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Introduction to Wasserstein Distance

Let X , Y be subsets of Rd . Given two measures µ and ν supported on X
and Y,

W p
p (µ, ν) := min

π∈Γ(µ,ν)

∫
∥x − y∥p dπ(x , y)

for p ≥ 1, where Γ(µ, ν) is the space of probability measures on X × Y
with marginals µ and ν.

For this talk ...

X and Y are compact subsets of Rd

Take d ≥ 5

Objective is to estimate Wp(µ, ν). Applications in —
1 Computational biology: Schiebinger et al., 2019, Tameling et al.,

2021
2 Signal and image processing: Bonneel et al., 2011; Kolouri et al.,

2017
3 Also see Panaretos and Zemel (2019), Santambrogio (2015), Peyré

and Cuturi (2019) for surveys.
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Estimation of Wp(µ, ν) — Plug-in principle

Usual setting: X1,X2, . . . ,Xn
i.i.d∼ µ and Y1,Y2, . . . ,Yn

i.i.d.∼ ν.

Plug-in idea: Replace µ by µn and ν by νn, where

µn =
1

n

n∑
i=1

δXi , νn =
1

n

n∑
j=1

δYj .

Estimate Wp(µ, ν) by Wp(µn, νn).

Can be computed exactly using the Hungarian algorithm; parallel
computing Date and Nagi (2016)

Extensively studied estimator, including rates of convergence, tail
bounds, lower bounds, central limit theorems (appropriate
centering), ....

See Dudley (1969), Boissard and Le Gouic (2014), Fournier and
Guillin (2015), Singh and Póczos (2018), Liang (2019), Niles-Weed
and Rigollet (2019), Manole and Niles-Weed (2021), Chizat et al.
(2020), Hundrieser et al. (2021), Hundrieser et al. (2022), ...
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Plug-in principle continued ...

By triangle inequality

sup
(µ,ν)

E|Wp(µn, νn)−Wp(µ, ν)| ≤ sup
(µ,ν)

(EWp(µn, µ) + EWp(νn, ν)) ≲ n−1/d ,

for 2p < d , see Fournier and Guillin (2015).

This bound cannot be improved in general, see Liang (2019),
Niles-Weed and Rigollet (2019)

Crucially the worst case rate comes from measures µ and ν which
are close.

If Wp(µ, ν) is bounded away from 0, faster rates (see Chizat et al.
(2020), Manole and Niles-Weed (2021), Hundreiser et al. (2021)),

sup
(µ,ν): Wp(µ,ν)>δ

E|Wp(µn, νn)−Wp(µ, ν)| ≲ n−
min (p,2)

d .

In this talk ...

This case is our focus, where we change the i.i.d. assumption.
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Why dependence?

Dependence can arise in many natural settings:

Time series data in economics and finance (e.g. stock market data,
weather data)

Markov chains, hidden markov models

Online learning, where data comes in stream (e.g. object tracking,
strategic classification, reinforcement learning etc.)

Longitudinal medical data (e.g. sequence of data of a patient over a
time horizon)

4 / 25



Dependence and Wasserstein distance

The rate of convergence of the empirical measure under Wp(µn, µ)
— Fournier and Guillin, 2015. The rate slows down under long
range dependence (more on this later)

Suppose X1,X2, . . . and Y1,Y2, . . . are stationary with marginals µ
and ν. Then for d = 1, 2, 3 and under short range dependence
(other technical assumptions), Hundreiser et al. (2022) proved that

√
n(Wp(µn, νn)−Wp(µ, ν))

d−→ N (0, σ2
µ,ν).

Here σ2
µ,ν > 0 if µ ̸= ν.

CLTs for regularized Wasserstein distances — Goldfeld et al. (2022)
— same flavor as above
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Dependence and Wasserstein distance (Continued)

CLTs for parameter estimators via Wasserstein minimization —
Bernton et al. (2019). Consider µ− Pθ∗ where d = 1 and θ∗ ∈ Rr .
Consider

θ̂n ∈ argminW1(µn,Pθ∗).

Then under short range dependence,

√
n(θ̂n − θ∗)

d−→ argminu

∫
|G∗(t)− ⟨u,Dθ∗(t)⟩| dt.

