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OT Monge formulation

Optimal transport
Balanced Optimal transport: Monge formulation

Balanced optimal transport

OT (µ1, µ2) ≜ inf

∫
c(x, t(x)) dµ1(x)

where t is a transport map and t#µ1 = µ2

1

2

implies that µ1 and µ2 have the same masses (no mass creation nor destruction)
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OT Kantorovich formulation

Optimal transport
Balanced Optimal transport: Kantorovich formulation

Balanced optimal transport

OT (µ1, µ2) ≜ inf
γ ∈ Γ(µ1, µ2)

∫
X×Y

c(x, y) dγ(x, y)

where Γ(µ1, µ2)
def
= {γ ∈ M+(X × Y) s.t. (πx)#γ = µ1 and (πy)#γ = µ2 } with πx : X × Y → X .

Linear loss

Marginal constraints

Can be rewritten with a penalty term

OT (µ1, µ2) = inf
γ ≥ 0

∫
X×Y

c(x, y) dγ(x, y) + l{=} ((πx)#γ|µ1) + l{=} ((πy)#γ|µ2)

with l{=}(ν|µ) is 0 if ν = µ and∞ otherwise.
When the distributions are discrete µ1 =

∑n
i=1 hiδxi and µ2 =

∑m
j=1 gjδyj , it is written

OT (µ1, µ2) = min
γ ∈ Γ(µ1, µ2)

∑
i,j

Ci,jγi,j

It is the same as the problem between their associated probability weight vectors h and g, with the cost
matrix C depending on the support of µ1 and µ2:

OT C(h, g) = OT (µ1, µ2)

with Ci,j = C(xi, yj) and γ ∈ Rn×m
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1

2
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OT Some applications and limitations

Optimal transport
Balanced Optimal transport in action

But, in many applications, we cannot/do not want to have the same masses and we may want to discard
some outliers or limit the impact of the noise

In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to
identify common genes [3].

In color transfer, to account for different proportions of colors [1]
In geophysics, when averaging different models [7]
In machine learning, when some of the points are out of the distribution, for instance with WGAN [8]
In topological analysis, to extract (topological) features such as gaps, connected component

How to define outlier and noise-robust OT?
define robust variants of OT (e.g. medians of means OT)
pick a dedicated ground cost to avoid too much influence of samples that are too far away from the distributions
allow for some mass variation
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UOT Definition

Unbalanced Optimal Transport
Definition

key idea: relax the mass conservation constraint

surrogate target distrib.∫
ρ0(x)dx =

∫
ρ̃1(y)dy

reg. parameter

ρ̃1 should be close to ρ1
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UOT Definition

Unbalanced Optimal Transport
Definition

Regularizing the balanced optimal transport, by replacing the hard constraints with some divergence D

UOT (µ1, µ2) ≜ inf
γ ≥ 0

∫
Rd×Rd

c(x, y) dγ(x, y)

+ λ
(
D((π1)#γ|µ1) + D((π2)#γ|µ2)

)reg

Linear loss

Marginal constraints

with λ ≥ 0: relaxing the constraints.
When λ → ∞ we recover the balanced OT problem.

has similar properties as OT (is a distance, weak convergence etc.)
questions:

How to write the problem for discrete distributions?
Which D?
how to solve the problem?
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UOT Discrete formulation

Unbalanced Optimal Transport
Discrete UOT

We denote µ̂1 = (π1)#γ and µ̂2 = (π2)#γ the marginals of γ

When the distributions are discrete µ1 =
∑n

i=1 hiδxi and µ2 =
∑m

j=1 gjδyj , it is written

UOT (µ1, µ2) ≜ min
γ ≥ 0

∑
i,j Ci,jγi,j + λ

(
D((π1)#γ|µ1) + D((π2)#γ|µ2)

)
or

UOT (µ1, µ2) ≜ min
µ̂1, µ̂2 ≥ 0

OT (µ̂1, µ̂2) + λ
(
D(µ̂1|µ1) + D(µ̂2|µ2)

)

It is very often restated as

UOT C(h, g) ≜ min
γ ≥ 0

∑
i,j Ci,jγi,j + λ

(
D(γ1m|h) + D(γ⊤1n|g)

)
in which the divergence does not depend on the support of µ1 and µ2 ⇒ allow some mass variation

L. Chapel · Introduction to UOT · Kantorovich Initiative Seminar, May 2024 9 / 21



UOT Discrete formulation

Unbalanced Optimal Transport
Discrete UOT

We denote µ̂1 = (π1)#γ and µ̂2 = (π2)#γ the marginals of γ
When the distributions are discrete µ1 =

