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Goal of this talk

Very narrow overview of approaches in causal inference and econometrics where 
optimal transport can be useful:


1. Difference-in-differences


2. Synthetic Controls


3. Matching


Many more: instrumental variables, domain adaptation, fairness, ….


            OT can be very useful when dealing with treatment heterogeneity



1. Optimal transport and difference-in-differences

joint work with  
Philippe Rigollet and William Torous
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Treatment effect via difference-in-differences

Key: account for the underlying trend of the outcome of the treated group 


Subtract the trend of the control unit, then any difference between treated- and control 
unit will be due to the causal effect of the treatment (Abadie 2005, Rev. Econ. Stud., 
Heckman et.al. 1997, Rev. Econ. Stud.)


E [Y11 − Y10 |T = 1] = (E [Y(1) |D = 1] − E [Y(1) |D = 0]) − (E [Y(0) |D = 1] − E [Y(0) |D = 0])
ATT Change in observed outcomes 


of treated unit
Change in observed outcomes 

of control unit

Main Assumption: Parallel trends, i.e. treated group would have followed the same trend as

          control group without treatment



The changes-in-changes estimator and OT
Classical difference in differences is for aggregate outcomes 

In many setting one cares about individual heterogeneity, captures by probability 
distributions 

Athey & Imbens (2006) introduce the changes in changes estimator:
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Multivariate extension

The main identifying assumption now is not monotonicity, but cyclic monotonicity





2. Optimal transport for synthetic controls

In parts joint with 


Rex Hsieh and MJ LeeFigure 2 from 

Abadie, Diamond & Hainmueller (2010)



Classical approach

0 ≤ t ≤ T time periods
0 < T0 < T pre-intervention periods
j = 2,…, J + 1 control units

Two steps:

1. For all 0 ≤ t ≤ T0 :

2. For all t > T0 :

Y1t,N =
J+1

∑
j=2

λ*jt Yjt

{Yjt}j=1,…,J+1
observable outcomes

λ*t = arg min
λ∈ΔJ−1

Y1t −
J+1

∑
j=2

λjYjt

2

Y1t

Y2t Y3t

Y4t

j = 1 treatment/target unit

obtain optimal weights 

over all periods as

λ* = ∑
t≤T0

wtλ*t



Distributional approach

Classical version only deals with aggregate outcomes:


e.g. aggregate household income, population size, average income, etc.


OT allows to design a distributional approach that can deal with entire 
distributions, which allows to take into account general heterogeneity of treatment 


e.g. distribution of individual household income, population movement 
patterns, individual income, etc.



Wasserstein Projections

Weighted Barycenter 

P̄(λ) = arg inf
P∈𝒫(ℝd)

J

∑
j=1

λj

2
W2

2 (Pj, P)
λ ≡ (λ1, …, λd) ∈ ΔJ

Projection
λ* = arg min

λ∈ΔJ
W2

2 (P0, P̄(λ))

s.t. P̄(λ) = arg inf
P∈𝒫(ℝd)

J

∑
j=1

λj

2
W2

2 (Pj, P)

Bonneel et. al. (2016)P1

P2
P3

P1

P2
P3

P0

P̄(λ*)

Bilevel program



Using the tangential structure of 𝒲2 (ℝd)
Tangent cone structure for general target measures (AGS 2005): 

𝒢(P0) ≡ {γ ∈ 𝒫2(ℝd × ℝd) : (π1)#γ = P0, (π1, π1 + επ2)#γ is optimal for some ε > 0}

W2
P(γ12, γ13) ≡ min {∫(ℝd)3

x2 − x3
2

dγ123 : γ123 ∈ Γ1(γ12, γ13)}
closed under local Wasserstein distance

Tangent space for regular targets: 

𝒯P0
W2(ℝd) ≡ {t(∇φj − Id) : (Id × ∇φj)#

P0 is optimal in Γ(P0, (∇φj)#P0), t > 0}
L2(P0)

expP(γ) = (π1 + π2)#γ .

with the corresponding exponential map

𝒯P0
W2



Implementation

𝒯P0
W2

Tangential Wasserstein projections (regular target measure):

λ* ≡ arg min
λ∈ΔJ

J

∑
j=1

λj (∇φj − Id)
2

L2(P0)

General target measure:

λ* ≡ arg min
λ∈ΔJ

J

∑
j=1

λj (bγ0j
− Id)

2

L2(P0)

bγ0j
(x1) ≡ ∫ℝd

x2 dγ0j,x1
(x2) is the barycentric projection of the optimal transport plans γ0j



Medicaid coverage Employment status

Log wage Log labor hours supplied

Counterfactual
Actual

Application: Medicaid in Montana



Permutation test over timeWeights of control states

“p-values”



3. Optimal transport as a matching estimator

joint work with Yuliang Xu



The problem: Unobserved confounders

Treatment Outcome

Observed Covariates

Unobserved confounders

Treatment
Control



Matching to correct for endogeneity bias

Potential outcome notation
T = 1,…, J

T = j ⟺ D( j) = 1

Y( j) ∈ ℝ, j = 1,…, J

Treatment

Potential outcomes

X ∈ ℝd Observed covariates

D( j) ∈ τ ∈ {0,1}J :
J

∑
j=1

τj = 1 Treatment indicator

Assumptions for causal inference
Y( j) ⊥ D( j) |X Weak unconfoundedness

0 < ρ ≤ P(D( j) = 1 |X) ≤ 1 − ρ < 1 Overlap

X |D( j) ∼ μj Covariate distribution

y(X, j) = 𝔼(Y |T = j, X) bd, cont      Regularity

Use information from covariates!



Key to reduce bias: use unbalanced optimal transport

Classical (balanced) OT:

All elements are matched

Unbalanced OT:

Only keep good matches



Unbalanced optimal transport 

inf
γ∈ℳ+(𝒳) ∫𝒳

c(x)dγ(x) + εKL(γ | |
J

⨂
j=1

μj) +
J

∑
j=1

Dϕ (πjγ | |μj)

KL(γ | |⨂
j

μj) ≡ ∫𝒳
ln

dγ
d⨂j μj

(x)dγ(x) + ∫𝒳
d⨂

j

μj(x) − ∫𝒳
dγ(x)

Galichon & Salanié (2010),  Cuturi (2013)

Relaxing the constraint that measures have to have

the same overall mass


Dϕ (μ | |ν) ≡ ∫𝒳
ϕ ( dμ

dν ) dν + ϕ′￼∞ ∫𝒳
dμ⊥



Causal effects via unbalanced OT matching





Conclusion
- Overview of some settings in causal inference where optimal transport is interesting and 

can be useful. 


- OT is often an interesting choice when dealing with heterogeneity in the treatment effect


- Many other applications and settings: instrumental variables, domain adaptation, etc.


- Problems in causal inference can inform new optimal transport estimators