Here Dθ∗(·) : R → Rr is a smooth map depending on Pθ.

Comparing two (stationary) time series using spectral densities and a
Wasserstein (Fourier) distance — Cazelles et al. (2020)

Constrained optimal transport on markov chains O’Connor et al.
(2022)

Using Wasserstein distances to analyze — visualize+synchronize
non-linear time series Muskulus and Verduyn-Lunel (2011)
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A simple example: MA(∞) model

Consider the following moving average model:

Xi =
∞∑
k=0

akϵi−k

where ϵk
i.i.d.∼ N (0, σ2I2).

Assume
ak = k−ρ

for some ρ > 1/2.

Easy to check that the series converges a.s. and

Xi ∼ N (0, I2

∞∑
j=1

j−2ρ

︸ ︷︷ ︸
σ2
ρ

).

Set Yi =
Xi

σρ
∼ N (0, I2) but the joint distribution of (Y1, . . . ,Yn)

depends heavily on ρ.
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Kernel density contours across mixing
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Kernel density contours with n
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A log-log plot in the two-sample case

Consider {Xi}i≥1 and {Zi}i≥1 be two MA(∞) sequences with σ2

equals 1 and 4 respectively.

W2(µ, ν) has closed forms as they are both Gaussian.

Want to study |W2(µn, νn)−W2(µ, ν)| empirically

Choose the number of samples n varying in a grid between 29 — 212

Compute W2(µn, νn) for each n in the grid. Replicate the
experiment 1000 times

Look at the slope of the regression line of

log2 (av|W2(µ, νn)−W2(µ, ν)|) on log2(n)

The slope of the line is expected to indicate the rate of convergence
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Plots of rates

Under independence between {Xi} and {Zi}, rate 2/d = 2/5 = 0.4.
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Outline

1 Main mixing assumptions — Formal Problem Statement

2 Long and Short Range Dependence

3 Main Result

4 Proof Sketch
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Notions of strong mixing for dependence

Given a strictly stationary sequence of random variables {Xt}t∈N on
a probability space (Ω,A,P), the we understand
dependence/independence as a property of the underlying σ-field.

Four (arguably) most popular used notion of dependence:

1 α(n) = supk≥1 sup A∈σ(X1:k )
B∈σ(Xk+n+1:∞)

|P(A ∩ B)− P(A)P(B)|

2 β(n) = supk≥1 E
[
supA∈σ(X1:k )

|P(A | σ(Xk+n+1:∞))− P(A)|
]

3 ρ(n) = supk≥1 sup f∈L2(σ(X1:k ))
g∈σ(Xk+n+1:∞)

|cor(f , g)|

4 ϕ(n) = supk≥1 sup A∈σ(X1:k )
B∈σ(Xk+n+1:∞)

|P(A | B)− P(A)|

Relation between the notions:

2α(n) ≤ β(n) ≤ ϕ(n), 4α(n) ≤ ρ(n) ≤ 2
√

ϕ(n)

Goal

Bound E|Wp(µn, νn)−Wp(µ, ν)| in terms of β-mixing coefficients
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β-mixing and Berbee’s Coupling

β-mixing is typically regarded as second most general notion:

1 (Eberlein, (1984)) established CLT for β-mixing sequence under the
condition β(n) = n−(1+ϵ)(1+2/δ).

2 (Yu (1994)), (Doukhan et.al. (1994), (1995)) extended some results
of standard empirical process theory for β-mixing sequence.

3 (Karandikar et.al. (2009)) extended some aspects of Bayesian
learning to β-mixing sequences.

4 (Bernton et al. (2019), Goldfeld et al. (2022)) show
√
n rates for

parameter estimation and regularized OT under β-mixing

Theorem (Berbee’s Coupling)

Given (X ,Y ) and an independent U ∼Unif (0, 1) on the same probability
space, one can construct Y ∗ = f (X ,Y ,U) such that:

1 Y ∗ L
= Y and Y ∗ ⊥⊥ X .

2 P(Y ̸= Y ∗) = β(σ(X ), σ(Y )).
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An ambiguous definition

Using β-mixing as a proxy, short range and long range dependencies
typically mean ∑

k

β(k) < ∞ Short range,

∑
k

β(k) = ∞ Long range.

