Introduction to unbalanced optimal transport

and its efficient computational solutions

Laetitia Chapel laetitia.chapel@irisa.fr

IRISA, Rennes, France Institut Agro Rennes-Angers

Kantorovich Initiative Seminar, May 2024

Table of Contents

Optimal Transport

Monge formulation Kantorovich formulation Some applications and limitations

Unbalanced Optimal Transport

Definition Discrete formulation of UOT Partial OT UOT with KL UOT with quadratic penalty UOT with a geometric penalty

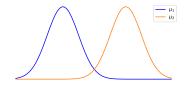
Conclusion and some challenges

Bibliography

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf \int c(x,\boldsymbol{t}(x)) d\mu_1(x)$$

where *t* is a **transport map** and $t_{\#}\mu_1 = \mu_2$



Balanced optimal transport

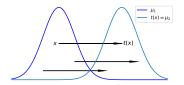
$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf \int c(x,\boldsymbol{t}(x)) d\mu_1(x)$$

where *t* is a **transport map** and $t_{\#}\mu_1 = \mu_2$

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf \int c(x,\boldsymbol{t}(x)) d\mu_1(x)$$

where *t* is a **transport map** and $t_{\#}\mu_1 = \mu_2$

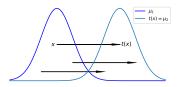


Defines for each particle located at x what is its destination t(x)

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf \int c(x,\boldsymbol{t}(x)) d\mu_1(x)$$

where *t* is a **transport map** and $t_{\#}\mu_1 = \mu_2$



Defines for each particle located at x what is its destination t(x)

implies that μ_1 and μ_2 have the same masses (no mass creation nor destruction)

Balanced Optimal transport: Kantorovich formulation

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{\substack{\gamma \in \Gamma(\mu_1,\mu_2)}} \int_{X \times Y} c(x,y) d\gamma(x,y)$$

where $\Gamma(\mu_1, \mu_2) \stackrel{\text{def}}{=} \{ \gamma \in \mathcal{M}_+(X \times Y) \text{ s.t. } | (\pi_x)_{\#} \gamma = \mu_1 \text{ and } (\pi_y)_{\#} \gamma = \mu_2 \} \text{ with } \pi_x : X \times Y \to X.$

Marginal constraints

Balanced Optimal transport: Kantorovich formulation

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{\substack{\gamma \in \Gamma(\mu_1,\mu_2)}} \int_{X \times Y} c(x,y) d\gamma(x,y)$$

1.11

where $\Gamma(\mu_1, \mu_2) \stackrel{\text{def}}{=} \{ \gamma \in \mathcal{M}_+(X \times Y) \text{ s.t. } | (\pi_x)_{\#} \gamma = \mu_1 \text{ and } (\pi_y)_{\#} \gamma = \mu_2 \} \text{ with } \pi_x : X \times Y \to X.$

Marginal constraints

with $(\pi_x)_{\#} \gamma = \mu_1$

and $(\pi_y)_{\#} \boldsymbol{\gamma} = \mu_2$

The **transport plan** $\gamma(x, y)$ specifies for each pair (x, y) how many particles go from x to y still implies that μ_1 and μ_2 have the same masses

OT Kantorovich formulation

Optimal transport Balanced Optimal transport: Kantorovich formulation

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{\boldsymbol{\gamma} \in \Gamma(\mu_1,\mu_2)} \int_{X \times Y} c(x,y) d\boldsymbol{\gamma}(x,y)$$

where $\Gamma(\mu_1, \mu_2) \stackrel{\text{def}}{=} \{ \gamma \in \mathcal{M}_+(X \times Y) \text{ s.t. } (\pi_x)_{\#} \gamma = \mu_1 \text{ and } (\pi_y)_{\#} \gamma = \mu_2 \}$ with $\pi_x : X \times Y \to X$. Can be rewritten with a penalty term

$$\mathcal{OT}(\mu_1,\mu_2) = \inf_{\gamma \ge 0} \int_{X \times Y} c(x,y) d\gamma(x,y) + l_{\{=\}} ((\pi_x)_{\#} \gamma | \mu_1) + l_{\{=\}} ((\pi_y)_{\#} \gamma | \mu_2)$$

with $l_{\{=\}}(
u|\mu)$ is 0 if $u = \mu$ and ∞ otherwise.