∑n
i=1 hiδxi and µ2 =

∑m
j=1 gjδyj , it is written

UOT (µ1, µ2) ≜ min
γ ≥ 0

∑
i,j Ci,jγi,j + λ

(
D((π1)#γ|µ1) + D((π2)#γ|µ2)

)
or

UOT (µ1, µ2) ≜ min
µ̂1, µ̂2 ≥ 0

OT (µ̂1, µ̂2) + λ
(
D(µ̂1|µ1) + D(µ̂2|µ2)

)

Balanced OT Unbalanced OT Unbalanced + entropic reg. OT

It is very often restated as

UOT C(h, g) ≜ min
γ ≥ 0

∑
i,j Ci,jγi,j + λ

(
D(γ1m|h) + D(γ⊤1n|g)

)
in which the divergence does not depend on the support of µ1 and µ2 ⇒ allow some mass variation

L. Chapel · Introduction to UOT · Kantorovich Initiative Seminar, May 2024 9 / 21



UOT Discrete formulation

Unbalanced Optimal Transport
Discrete UOT

We denote µ̂1 = (π1)#γ and µ̂2 = (π2)#γ the marginals of γ
When the distributions are discrete µ1 =

∑n
i=1 hiδxi and µ2 =

∑m
j=1 gjδyj , it is written

UOT (µ1, µ2) ≜ min
γ ≥ 0

∑
i,j Ci,jγi,j + λ

(
D((π1)#γ|µ1) + D((π2)#γ|µ2)

)
or

UOT (µ1, µ2) ≜ min
µ̂1, µ̂2 ≥ 0

OT (µ̂1, µ̂2) + λ
(
D(µ̂1|µ1) + D(µ̂2|µ2)

)
OT, cost = 0.20 Unbalanced OT, cost = 0.14

It is very often restated as

UOT C(h, g) ≜ min
γ ≥ 0

∑
i,j Ci,jγi,j + λ

(
D(γ1m|h) + D(γ⊤1n|g)

)
in which the divergence does not depend on the support of µ1 and µ2 ⇒ allow some mass variation

L. Chapel · Introduction to UOT · Kantorovich Initiative Seminar, May 2024 9 / 21



UOT Discrete formulation

Unbalanced Optimal Transport
Discrete UOT

We denote µ̂1 = (π1)#γ and µ̂2 = (π2)#γ the marginals of γ

When the distributions are discrete µ1 =
∑n

i=1 hiδxi and µ2 =
∑m

j=1 gjδyj , it is written

UOT (µ1, µ2) ≜ min
γ ≥ 0

∑
i,j Ci,jγi,j + λ

(
D((π1)#γ|µ1) + D((π2)#γ|µ2)

)
or

UOT (µ1, µ2) ≜ min
µ̂1, µ̂2 ≥ 0

OT (µ̂1, µ̂2) + λ
(
D(µ̂1|µ1) + D(µ̂2|µ2)

)

It is very often restated as

UOT C(h, g) ≜ min
γ ≥ 0

∑
i,j Ci,jγi,j + λ

(
D(γ1m|h) + D(γ⊤1n|g)

)
in which the divergence does not depend on the support of µ1 and µ2 ⇒ allow some mass variation

L. Chapel · Introduction to UOT · Kantorovich Initiative Seminar, May 2024 9 / 21



UOT Partial OT

Unbalanced Optimal Transport
Partial Optimal Transport

Unbalanced OT with L1 penalty
The divergence does not depend on the support

UOT C(h, g) ≜ min
γ ≥ 0

∑
i,j

Ci,jγi,j + λ
(

∥γ1m − h∥1 + ∥γ⊤1n − g∥1
)

is equivalent to writing
UOT C(h, g) = inf

γ ∈ Γ≤(h, g)

∑
i,j

Ci,jγi,j

where Γ≤(h,g) = {γ ≥ 0, γ1m ≤ h and γ⊤1n ≤ g and 1⊤
n γ1m = s }

amount of mass to be transported
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UOT Partial OT

Unbalanced Optimal Transport
Partial Optimal Transport

Unbalanced OT with L1 penalty

UOT C(h, g) ≜ inf
γ∈Γ≤(h,g)

∑
i,j

Ci,jγi,j

where Γ≤(h,g) = {γ ≥ 0, γ1m ≤ h and γ⊤1n ≤ g and 1⊤
n γ1m = s }

Can be solved easily by adding dummy points hn+1= ∥g∥1 − s and gm+1= ∥h∥1 − s with null cost and
solve the extended OT problem [4, 2]

Any OT solver can be used!
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UOT UOT with KL

Unbalanced Optimal Transport
Unbalanced Optimal Transport with KL

Unbalanced OT with KL penalty

UOT C(h, g) ≜ min
γ≥0

∑
i,j

Ci,jγi,j + λ
(
KL(γ1m|h) + KL(γ⊤1n|g)