Same with other mixing coefficients.

By Rio (1995), Dedecker (2003), say {Xt}t is a strictly stationary
β-mixing sequence, then

Var(
n∑

t=1

Xt) ≲ n(1 +
∞∑
k=0

β(k)).

Under long range dependence, behavior of
∑n

t=1 Xt can be very
different from i.i.d. case.
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Long range and short range dependency (continued)

Standard properties like WLLN, CLT continues to hold under SRD:
1 A general version of CLT was proved in Peligrad, (1990)

2 Consistency for non-parametric kernel density estimation was
established in (Roussas, (1990)).

3 Bernstein type concentration inequality was established in
(Merlevede, Peligrad and Rio, (1990)).

4 In OT, Bernton et al. (2019), Goldfeld et al. (2022) obtain limit
theory under SRD with β-mixing

5 In Fournier and Guillin (2015), rates were obtained for SRD with
ρ-mixing (same as i.i.d. case)

Properties under LRD is much less explored: a noteworthy example
is (Yu, 1994) where some properties of expected suprema of an
empirical process is established under LRD.
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Effect of dependence on estimation of Wasserstein distance

Recall the result of (Fournier and Guillin, 2015):

One of their main results

If {Xi}ni=1 is a sequence of stationary random variable with summable
ρ-mixing sequence, ı.e.

∑
k ρ(k) < ∞. Then:

E [Wp(µn, µ)] ≲


n−

1
2p , if p > d/2

n−
1
2p log (1 + n) , if p = d/2

n−
1
d , if p < d/2 .

Proposition (Directly applying the Wp(µn, µ) bounds)

If {Xi}ni=1 is a sequence of compactly supported stationary random
variable with ρ(k) = k−ρ for some ρ > 0. Then:

E [Wp(µn, µ)] ≲


n−

(ρ∧1)
2p , if p > d/2

n−
(ρ∧1)
2p log (1 + n) , if p = d/2

n−
(ρ∧1)

d , if p < d/2 .
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Main result

Define
p∗ = min (p, 2), β∗ :=

p∗
d − p∗

< 1.

Main result

Suppose X1, . . . ,Xn and Y1, . . . ,Yn are drawn from strictly stationary
sequences with common marginals µ and ν respectively. Say both
sequences have a β-mixing coefficient β(k) = k−β for some β > 0. Then
under the usual assumptions:

E|Wp(µn, νn)−Wp(µ, ν)| ≲

{
n−

p∗
d if β > β∗

n−
β

1+β if β < β∗.

Short range (β > 1) Rate always same as in the i.i.d. case.
Long range (β < 1) Up to a dimension factor (inversely proportional
to d), you do not see the effect of dependence — same rates as i.i.d.

Certain decoupling effect — n−
β

β+1 and n−
p∗
d , none of the terms

depend on β and d simultaneously (different from Fournier and
Guillin (2015))
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A related result

What happens in the absence of the curse of dimensionality? —
semi-discrete problem.

Finitely supported measure

Suppose X1, . . . ,Xn and Y1, . . . ,Yn are drawn from strictly stationary
sequences with common marginals µ and ν respectively, where one of the
measures is finitely supported. Say both sequences have a β-mixing
coefficient β(k) = k−β for some β > 0. Then under the usual
assumptions:

E|Wp(µn, νn)−Wp(µ, ν)| ≲

{
n−

1
2 if β > 1

n−
β

1+β if β < 1.

The rates under the empirical measure adapt to the fact that one of
the measures is inherently less complex

Under independence, the adaptation was proved in Hundrieser et al.
(2021). For related results, see Niles-Weed and Bach(2022)
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Proof ideas: Preliminary

Let’s start with the dual formulation for W 2
2 (µ, ν):

sup
f :X→Y

f∈CVX,∥f ∥∞≤1

{∫
(∥x∥2 − 2f (x)) dµ(x) +

∫
(∥y∥2 − 2f ∗(y)) dν(y)

}

From OT to empirical process (Chizat et al. (2020), Mena and
Niles-Weed (2019), Manole and Weed (2021), ...):

E
[∣∣W 2

2 (µn, νn)−W 2
2 (µ, ν)

∣∣]
≤ E

[
sup
f∈F

∫
f (dµn − dν)

]
+ E

[
sup
f∈F

∫
f (dνn − dν)

]

Expected suprema of an empirical process but with respect to
dependent data!
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Proof ideas: Essential tools

Three key techniques for our proof is:
1 Berbee’s coupling Theorem (showed few slides before).