OT Kantorovich formulation

Optimal transport Balanced Optimal transport: Kantorovich formulation

Balanced optimal transport

$$\mathcal{OT}(\mu_1,\mu_2) \triangleq \inf_{\boldsymbol{\gamma} \in \Gamma(\mu_1,\mu_2)} \int_{X \times Y} c(x,y) d\boldsymbol{\gamma}(x,y)$$

where $\Gamma(\mu_1, \mu_2) \stackrel{\text{def}}{=} \{ \gamma \in \mathcal{M}_+(X \times Y) \text{ s.t. } (\pi_x)_{\#} \gamma = \mu_1 \text{ and } (\pi_y)_{\#} \gamma = \mu_2 \}$ with $\pi_x : X \times Y \to X$. Can be rewritten with a penalty term

$$\mathcal{OT}(\mu_1,\mu_2) = \inf_{\gamma \ge 0} \int_{X \times Y} c(x,y) d\gamma(x,y) + l_{\{=\}} ((\pi_x)_{\#} \gamma | \mu_1) + l_{\{=\}} ((\pi_y)_{\#} \gamma | \mu_2)$$

with $l_{\{=\}}(\nu|\mu)$ is 0 if $\nu = \mu$ and ∞ otherwise.

• When the distributions are discrete $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$ and $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$, it is written

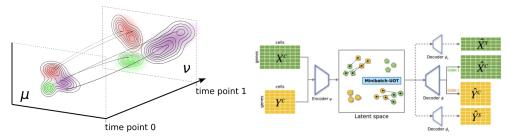
$$\mathcal{OT}(\mu_1,\mu_2) = \min_{\boldsymbol{\gamma} \in \Gamma(\mu_1,\mu_2)} \sum_{i,j} C_{i,j}\gamma_{i,j}$$

It is the same as the problem between their associated probability weight vectors **h** and **g**, with the cost matrix **C** depending on the support of μ_1 and μ_2 :

$$\mathcal{OT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) = \mathcal{OT}(\mu_1,\mu_2)$$

with $C_{i,j} = C(x_i, y_j)$ and $\gamma \in \mathbb{R}^{n \times m}$

- But, in many applications, we cannot/do not want to have the same masses and we may want to discard some outliers or limit the impact of the noise
 - In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to identify common genes [3].

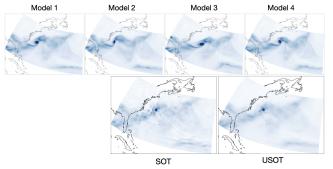


Balanced Optimal transport in action

- But, in many applications, we cannot/do not want to have the same masses and we may want to discard some outliers or limit the impact of the noise
 - In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to identify common genes [3].
 - In color transfer, to account for different proportions of colors [1]

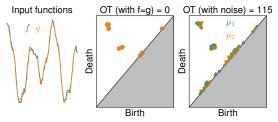
(c) Full histogram matching (d) Partial histogram matching L. Chapel • Introduction to UOT • Kantorovich Initiative Seminar, May 2024

- But, in many applications, we cannot/do not want to have the same masses and we may want to discard some outliers or limit the impact of the noise
 - In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to identify common genes [3].
 - In color transfer, to account for different proportions of colors [1]
 - In geophysics, when averaging different models [7]



- But, in many applications, we cannot/do not want to have the same masses and we may want to discard some outliers or limit the impact of the noise
 - In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to identify common genes [3].
 - In color transfer, to account for different proportions of colors [1]
 - In geophysics, when averaging different models [7]
 - In machine learning, when some of the points are out of the distribution, for instance with WGAN [8]

- But, in many applications, we cannot/do not want to have the same masses and we may want to discard some outliers or limit the impact of the noise
 - In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to identify common genes [3].
 - In color transfer, to account for different proportions of colors [1]
 - In geophysics, when averaging different models [7]
 - In machine learning, when some of the points are out of the distribution, for instance with WGAN [8]
 - In topological analysis, to extract (topological) features such as gaps, connected component



Optimal transport Balanced Optimal transport in action

But, in many applications, we cannot/do not want to have the same masses and we may want to discard some outliers or limit the impact of the noise

- In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to identify common genes [3].
- In color transfer, to account for different proportions of colors [1]
- In geophysics, when averaging different models [7]
- In machine learning, when some of the points are out of the distribution, for instance with WGAN [8]
- In topological analysis, to extract (topological) features such as gaps, connected component
- How to define outlier and noise-robust OT?
 - define robust variants of OT (e.g. medians of means OT)
 - pick a dedicated ground cost to avoid too much influence of samples that are too far away from the distributions
 - allow for some mass variation

