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oT Monge formulation

Optimal transport
Balanced Optimal transport: Monge formulation

[ ] optimal transport

OT (u, u2) & inf / (%, £(x)) dpus (x)

where t is a transport map and typ1 =
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oT Monge formulation

Optimal transport
Balanced Optimal transport: Monge formulation

[ optimal transport

OT (usoi) 2 inf [ cx,t0) da()

where t is a transport map and txp1 = 1

Defines for each particle located at x what is its destination t(x)
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oT Monge formulation

Optimal transport
Balanced Optimal transport: Monge formulation

[ optimal transport

OT (usoi) 2 inf [ cx,t0) da()

where t is a transport map and txp1 = 1

Defines for each particle located at x what is its destination t(x)
m implies that u1 and uy have the same masses (no mass creation nor destruction)
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oT Kantorovich formulation

Optimal transport
Balanced Optimal transport: Kantorovich formulation

= imal transpor i
optimal transport Linear loss

OT(ui ) & inf / xy) dvix.y)
~ € T(p1, pa) 7 XXY

where (1, p2) o {vy e Mi(X xY)st. (mx)py = pand (my)py = p2 }withm : X x Y — X,
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oT Kantorovich formulation

Optimal transport
Balanced Optimal transport: Kantorovich formulation
[ optimal transport Linear loss
OT(u) 2 inf [ dxy) rtxy)
v € T(p1, pa) JXXY

where (1, p2) o {vy e Mi(X xY)st. (mx)py = pand (my)py = p2 }withm : X x Y — X,

—u with (m)xy = 1 @

;>0
and (my)#y = 2

The transport plan ~(x, y) specifies for each pair (x,y) how many particles go from x to y
m still implies that p1 and uy have the same masses
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oT Kantorovich formulation

Optimal transport
Balanced Optimal transport: Kantorovich formulation
[ optimal transport
OT(u) 2 inf [ dxy) drtxy)
XxY

¥ € T(p1, p12)

where T(u1, p12) = {v € Mo (X x V) st. (m)uy = 1 and (my) sy = p2 }with me 1 X x ¥ — X.

m Can be rewritten with a penalty term

OT (p1, m2) = info/ c(x,y) dv(x6y) + L=y ((m)gvlm) + L=y ((my)gyIp2)
72 XxXY

with [;_y(v|u) is 0 if v = p and oo otherwise.
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oT Kantorovich formulation

Optimal transport
Balanced Optimal transport: Kantorovich formulation
[ optimal transport
OT(u) 2 inf [ dxy) drtxy)
XxY

¥ € T(p1, p12)

where T(u1, p12) = {v € Mo (X x V) st. (m)uy = 1 and (my) sy = p2 }with me 1 X x ¥ — X.
m Can be rewritten with a penalty term

OT (p1, m2) = info/ c(x,y) dv(x6y) + L=y ((m)gvlm) + L=y ((my)gyIp2)
72 XxXY

with [;_y(v|u) is 0 if v = p and oo otherwise.

m When the distributions are discrete i1 = >-7; hidy, and pa = 377, gdy, it is written

OT (p1, 12) = min > Gy
vy € M(p1, p2) iy

It is the same as the problem between their associated probability weight vectors h and g, with the cost
matrix C depending on the support of p1 and pu;:

OTc(h,g) = OT (1, p2)
with Ci; = C(x;,y;) and v € R™"
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oT Some applications and limitations
Optimal transport
Balanced Optimal transport in action
m But, in many applications, we cannot/do not want to have the same masses and we may want to discard
some outliers or limit the impact of the noise

m In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to
identify common genes [3].

cells

genes

time point 1 ©-o
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oT Some applications and limitations

Optimal transport
Balanced Optimal transport in action

m But, in many applications, we cannot/do not want to have the same masses and we may want to discard
some outliers or limit the impact of the noise
m In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to
identify common genes [3].
m In color transfer, to account for different proportions of colors [1]

c) Full histogram matchin, gglz Partial histogram matching

L. Chapel . Introduction to UOT . Kantorovich Initiative Seminar, May 2

5/21



oT Some applications and limitations

Optimal transport
Balanced Optimal transport in action

m But, in many applications, we cannot/do not want to have the same masses and we may want to discard
some outliers or limit the impact of the noise
m In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to
identify common genes [3].
m In color transfer, to account for different proportions of colors [1]
m In geophysics, when averaging different models [7]
Model 1 Model 2 Model 3 Model 4

