quadratic divergence, solutions are piecewise linear with  $\frac{1}{\lambda}$
- We can find the set of all solutions for all  $\lambda$  values
  - **1**. start with  $\lambda = 0$
  - 2. loop
  - 3. increase  $\lambda$  until there is a change on the support of  $\gamma_{V}$
  - 4. update  $\gamma_{V}$  (incremental resolution of linear equations)
  - 5. repeat until  $\lambda = \infty$

For now, we have consider the following formulation

$$\mathcal{UOT}_{\mathsf{c}}(\mathsf{h},\mathsf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq \mathbf{0}} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g})}{p_i + \lambda \left( \frac{D(\boldsymbol{\gamma} | \mathsf{g})}{p$$

in which the divergence does not depend on the support of  $\mu_1$  and  $\mu_2 \Rightarrow$  allow some mass variation What about if we also take into account the support of the points?

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\substack{\hat{\mu}_1,\hat{\mu}_2 \geq 0}} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left( \frac{\mathcal{D}(\hat{\mu}_1|\mu_1) + \mathcal{D}(\hat{\mu}_2|\mu_2)}{\mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2)} \right)?$$

UOT with an OT penaly (RebOT) [6]

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\hat{\mu}_1,\hat{\mu}_2 \geq 0} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left( \mathcal{OT}(\hat{\mu}_1,\mu_1) + \mathcal{OT}(\hat{\mu}_2,\mu_2) \right)$$

 $\Rightarrow$  do not allow some mass variation, rather *rebalance* the mass as the mass of  $\hat{\mu}_i$  should be equal to  $\mu_i$ 

### Unbalanced OT with an OT penalty: rebalancing the weigths RebOT

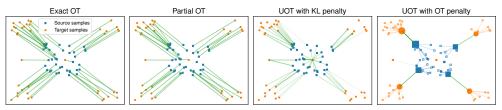
$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\hat{\mu}_1,\hat{\mu}_2 \geq 0} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left( \mathcal{OT}(\hat{\mu}_1,\mu_1) + \mathcal{OT}(\hat{\mu}_2,\mu_2) \right)$$

Can be solved with any convex solver (e.g. CVXPY), is a distance

### Unbalanced OT with an OT penalty: rebalancing the weigths RebOT

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\substack{\hat{\mu}_1,\hat{\mu}_2 \geq 0}} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left( \mathcal{OT}(\hat{\mu}_1,\mu_1) + \mathcal{OT}(\hat{\mu}_2,\mu_2) \right)$$

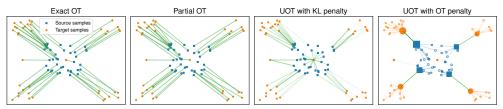
### Can be solved with any convex solver (e.g. CVXPY), is a distance



### Unbalanced OT with an OT penalty: rebalancing the weigths RebOT

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\hat{\mu}_1,\hat{\mu}_2 \ge 0} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left( \mathcal{OT}(\hat{\mu}_1,\mu_1) + \mathcal{OT}(\hat{\mu}_2,\mu_2) \right)$$

### Can be solved with any convex solver (e.g. CVXPY), is a distance



• Outliers: points with small mass on the rebalanced distribution  $\hat{\mu}_1$  and  $\hat{\mu}_2$ 

#### Conclusion

## **Table of Contents**

### **Optimal Transport**

Monge formulation Kantorovich formulation Some applications and limitations

### **Unbalanced Optimal Transport**

Definition Discrete formulation of UOT Partial OT UOT with KL UOT with quadratic penalty UOT with a geometric penalty

### Conclusion and some challenges

### Bibliography

#### Conclusion

## **Unbalanced Optimal Transport Conclusion and pen challenges**

- Conclusion
  - UOT is mandatory for many applications
  - (many) efficient solvers exist
  - implementation in POT python toolbox <sup>1</sup>
- Some open challenges
  - outlier removal?
  - which statistical guarantees?



M. Alaya

C. Févotte

R. Flamary G. Gasso G. Mahev

F. Tobar

<sup>1</sup>many figures have been generated with POT https://pythonot.github.io/

# Introduction to unbalanced optimal transport

and its efficient computational solutions

Laetitia Chapel laetitia.chapel@irisa.fr

IRISA, Rennes, France Institut Agro Rennes-Angers

Kantorovich Initiative Seminar, May 2024

#### Bibliography

## **Table of Contents**

### **Optimal Transport**

Monge formulation Kantorovich formulation Some applications and limitations

### **Unbalanced Optimal Transport**

Definition Discrete formulation of UOT Partial OT UOT with KL UOT with quadratic penalty UOT with a geometric penalty

### Conclusion and some challenges

## Bibliography

#### Bibliography

# **Bibliography I**

- [1] Nicolas Bonneel and David Coeurjolly. "Spot: sliced partial optimal transport". In: ACM Transactions on Graphics (TOG) (2019).
- [2] Luis A Caffarelli and Robert J McCann. "Free boundaries in optimal transport and Monge-Ampere obstacle problems". In: *Annals of mathematics* (2010).
- [3] Kai Cao et al. "A unified computational framework for single-cell data integration with optimal transport". In: *Nature Communications* (2022).
- [4] Laetitia Chapel, Mokhtar Z Alaya, and Gilles Gasso. "Partial optimal tranport with applications on positive-unlabeled learning". In: *NeurIPS* (2020).
- [5] Laetitia Chapel et al. "Unbalanced optimal transport through non-negative penalized linear regression". In: *NeurIPS* (2021).
- [6] Guillaume Mahey et al. "Rebalanced optimal transportation: A Wasserstein penalty for unbalanced OT". In: *preprint* (2024).
- [7] Thibault Séjourné et al. "Unbalanced Optimal Transport meets Sliced-Wasserstein". In: *arXiv preprint arXiv:2306.07176* (2023).
- [8] G. Staerman et al. "When OT meets MoM: Robust estimation of Wasserstein Distance". In: AISTATS. 2021.
- [9] Karren D Yang and Caroline Uhler. "Scalable Unbalanced Optimal Transport using Generative Adversarial Networks". In: *International Conference on Learning Representations*. 2018.