Table of Contents

Optimal Transport

Monge formulation Kantorovich formulation Some applications and limitations

Unbalanced Optimal Transport

Definition Discrete formulation of UOT Partial OT UOT with KL UOT with quadratic penalty UOT with a geometric penalty

Conclusion and some challenges

Bibliography

Unbalanced Optimal Transport Definition

key idea: relax the mass conservation constraint

NUMERICAL RESOLUTION OF AN "UNBALANCED" MASS TRANSPORT PROBLEM

JEAN-DAVID BENAMOU¹

Abstract. We introduce a modification of the Monge–Kantorovitch problem of exponent 2 which accommodates non balanced initial and final densities. The augmented Lagrangian numerical method introduced in [6] is adapted to this "unbalanced" problem. We illustrate the usability of this method on an idealized error estimation problem in meteorology.

Mathematics Subject Classification. 35J60, 65K10, 78A05, 90B99.

Received: April 1st, 2003.

reg. parameter

2.4. The mixed distance

In this paper we propose to work on unbalanced data by considering the mixed Wasserstein/ L^2 -distance in the following sense: given two possibly unbalanced densities ρ_0 and ρ_1 , find $\tilde{\rho}_1$ – the closest density to ρ_1 in the L^2 -sense – which minimizes the Wasserstein distance $d_{\text{wass}}(\rho_0, \tilde{\rho}_1)$. It can be formulated as

L. Chapel • Introduction to UOT • Kantorovich Initiative Seminar, May 2024

Unbalanced Optimal Transport Definition

Regularizing the balanced optimal transport, by replacing the hard constraints with some divergence D

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \inf_{\substack{\gamma \geq 0}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \underbrace{\operatorname{reg}}_{\substack{reg \\ + \lambda}} \underbrace{c(x,y)}_{p(\pi^1) \# \gamma | \mu_1) + D((\pi^2)_{\#} \gamma | \mu_2)}$$
Marginal constraints

with $\lambda \geq 0$: relaxing the constraints. When $\lambda \to \infty$ we recover the balanced OT problem.

Unbalanced Optimal Transport Definition

Regularizing the **balanced** optimal transport, by replacing the hard constraints with some divergence *D*

$$\mathcal{UOT}(\mu_{1},\mu_{2}) \triangleq \inf_{\substack{\gamma \geq 0}} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{c(x,y)}{reg} d\gamma(x,y) + \lambda \left(D((\pi^{1})_{\#}\gamma|\mu_{1}) + D((\pi^{2})_{\#}\gamma|\mu_{2}) \right)$$

Marginal constraints

with $\lambda \ge 0$: relaxing the constraints. When $\lambda \to \infty$ we recover the balanced OT problem. When the masses are different

Unbalanced Optimal Transport Definition

Regularizing the balanced optimal transport, by replacing the hard constraints with some divergence D

$$\mathcal{UOT}(\mu_{1},\mu_{2}) \triangleq \inf_{\substack{\gamma \geq 0}} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \frac{c(x,y)}{reg} d\gamma(x,y) + \lambda \left(D((\pi^{1})_{\#}\gamma|\mu_{1}) + D((\pi^{2})_{\#}\gamma|\mu_{2}) \right)$$

Marginal constraints

with $\lambda \ge 0$: relaxing the constraints. When $\lambda \to \infty$ we recover the balanced OT problem. When there are some outliers

Unbalanced Optimal Transport Definition

Regularizing the balanced optimal transport, by replacing the hard constraints with some divergence D

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \inf_{\substack{\gamma \ge 0}} \int_{\mathbb{R}^d \times \mathbb{R}^d} \underbrace{\operatorname{reg}}_{\substack{r \in \mathcal{I} \\ + \lambda}} \left(\underbrace{D((\pi^1)_{\#}\gamma|\mu_1) + D((\pi^2)_{\#}\gamma|\mu_2)}_{\operatorname{Marginal constraints}} \right)$$

with $\lambda \geq 0$: relaxing the constraints.

When $\lambda \rightarrow \infty$ we recover the balanced OT problem.

has similar properties as OT (is a distance, weak convergence etc.)

Unbalanced Optimal Transport Definition

Regularizing the balanced optimal transport, by replacing the hard constraints with some divergence D

$$\mathcal{UOT}(\mu_{1},\mu_{2}) \triangleq \inf_{\gamma \geq 0} \int_{\mathbb{R}^{d} \times \mathbb{R}^{d}} \underbrace{c(x,y)}_{reg} d\gamma(x,y) d\gamma(x,y) + \lambda \left(D((\pi^{1})_{\#}\gamma|\mu_{1}) + D((\pi^{2})_{\#}\gamma|\mu_{2}) \right)$$
Marginal constraints

with $\lambda \geq 0$: relaxing the constraints.