SOT USOT
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oT Some applications and limitations

Optimal transport
Balanced Optimal transport in action

m But, in many applications, we and we may want to

m In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to
identify common genes [3].

m In color transfer, to account for different proportions of colors [1]
m In geophysics, when averaging different models [7]

m In machine learning, when some of the points are out of the distribution, for instance with WGAN [8]
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oT Some applications and limitations

Optimal transport
Balanced Optimal transport in action

m But, in many applications, we and we may want to

m In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to
identify common genes [3].

m In color transfer, to account for different proportions of colors [1]
m In geophysics, when averaging different models [7]
®m In machine learning, when some of the points are out of the distribution, for instance with WGAN [8]
m In topological analysis, to extract (topological) features such as gaps, connected component
Input functions OT (with f=g) =0  OT (with noise) = 115
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oT Some applications and limitations
Optimal transport
Balanced Optimal transport in action

m But, in many applications, we and we may want to

In biology, there are different cell proliferation or death in different sub-populations [9] or we may want to
identify common genes [3].

In color transfer, to account for different proportions of colors [1]

In geophysics, when averaging different models [7]

In machine learning, when some of the points are out of the distribution, for instance with WGAN [8]
m In topological analysis, to extract (topological) features such as gaps, connected component

m How to define outlier and noise-robust OT?

m define robust variants of OT (e.g. medians of means OT)

B pick a dedicated ground cost to avoid too much influence of samples that are too far away from the distributions
]
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uot Definition

Unbalanced Optimal Transport
Definition
u : relax the mass conservation constraint

NUMERICAL RESOLUTION OF AN “UNBALANCED” MASS TRANSPORT
PROBLEM

JEAN-DAVID BENAMOU!

Abstract. We introduce a modification of the Monge-Kantorovitch problem of exponent 2 which
accommodates non balanced initial and final densities. The augmented Lagrangian numerical method
introduced in [6] is adapted to this “unbalanced” problem. We illustrate the usability of this method
on an idealized error estimation problem in meteorology.

Mathematics Subject Classification. 35J60, 65K10, 78 A05, 90B99.

Received: April 1st, 2003.

2.4. The mixed distance

In this paper we propose to work on unbalanced data by considering the mixed Wasserstein/L?-distance in
the following sense: given two possibly unbalanced densities po and pi, find p; — the closest density to p; in
the L2-sense — which minimizes the Wasserstein distance dyass (po, p1)- It can be formulated as

inf {dwass(ﬂu,ﬁl)z + %du (ﬁhpl)z} (16)
p

iy
J po(x)ax = [ pa(y)dy
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uot Definition

Unbalanced Optimal Transport
Definition

m Regularizing the optimal transport, by replacing the hard constraints with some divergence D
Linear loss

UOT (pa, p2) 2 inf / c(x,y) dy(x,y)
¥ >0 JRIXRA

+ X (D((h)gylua) + D((m*)gylmz) )

A > 0: relaxing the constraints.
When A — oo we recover the balanced OT problem.
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uot Definition

Unbalanced Optimal Transport
Definition

m Regularizing the optimal transport, by replacing the hard constraints with some divergence D
Linear loss

UOT (pa, p2) 2 inf / c(x,y) dy(x,y)
¥ >0 JRIXRA

+ X (D((h)gylua) + D((m*)gylmz) )

A > 0: relaxing the constraints.
When A — oo we recover the balanced OT problem.

m has similar properties as OT (is a distance, weak convergence etc.)
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uot Definition

Unbalanced Optimal Transport
Definition

m Regularizing the optimal transport, by replacing the hard constraints with some divergence D
Linear loss

UOT (pa, p2) 2 inf / c(x,y) dy(x,y)
¥ >0 JRIXRA

+ X (D((h)gylua) + D((m*)gylmz) )

A > 0: relaxing the constraints.
When A — oo we recover the balanced OT problem.

m has similar properties as OT (is a distance, weak convergence etc.)