2 Blocking technique of Bernstein. (In a sequence of dependent data,
if two blocks are far away, the dependence between them is meager,
goes back to (Bernstein, 1927)).

3 Chaining method with truncation (for non-Donsker class of function,
as integral of log covering number diverges near 0, c.f. (Wainwright,
2019))

Proposition: Maximal inequality for finitely many functions

Suppose {Xi}1≤i≤n a stationary sequence and let F be finite collection of

functions with ∥f ∥∞ ≤ b and πq =
√

4
∑q−1

j=0 β(j). Then:

E

[
max
f∈F

∣∣∣∣∣ 1√
n

n∑
i=1

(f (Xi )− Pf )

∣∣∣∣∣
]

≲ b inf
1≤q≤n

(
πq

√
log |F|+ q

log |F|√
n

+ β(q)
√
n

)
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Proof ideas: A general maximal inequalty

The bound is:

b inf
1≤q≤n

πq

√
log |F|+ q

log |F|√
n︸ ︷︷ ︸

↑ with q

+ βq

√
n︸ ︷︷ ︸

↓ with q


Therefore, q should be chosen carefully to balance these terms!

An example: if β(j) ∼ j−β then:

b inf
1≤q≤n

(
q1−β

√
log |F|+ q

log |F|√
n

+ βq

√
n

)
Simple algebra yields:

1 (i) = (ii) when q = (n/ logF)1/2β .

2 (ii) = (iii) when q = (n/ logF)1/(1+β)

3 (iii) = (i) when q = (n/ logF)1/2.
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A theorem for maximal inequality over infinite set

Theorem

Suppose F be class of function satisfies the following covering number
condition:

logN (F , ∥ · ∥∞, ϵ) ≲ ϵ−α α > 2 .

If βj ∼ j−β for some β > 0 then we have:

E
[
sup
f∈F

∣∣∣∣∫ f (dµn − µ)

∣∣∣∣] ≲ n−(
β

β+1∧
1
2 ) + n−

1
α .

In case of W 2
2 , the value of α = d/2 and α > 2 for d > 4.

Our proof relies on the techniques developed in a series of work of
Doukhan, Massart and Rio (e.g. (Rio, 1993), (DMR, 1994), (DMR,
1995), whilst the main difference is that our result generalizes to the
case when β < 1 at the expense of stronger (here ∥ · ∥∞) norm on
the covering number.
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Comparison with Yu (1994)

The exponent β
β+1 is not new/unexpected as it “almost” occurs in

Yu (1994).

To be more precise, for 0 < β < 1, (Yu, 1994) obtained a bound of
the form

op(n
− s

s+1 ), for all 0 < s < β

when the function class is “small”, i.e.,

logN (F , ∥·∥∞, ϵ) ≲ − log ϵ.

Three key differences:
1 Our function classes of interest have larger size

2 Choosing s = β, which replaces o(·) by O(·).

3 Translating the asymptotic bound to bounds on finite sample error
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Summary

Our maximal inequality for β-mixing sequence can be used in various
applications, e.g. Non-parametric regression, Regularized optimal
transport, convergence of optimal transport maps, etc.

All of these
can be related to bounding expected supremum of empirical
processes, even under dependence (see Mena and Niles-Weed
(2019), Deb et al. (2021), Manole et al. (2021))

Our analysis indicates that the threshold on β (when β(j) ∼ j−β),
below which we get slower rate (in comparison to i.i.d. setup) relies
on the underlying dimension.

Ongoing work:

1 Relax the mixing condition to α(j).

2 Tail bound and asymptotic limit theorem, especially when β < 1.

Thank you. Questions?
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