When $\lambda \to \infty$ we recover the balanced OT problem.

has similar properties as OT (is a distance, weak convergence etc.)

questions:

How to write the problem for discrete distributions?

Which D?

how to solve the problem?

• We denote $\hat{\mu}_1 = (\pi^1)_{\#} \gamma$ and $\hat{\mu}_2 = (\pi^2)_{\#} \gamma$ the marginals of γ

• When the distributions are discrete $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$ and $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$, it is written

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(D((\pi^1)_{\#} \boldsymbol{\gamma} | \mu_1) + D((\pi^2)_{\#} \boldsymbol{\gamma} | \mu_2) \right)$$

or

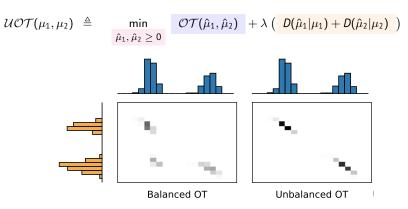
$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\substack{\hat{\mu}_1,\hat{\mu}_2 \geq 0}} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\frac{\mathcal{D}(\hat{\mu}_1|\mu_1) + \mathcal{D}(\hat{\mu}_2|\mu_2)}{\mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2)} \right)$$

• We denote $\hat{\mu}_1 = (\pi^1)_{\#} \gamma$ and $\hat{\mu}_2 = (\pi^2)_{\#} \gamma$ the marginals of γ

• When the distributions are discrete $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$ and $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$, it is written

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \qquad \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(D((\pi^1)_{\#} \boldsymbol{\gamma} | \mu_1) + D((\pi^2)_{\#} \boldsymbol{\gamma} | \mu_2) \right)$$

or

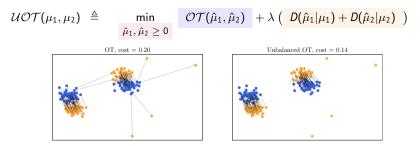


• We denote $\hat{\mu}_1 = (\pi^1)_{\#} \gamma$ and $\hat{\mu}_2 = (\pi^2)_{\#} \gamma$ the marginals of γ

• When the distributions are discrete $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$ and $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$, it is written

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(D((\pi^1)_{\#} \boldsymbol{\gamma} | \mu_1) + D((\pi^2)_{\#} \boldsymbol{\gamma} | \mu_2) \right)$$

or



• We denote $\hat{\mu}_1 = (\pi^1)_{\#} \gamma$ and $\hat{\mu}_2 = (\pi^2)_{\#} \gamma$ the marginals of γ

• When the distributions are discrete $\mu_1 = \sum_{i=1}^n h_i \delta_{x_i}$ and $\mu_2 = \sum_{j=1}^m g_j \delta_{y_j}$, it is written

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(D((\pi^1)_{\#} \boldsymbol{\gamma} | \mu_1) + D((\pi^2)_{\#} \boldsymbol{\gamma} | \mu_2) \right)$$

or

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\hat{\mu}_1,\hat{\mu}_2 \ge 0} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\frac{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)}{D(\hat{\mu}_1|\mu_1) + D(\hat{\mu}_2|\mu_2)} \right)$$

It is very often restated as

$$\mathcal{UOT}_{\mathsf{c}}(\mathsf{h},\mathsf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda (\boldsymbol{\gamma}^\top \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_m | \mathsf{g})} \right)$$

in which the divergence does not depend on the support of μ_1 and $\mu_2 \Rightarrow$ allow some mass variation

Unbalanced Optimal Transport Partial Optimal Transport

Unbalanced OT with *L*₁ **penalty**

The divergence does not depend on the support

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) \triangleq \min_{\substack{\boldsymbol{\gamma} \geq \mathbf{0}}} \sum_{i,j} C_{i,j}\gamma_{i,j} + \lambda \left(\|\boldsymbol{\gamma}\mathbb{1}_m - \mathsf{h}\|_1 + \|\boldsymbol{\gamma}^{\top}\mathbb{1}_n - \mathsf{g}\|_1 \right)$$

is equivalent to writing

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) = \inf_{\boldsymbol{\gamma} \in \Gamma_{\leq}(\mathsf{h},\mathsf{g})} \sum_{i,j} C_{i,j} \gamma_{i,j}$$