B questions:

m How to write the problem for discrete distributions?
m Which D?
m how to solve the problem?
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uot Discrete formulation

Unbalanced Optimal Transport
Discrete UOT

m We denote fi; = (n!)4v and fi; = (7%)4~ the marginals of ~

m When the distributions are discrete 1 = 27:1 hidx; and pp = Z]’."Zl g,-§y,., it is written

UOT (pa,p2) 2 min 30 Gy + X (D((m)gylpn) + D((x?)wvma) )
¥=>0

or

UOT (p1, 12) = min OT(fin, f2) + A ( D(Aalpa) + D(Palp2) )
fl1, fia 20

L. Chapel . Introduction to UOT . Kantorovich Initiative Seminar, May 2024

9/21



uot Discrete formulation

Unbalanced Optimal Transport
Discrete UOT

m We denote fi; = (7!)4v and fi; = (7%)4~ the marginals of ~

m When the distributions are discrete p1 = Z,’.’:l hidx, and pp = Z}"Zl g,-(Sy,., it is written

UOT (pa,p2) £ min 30 Gy + X (D((m)gylpm) + D((7) gvlm2) )
¥=0

or

UOT (1, 2) = min OT (fi1, i) + A ( D(fia|p) + D(fa|p2) )
fin, i >0

Lo L oa

== | =
== -

Balanced OT Unbalanced OT
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uot Discrete formulation

Unbalanced Optimal Transport
Discrete UOT
m We denote fi; = (7!)4v and fi; = (7%)4~ the marginals of ~

m When the distributions are discrete p1 = Z,’.’:l hidx, and pp = Z}"Zl g,-(Sy,., it is written

UOT (pa,p2) £ min 30 Gy + X (D((m)gylpm) + D((7) gvlm2) )

¥=>0
or
UOT (1, 2) = min OT (fi1, i) + A ( D(fia|p) + D(fa|p2) )
fin, i >0

OT, cost = 0.20 Unbalanced OT, cost = 0.14
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uot Discrete formulation

Unbalanced Optimal Transport
Discrete UOT

m We denote fi; = (n!)4v and fi; = (7%)4~ the marginals of ~

m When the distributions are discrete 1 = 27:1 hidx; and pp = Z]’."Zl g,-§y,., it is written

UOT (pa,p2) 2 min 30 Gy + X (D((m)gylpn) + D((x?)wvma) )
¥=>0

or

UOT (w1, p2)

|
3.
5

OT(f, fi2) + A ( D(fua|pa) + D(fia|p2) )

m It is very often restated as

UOTc(h,g) = min 3, Gy +A( D(ylmlh) +D(y 1alg) )
¥=>0

in which the divergence does not depend on the support of x4 and u;
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uot Partial OT

Unbalanced Optimal Transport
Partial Optimal Transport

]
The divergence does not depend on the support

UOTc(h,g) £ min > G+ A (vln—hlli+ v 1o — gl )
¥y=>20 i

is equivalent to writing
UOTc(h, g) = inf Z C[,j’y,*’/'
vy €Tl<(h,g) ij

where T<ng) = {7 >0, yIn <handvy'1,<g and 1,~vLln=5}
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uot Partial OT

Unbalanced Optimal Transport
Partial Optimal Transport

|
UOTc(h, = inf Cijvij
c(h,9) vero(hg) ; INR,
where M<ng) = {7y >0, vIn <handv'1,<g and 1,vln=s }
m Can be solved easily by adding dummy points = ||g]|x — s and gmi1= ||h]]1 — s with null cost and

solve the extended OT problem [4, 2]
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uot Partial OT

Unbalanced Optimal Transport
Partial Optimal Transport

UOTc(h,g) = inf ZCI/'VU

YEr<(h,g)

where M <ng = {7 >0, vIn <handv'1,<g and 1,vln=s }

m Can be solved easily by adding dummy points = ||g]ls — s and gm11= ||h]]1 — s with null cost and
solve the extended OT problem [4, 2]
s=0.1 s=0.5 s=0.9