)

Use a Majorize-Minimization algorithm to solve the problem [5]

Deterministic updates
Resembles the Sinkhorn algorithm, allows for GPU computation

γ(k+1) = diag
(

g
γ(k)1m

) 1
2
(
γ(k) ⊙ exp

(
−
C
2λ

))
diag

(
h

γ(k)⊤1n

) 1
2

L. Chapel · Introduction to UOT · Kantorovich Initiative Seminar, May 2024 12 / 21



UOT UOT with KL

Unbalanced Optimal Transport
Unbalanced Optimal Transport with KL

Unbalanced OT with KL penalty

UOT C(h, g) ≜ min
γ≥0

∑
i,j

Ci,jγi,j + λ
(
KL(γ1m|h) + KL(γ⊤1n|g)

)
Use a Majorize-Minimization algorithm to solve the problem [5]

Deterministic updates
Resembles the Sinkhorn algorithm, allows for GPU computation
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UOT UOT with quadratic penalty

Unbalanced Optimal Transport
Unbalanced Optimal Transport with L2

Unbalanced OT with L2 penalty

UOT C(h, g) ≜ min
γ≥0

∑
i,j

Ci,jγi,j + λ
(

∥γ1m − h∥22 + ∥γ⊤1n − g∥22
)

When rewritten in a vectorial form:

UOT C(h, g) ≜ min
γ≥0

∥Hγv − y∥22 +
1
λ
c⊤∥γv∥1

where c = vec(C), γv = vec(γ), y⊤ = [h⊤, g⊤] and H is a design matrix.
is a classical linear regression with positivity constraints, a sparse design matrix and a weighted L1
(Lasso) regularization

we can borrow the tools from a large literature on solving those problems!
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UOT UOT with quadratic penalty

Unbalanced Optimal Transport
Unbalanced Optimal Transport with L2

Regularization path of UOT: a LARS-like algorithm
With quadratic divergence, solutions are piecewise linear with 1

λ

We can find the set of all solutions for all λ values
1. start with λ = 0
2. loop
3. increase λ until there is a change on the support of γv
4. update γv (incremental resolution of linear equations)
5. repeat until λ = ∞

0 1 2

Ci,j

Cost matrix

b1 = 0.2 b2 = 0.5 b3 = 0.3

a1 = 0.2

a2 = 0.5

a3 = 0.3

T1,1

T2,1 T2,2

T3,1 T3,2 T3,3

OT plan

λ1 λ2 λ3 λ4 λ5 λ6 λ7
∞

(log scale)

0.0

0.1

0.2

0.3

0.4

0.5

T
ij

T1,1

T2,1
T 2,2

T3,1

T3,2

T3,3

Evolution of the OT plan values with λ

0.5

1.0
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UOT UOT with OT penalty

Unbalanced Optimal Transport
Unbalanced Optimal Transport with an OT penalty

For now, we have consider the following formulation

UOT C(h, g) ≜ min
γ ≥ 0

∑
i,j Ci,jγi,j + λ

(
D(γ1m|h) + D(γ⊤1n|g)

)
in which the divergence does not depend on the support of µ1 and µ2 ⇒ allow some mass variation
What about if we also take into account the support of the points?

UOT (µ1, µ2) ≜ min
µ̂1, µ̂2 ≥ 0

OT (µ̂1, µ̂2) + λ
(
D(µ̂1|µ1) + D(µ̂2|µ2)

)
?

UOT with an OT penaly (RebOT) [6]

UOT (µ1, µ2) ≜ min
µ̂1, µ̂2 ≥ 0

OT (µ̂1, µ̂2) + λ
(

OT (µ̂1, µ1) +OT (µ̂2, µ2)
)

⇒ do not allow some mass variation, rather rebalance the mass as the mass of µ̂i should be equal to µi
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UOT UOT with OT penalty

Unbalanced Optimal Transport
Unbalanced Optimal Transport with an OT penalty

Unbalanced OT with an OT penalty: rebalancing the weigths RebOT

UOT (µ1, µ2) ≜ min
µ̂1, µ̂2 ≥ 0

OT (µ̂1, µ̂2) + λ
(

OT (µ̂1, µ1) +OT (µ̂2, µ2)
)

Can be solved with any convex solver (e.g. CVXPY), is a distance

Outliers: points with small mass on the rebalanced distribution µ̂1 and µ̂2
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Conclusion

Unbalanced Optimal Transport
Conclusion and pen challenges

Conclusion
UOT is mandatory for many applications
(many) efficient solvers exist
implementation in POT python toolbox 1

Some open challenges
outlier removal?
which statistical guarantees?

1many figures have been generated with POT https://pythonot.github.io/
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