Unbalanced Optimal Transport Partial Optimal Transport

Unbalanced OT with *L*₁ **penalty**

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) \triangleq \inf_{\boldsymbol{\gamma} \in \mathsf{\Gamma}_{\leq}(\mathsf{h},\mathsf{g})} \sum_{i,j} \mathsf{C}_{i,j} \gamma_{i,j}$$

where
$$\Gamma_{\leq (\mathbf{h},\mathbf{g})} = \{ \boldsymbol{\gamma} \geq \mathbf{0}, \ \boldsymbol{\gamma} \mathbb{1}_m \leq \mathbf{h} \text{ and } \boldsymbol{\gamma}^\top \mathbb{1}_n \leq \mathbf{g} \text{ and } \mathbb{1}_n^\top \boldsymbol{\gamma} \mathbb{1}_m = s \}$$

Can be solved easily by adding *dummy* points $h_{n+1} = ||g||_1 - s$ and $g_{m+1} = ||h||_1 - s$ with null cost and solve the extended OT problem [4, 2]

UOT Partial OT

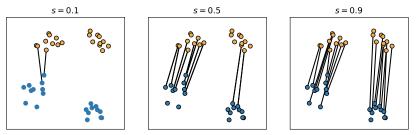
Unbalanced Optimal Transport Partial Optimal Transport

Unbalanced OT with L₁ penalty

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) \triangleq \inf_{\boldsymbol{\gamma} \in \mathsf{\Gamma}_{\leq}(\mathsf{h},\mathsf{g})} \sum_{i,j} \mathsf{C}_{i,j} \gamma_{i,j}$$

where $\Gamma_{\leq (\mathbf{h},\mathbf{g})} = \{ \gamma \geq 0, \ \gamma \mathbb{1}_m \leq \mathbf{h} \text{ and } \gamma^\top \mathbb{1}_n \leq \mathbf{g} \text{ and } \mathbb{1}_n^\top \gamma \mathbb{1}_m = s \}$

• Can be solved easily by adding *dummy* points $h_{n+1} = ||g||_1 - s$ and $g_{m+1} = ||h||_1 - s$ with null cost and solve the extended OT problem [4, 2]



UOT Partial OT

Unbalanced Optimal Transport Partial Optimal Transport

Unbalanced OT with L₁ penalty

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) \triangleq \inf_{\boldsymbol{\gamma} \in \mathsf{\Gamma}_{\leq}(\mathsf{h},\mathsf{g})} \sum_{i,j} \mathsf{C}_{i,j} \gamma_{i,j}$$

where $\Gamma_{\leq (\mathbf{h},\mathbf{g})} = \{ \gamma \geq 0, \ \gamma \mathbb{1}_m \leq \mathbf{h} \text{ and } \gamma^\top \mathbb{1}_n \leq \mathbf{g} \text{ and } \mathbb{1}_n^\top \gamma \mathbb{1}_m = s \}$

• Can be solved easily by adding *dummy* points $h_{n+1} = ||g||_1 - s$ and $g_{m+1} = ||h||_1 - s$ with null cost and solve the extended OT problem [4, 2]

UOT Partial OT

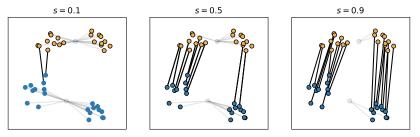
Unbalanced Optimal Transport Partial Optimal Transport

Unbalanced OT with *L*₁ **penalty**

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) \triangleq \inf_{\boldsymbol{\gamma} \in \mathsf{\Gamma}_{\leq}(\mathsf{h},\mathsf{g})} \sum_{i,j} \mathsf{C}_{i,j} \gamma_{i,j}$$

where $\Gamma_{\leq (\mathbf{h},\mathbf{g})} = \{ \gamma \geq 0, \ \gamma \mathbb{1}_m \leq \mathbf{h} \text{ and } \gamma^\top \mathbb{1}_n \leq \mathbf{g} \text{ and } \mathbb{1}_n^\top \gamma \mathbb{1}_m = s \}$

• Can be solved easily by adding *dummy* points $h_{n+1} = ||g||_1 - s$ and $g_{m+1} = ||h||_1 - s$ with null cost and solve the extended OT problem [4, 2]



Any OT solver can be used!