0o 8o °

000 og)o
°vs /
®e Se, ®oe

t ° o © e
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uot Partial OT

Unbalanced Optimal Transport
Partial Optimal Transport

UOTc(hg) 2 inf iy
Tc(h,g) vesg(h,g)izj 10

where M <ng = {7 >0, vIn <handv'1,<g and 1,vln=s }

m Can be solved easily by adding dummy points = ||g]ls — s and gm11= ||h]]1 — s with null cost and
solve the extended OT problem [4, 2]
s=0.1 s=0.5 s=0.9
° ° 8
VO%D - O%go N °©o

°% s //

L P “ LY -

t b ! b °
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uot Partial OT

Unbalanced Optimal Transport
Partial Optimal Transport

UOTc(hg) 2 inf iy
Tc(h,g) vesg(h,g)izj 10

where M <ng = {7 >0, vIn <handv'1,<g and 1,vln=s }

m Can be solved easily by adding dummy points = ||g]ls — s and gm11= ||h]]1 — s with null cost and
solve the extended OT problem [4, 2]
s=0.1 5=0.5 5=0.9
° ° 8
VO%D - O%go °©o

% H

®e S ®oe

t b ! b °

m Any OT solver can be used!
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uot UOT with KL

Unbalanced Optimal Transport
Unbalanced Optimal Transport with KL

UOTc(h,g) = min > Cyyij+ A ( KL(vLnlh) + KL(y " Lilg) )
)
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uot UOT with KL

Unbalanced Optimal Transport
Unbalanced Optimal Transport with KL

UOTc(h,g) = min > Cyyij+ A ( KL(vLnlh) + KL(y " Lilg) )
)

m Use a Majorize-Minimization algorithm to solve the problem [5]

m Deterministic updates
m Resembles the Sinkhorn algorithm, allows for GPU computation

1
(k1) _ gj L)Z ( ® (_£>> di (L)
~ iag (‘y(k)lm ¥ © exp n iag 0T,

T
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uot UOT with KL

Unbalanced Optimal Transport
Unbalanced Optimal Transport with KL

UOTc(h,g) 2 min 3 Gy + A KL(YLolh) +KL(Y " L1]g) )
2

m Use a Majorize-Minimization algorithm to solve the problem [5]

m Deterministic updates
m Resembles the Sinkhorn algorithm, allows for GPU computation

1 1
kD) _ giag [ 9\ (~® SV ) diag (B2
~y diag ("/(k)lm) (,Y ® exp ( ™ diag 0T,

KL UOT with AY=10.1 KL UOT with AY=1 KL UOT with AY =10
Qo 8% %o 8@
o %oc® °Po P ogo °Po
I ° ﬁ’ >
: J
00“ o“
) )
e & e &
e © e ©
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uot UOT with quadratic penalty

Unbalanced Optimal Transport
Unbalanced Optimal Transport with L2

UOTc(h,g) £ min > Grij+A( vLln—hl;+ v 1, —gl5 )

¥=20 “—
ij
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uot UOT with quadratic penalty

Unbalanced Optimal Transport
Unbalanced Optimal Transport with L2

UOTc(h,g)

¥=20 “—
ij

® When rewritten in a vectorial form:

. 1
UOTc(h,g) £ min [Hy, —yl3 + ¢ [wls
¥>0 A

where ¢ = vec(C), y» = vec(v),y" =[h",g"] and H is a design matrix.
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uot UOT with quadratic penalty

Unbalanced Optimal Transport
Unbalanced Optimal Transport with L2

UOTc(h,g)

min Gvij+A( Ivln—hl3+ v 1, — g3 )

Y20 “—
ij
® When rewritten in a vectorial form:
A . 2 1 T
UOTc(h,g) = min [Hy, —yll; + ¢ [wl:
¥>0 A

where ¢ = vec(C), y» = vec(v),y" =[h",g"] and H is a design matrix.

m is a classical linear regression with positivity constraints, a sparse design matrix and a weighted L1
(Lasso) regularization

m we can borrow the tools from a large literature on solving those problems!
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uot UOT with quadratic penalty