Unbalanced Optimal Transport Unbalanced Optimal Transport with KL

Unbalanced OT with *KL* **penalty**

$$\mathcal{UOT}_{\mathbf{c}}(\mathbf{h},\mathbf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(\frac{\mathsf{KL}(\boldsymbol{\gamma} \mathbb{1}_m | \boldsymbol{h}) + \mathsf{KL}(\boldsymbol{\gamma}^\top \mathbb{1}_n | \boldsymbol{g})}{\mathsf{KL}(\boldsymbol{\gamma}^\top \mathbb{1}_n | \boldsymbol{g})} \right)$$

Unbalanced Optimal Transport Unbalanced Optimal Transport with KL

Unbalanced OT with KL penalty

$$\mathcal{UOT}_{\mathbf{C}}(\mathbf{h}, \mathbf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(\frac{\mathsf{KL}(\boldsymbol{\gamma} \mathbb{1}_m | \boldsymbol{h}) + \mathsf{KL}(\boldsymbol{\gamma}^\top \mathbb{1}_n | \boldsymbol{g})}{\mathsf{KL}(\boldsymbol{\gamma}^\top \mathbb{1}_n | \boldsymbol{g})} \right)$$

- Use a Majorize-Minimization algorithm to solve the problem [5]
 - Deterministic updates
 - Resembles the Sinkhorn algorithm, allows for GPU computation

$$\boldsymbol{\gamma}^{(k+1)} = \text{diag}\left(\frac{\boldsymbol{g}}{\boldsymbol{\gamma}^{(k)} \boldsymbol{1}_m}\right)^{\frac{1}{2}} \left(\boldsymbol{\gamma}^{(k)} \odot \exp\left(-\frac{\boldsymbol{C}}{2\lambda}\right)\right) \text{diag}\left(\frac{\boldsymbol{h}}{\boldsymbol{\gamma}^{(k)\top} \boldsymbol{1}_n}\right)^{\frac{1}{2}}$$

UOT WITH KL

Unbalanced Optimal Transport Unbalanced Optimal Transport with KL

Unbalanced OT with KL penalty

$$\mathcal{UOT}_{\mathbf{C}}(\mathbf{h}, \mathbf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} \zeta_{i,j} \gamma_{i,j} + \lambda \left(\frac{\mathsf{KL}(\boldsymbol{\gamma} \mathbb{1}_m | \boldsymbol{h}) + \mathsf{KL}(\boldsymbol{\gamma}^\top \mathbb{1}_n | \boldsymbol{g})}{\mathsf{I}_n | \boldsymbol{g}} \right)$$

Use a Majorize-Minimization algorithm to solve the problem [5]

- Deterministic updates
- Resembles the Sinkhorn algorithm, allows for GPU computation

$$\gamma^{(k+1)} = \operatorname{diag}\left(\frac{g}{\gamma^{(k)}1_m}\right)^{\frac{1}{2}} \left(\gamma^{(k)} \odot \exp\left(-\frac{C}{2\lambda}\right)\right) \operatorname{diag}\left(\frac{h}{\gamma^{(k)} \top 1_n}\right)^{\frac{1}{2}}$$

KL UOT with $\lambda^u = 0.1$

KL UOT with $\lambda^u = 1$

KL UOT with $\lambda^u = 1$

KL UOT with $\lambda^u = 1$

KL UOT with $\lambda^u = 10$

KL UOT with $\lambda^u = 10$

Unbalanced Optimal Transport Unbalanced Optimal Transport with L2

Unbalanced OT with L2 penalty

$$\mathcal{UOT}_{\boldsymbol{c}}(\mathbf{h},\mathbf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(\|\boldsymbol{\gamma} \mathbb{1}_m - \mathbf{h}\|_2^2 + \|\boldsymbol{\gamma}^\top \mathbb{1}_n - \mathbf{g}\|_2^2 \right)$$

Unbalanced Optimal Transport Unbalanced Optimal Transport with L2

Unbalanced OT with L2 penalty

$$\mathcal{UOT}_{\boldsymbol{c}}(\mathbf{h},\mathbf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(\|\boldsymbol{\gamma} \mathbb{1}_m - \mathbf{h}\|_2^2 + \|\boldsymbol{\gamma}^\top \mathbb{1}_n - \mathbf{g}\|_2^2 \right)$$

When rewritten in a vectorial form:

$$\mathcal{UOT}_{\mathsf{C}}(\mathsf{h},\mathsf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \quad \|\boldsymbol{H}\boldsymbol{\gamma}_{\boldsymbol{\nu}} - \boldsymbol{y}\|_{2}^{2} + \frac{1}{\lambda}\boldsymbol{c}^{\top}\|\boldsymbol{\gamma}_{\boldsymbol{\nu}}\|_{1}$$

where $\boldsymbol{c} = \text{vec}(\boldsymbol{C}), \, \boldsymbol{\gamma}_{\scriptscriptstyle V} = \text{vec}(\boldsymbol{\gamma}), \, \boldsymbol{y}^{\top} = [\boldsymbol{h}^{\top}, \boldsymbol{g}^{\top}]$ and \boldsymbol{H} is a design matrix.

Unbalanced Optimal Transport Unbalanced Optimal Transport with L2

Unbalanced OT with L2 penalty

$$\mathcal{UOT}_{\mathbf{C}}(\mathbf{h},\mathbf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(\| \boldsymbol{\gamma} \mathbb{1}_m - \mathbf{h} \|_2^2 + \| \boldsymbol{\gamma}^\top \mathbb{1}_n - \mathbf{g} \|_2^2 \right)$$

When rewritten in a vectorial form:

$$\mathcal{UOT}_{\boldsymbol{c}}(\boldsymbol{\mathsf{h}},\boldsymbol{\mathsf{g}}) \triangleq \min_{\boldsymbol{\gamma} \geq 0} \quad \|\boldsymbol{H}\boldsymbol{\gamma}_{\boldsymbol{\nu}} - \boldsymbol{y}\|_{2}^{2} + \frac{1}{\lambda}\boldsymbol{c}^{\top}\|\boldsymbol{\gamma}_{\boldsymbol{\nu}}\|_{1}$$

where $\boldsymbol{c} = \text{vec}(\boldsymbol{C}), \, \boldsymbol{\gamma}_{\scriptscriptstyle V} = \text{vec}(\boldsymbol{\gamma}), \, \boldsymbol{y}^{\top} = [\boldsymbol{h}^{\top}, \boldsymbol{g}^{\top}]$ and \boldsymbol{H} is a design matrix.

- is a *classical* linear regression with positivity constraints, a sparse design matrix and a weighted L1 (Lasso) regularization
- we can borrow the tools from a large literature on solving those problems!

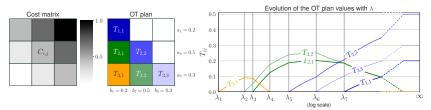
Unbalanced Optimal Transport Unbalanced Optimal Transport with L2

Regularization path of UOT: a LARS-like algorithm

- With quadratic divergence, solutions are piecewise linear with $\frac{1}{\lambda}$
- We can find the set of all solutions for all λ values

```
1. start with \lambda = 0
```

- 2. loop
- 3. increase λ until there is a change on the support of γ_{v}
- 4. update γ_{V} (incremental resolution of linear equations)
- 5. repeat until $\lambda = \infty$



Unbalanced Optimal Transport

Unbalanced Optimal Transport with L2

- Regularization path of UOT: a LARS-like algorithm
- With quadratic divergence, solutions are piecewise linear with $\frac{1}{\lambda}$
- We can find the set of all solutions for all λ values
 - **1**. start with $\lambda = 0$
 - 2. loop
 - 3. increase λ until there is a change on the support of γ_{V}
 - 4. update γ_{V} (incremental resolution of linear equations)
 - 5. repeat until $\lambda = \infty$

For now, we have consider the following formulation

$$\mathcal{UOT}_{\mathsf{c}}(\mathsf{h},\mathsf{g}) \triangleq \min_{\boldsymbol{\gamma} \geq \mathbf{0}} \sum_{i,j} C_{i,j} \gamma_{i,j} + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{h}) + D(\boldsymbol{\gamma}^\top \mathbb{1}_n | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} \mathbb{1}_m | \mathsf{g})}{p_i + \lambda \left(\frac{D(\boldsymbol{\gamma} | \mathsf{g})}{p$$

in which the divergence does not depend on the support of μ_1 and $\mu_2 \Rightarrow$ allow some mass variation What about if we also take into account the support of the points?

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\substack{\hat{\mu}_1,\hat{\mu}_2 \geq 0}} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\frac{\mathcal{D}(\hat{\mu}_1|\mu_1) + \mathcal{D}(\hat{\mu}_2|\mu_2)}{\mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2)} \right)?$$

UOT with an OT penaly (RebOT) [6]

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\hat{\mu}_1,\hat{\mu}_2 \geq 0} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\mathcal{OT}(\hat{\mu}_1,\mu_1) + \mathcal{OT}(\hat{\mu}_2,\mu_2) \right)$$

 \Rightarrow do not allow some mass variation, rather *rebalance* the mass as the mass of $\hat{\mu}_i$ should be equal to μ_i