Unbalanced Optimal Transport
Unbalanced Optimal Transport with L2

m Regularization path of UOT: a LARS-like algorithm
m With quadratic divergence, solutions are piecewise linear with %

m We can find the set of all solutions for all A values
1. startwithA =0
2. loop
3. increase A until there is a change on the support of ~,
4. update ~y (incremental resolution of linear equations)
5. repeat until A = co

Evolution of the OT plan values with \

Cost matrix OT plan 0.5

Tyo
T e

At A M A5

b=02 b=05 by=03

6 Az o
(log scale)
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uot UOT with quadratic penalty

Unbalanced Optimal Transport
Unbalanced Optimal Transport with L2

m With quadratic divergence, solutions are piecewise linear with %

m We can find the set of all solutions for all A values
start with A =10

loop

increase A until there is a change on the support of
update -, (incremental resolution of linear equations)
repeat until A = oo

AN e
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uot UOT with OT penalty

Unbalanced Optimal Transport
Unbalanced Optimal Transport with an OT penalty

m For now, we have consider the following formulation

UOTc(h,g) £ min 3, Gyyij +A( D(ylmlh) +D(v" 1alg) )
¥=>0

in which the divergence does not depend on the support of x1 and u;
m What about if we also take into account the support of the points?

UOT (1, p2) = min OT (fi1, i) + A ( D(falp) + D(falp2) )?
f1, 42 >0
" (6]
UOT (1, 2) = min OT(fin, 1) + A ( OT (fu, ) + OT (P2, p2) )
P, fia >0

as the mass of fi; should be equal to y;
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uot UOT with OT penalty

Unbalanced Optimal Transport
Unbalanced Optimal Transport with an OT penalty

UOT (1, p2) = min OT(fn, i) + A ( OT (fu, pa) + OT (P2, p2) )
P, fia >0

m Can be solved with any convex solver (e.g. CVXPY), is a distance
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uot UOT with OT penalty

Unbalanced Optimal Transport
Unbalanced Optimal Transport with an OT penalty

m Unbalanced OT with an OT penalty: rebalancing the weigths RebOT

UOT (1, 2) = min OT (fa, fia) + A ( OT(fir, pa) + OT (fiz, p2) )
fi1, iz >0

m Can be solved with any convex solver (e.g. CVXPY), is a distance

Exact OT Partial OT UOT with KL penalty UOT with OT penalty
RN = Source sampl PN o .o e . o 0 0 P
AN L v A || AR oo || RS pe n ||~ ey
PN \\ 7 " 7 [ \ " 3 )
\ . . \ . . 2 S .
: . & .- LT o 0 A
. RN . R - ey . N
S e ok ey BT s
7 \ O\ 2 N
. N 4 N o o @
o > pZ AN o T e 7 ®
\ 7% W : e s % >
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uot UOT with OT penalty

Unbalanced Optimal Transport
Unbalanced Optimal Transport with an OT penalty

m Unbalanced OT with an OT penalty: rebalancing the weigths RebOT

UOT (1, 2) = min OT (fa, fia) + A ( OT(fir, pa) + OT (fiz, p2) )
fi1, iz >0

m Can be solved with any convex solver (e.g. CVXPY), is a distance

Exact OT Partial OT UOT with KL penalty UOT with OT penalty
“ % = Source samples o PR o .o . 00 20 o
K '\\\\\ +  Target samples / ‘ a '\\ / 2 ."' AR \ P fﬂg D".\ g 5
N N Z SN T L R
M . o, "o
/ .\ NN ey \ \ p
\ ez ®
> M > F I3

m Outliers: points with small mass on the rebalanced distribution fi; and fi;
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Conclusion

Unbalanced Optimal Transport
Conclusion and pen challenges

m Conclusion

m UOT is mandatory for many applications
m (many) efficient solvers exist
m implementation in POT python toolbox !

m Some open challenges

m outlier removal?
m which statistical guarantees?

Rk

M. Alaya C.Févotte R.Flamary G.Gasso G.Mahey F. Tobar

many figures have been generated with POT https://pythonot.github.io/
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