Unbalanced OT with an OT penalty: rebalancing the weigths RebOT

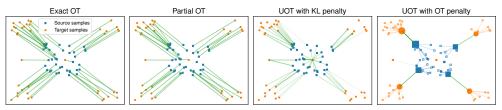
$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\hat{\mu}_1,\hat{\mu}_2 \geq 0} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\mathcal{OT}(\hat{\mu}_1,\mu_1) + \mathcal{OT}(\hat{\mu}_2,\mu_2) \right)$$

Can be solved with any convex solver (e.g. CVXPY), is a distance

Unbalanced OT with an OT penalty: rebalancing the weigths RebOT

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\substack{\hat{\mu}_1,\hat{\mu}_2 \geq 0}} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\mathcal{OT}(\hat{\mu}_1,\mu_1) + \mathcal{OT}(\hat{\mu}_2,\mu_2) \right)$$

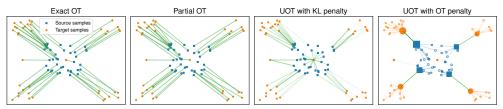
Can be solved with any convex solver (e.g. CVXPY), is a distance



Unbalanced OT with an OT penalty: rebalancing the weigths RebOT

$$\mathcal{UOT}(\mu_1,\mu_2) \triangleq \min_{\hat{\mu}_1,\hat{\mu}_2 \ge 0} \mathcal{OT}(\hat{\mu}_1,\hat{\mu}_2) + \lambda \left(\mathcal{OT}(\hat{\mu}_1,\mu_1) + \mathcal{OT}(\hat{\mu}_2,\mu_2) \right)$$

Can be solved with any convex solver (e.g. CVXPY), is a distance



• Outliers: points with small mass on the rebalanced distribution $\hat{\mu}_1$ and $\hat{\mu}_2$

Conclusion

Table of Contents

Optimal Transport

Monge formulation Kantorovich formulation Some applications and limitations

Unbalanced Optimal Transport

Definition Discrete formulation of UOT Partial OT UOT with KL UOT with quadratic penalty UOT with a geometric penalty

Conclusion and some challenges

Bibliography

Conclusion

Unbalanced Optimal Transport Conclusion and pen challenges

- Conclusion
 - UOT is mandatory for many applications
 - (many) efficient solvers exist
 - implementation in POT python toolbox ¹
- Some open challenges
 - outlier removal?
 - which statistical guarantees?

M. Alaya

C. Févotte

R. Flamary G. Gasso G. Mahev

F. Tobar

¹many figures have been generated with POT https://pythonot.github.io/

Introduction to unbalanced optimal transport

and its efficient computational solutions

Laetitia Chapel laetitia.chapel@irisa.fr

IRISA, Rennes, France Institut Agro Rennes-Angers

Kantorovich Initiative Seminar, May 2024

Bibliography

Table of Contents

Optimal Transport

Monge formulation Kantorovich formulation Some applications and limitations

Unbalanced Optimal Transport

Definition Discrete formulation of UOT Partial OT UOT with KL UOT with quadratic penalty UOT with a geometric penalty

Conclusion and some challenges

Bibliography

Bibliography

Bibliography I

- [1] Nicolas Bonneel and David Coeurjolly. "Spot: sliced partial optimal transport". In: ACM Transactions on Graphics (TOG) (2019).
- [2] Luis A Caffarelli and Robert J McCann. "Free boundaries in optimal transport and Monge-Ampere obstacle problems". In: *Annals of mathematics* (2010).
- [3] Kai Cao et al. "A unified computational framework for single-cell data integration with optimal transport". In: *Nature Communications* (2022).
- [4] Laetitia Chapel, Mokhtar Z Alaya, and Gilles Gasso. "Partial optimal tranport with applications on positive-unlabeled learning". In: *NeurIPS* (2020).
- [5] Laetitia Chapel et al. "Unbalanced optimal transport through non-negative penalized linear regression". In: *NeurIPS* (2021).
- [6] Guillaume Mahey et al. "Rebalanced optimal transportation: A Wasserstein penalty for unbalanced OT". In: *preprint* (2024).
- [7] Thibault Séjourné et al. "Unbalanced Optimal Transport meets Sliced-Wasserstein". In: *arXiv preprint arXiv:2306.07176* (2023).
- [8] G. Staerman et al. "When OT meets MoM: Robust estimation of Wasserstein Distance". In: AISTATS. 2021.
- [9] Karren D Yang and Caroline Uhler. "Scalable Unbalanced Optimal Transport using Generative Adversarial Networks". In: *International Conference on Learning Representations*. 2018.