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Goal of this talk

Very narrow overview of approaches in causal inference and econometrics where
optimal transport can be useful:

1. Difference-in-differences
2. Synthetic Controls
3. Matching

Many more: instrumental variables, domain adaptation, fairness, ....

== O'T can be very useful when dealing with treatment heterogeneity



1. Optimal transport and difference-in-differences
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Treatment effect via difference-in-differences

Key: account for the underlying trend of the outcome of the treated group

Subtract the trend of the control unit, then any difference between treated- and control
== Unit will be due to the causal effect of the treatment (Abadie 2005, Rev. Econ. Stud.,
Heckman et.al. 1997, Rev. Econ. Stud.)
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Main Assumption: Parallel trends, I.e. treated group would have followed the same trend as
control group without treatment



The changes-in-changes estimator and OT

Classical difference in differences is for aggregate outcomes
In many setting one cares about individual heterogeneity, captures by probability

distributions

Athey & Imbens (2006) introduce the changes in changes estimator:
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Multivariate extension
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The main identifying assumption now is not monotonicity, but cyclic monotonicity
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Figure 2: Recovery of counterfactual marginals by OT and CiC.
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2. Optimal transport for synthetic controls
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Classical approach

Two steps:
0<t<T time periods

. . . l.Forall0 << Tj:
0<T,<T pre-intervention periods
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Distributional approach

Classical version only deals with aggregate outcomes:

e.g. aggregate household income, population size, average income, etc.

OT allows to design a distributional approach that can deal with entire
distributions, which allows to take into account general heterogeneity of treatment

e.g. distribution of individual household income, population movement
patterns, individual income, etc.



Wasserstein Projections

Weighted Barycenter Projection
J Q¥ = in W2 (P, P(A
P(A) = arg inf —‘]W22 (PJ-,P> arg?élAr} : ( o POY)
PEP(RY) P 2 N
ilevel program — .
A=y, .. 0 € A St Py=arg ml

j=1

Bonneel et. al. (2016)




Using the tangential structure of 7, ( R )

Tangent cone structure for general target measures (AGS 2003):
Z(Py) = {y € PyR*XRY) : (m)yr = Py, (m), 7 + £m,)yy is optimal for some & > 0}

closed under local Wasserstein distance /I p W S—-

. 2
Wi(r12, 713) = min { J ‘xz - X3‘ dr123 * 7123 € (712, 713)}
(R4)3

with the corresponding exponential map

expp(y) = (7 + my)yy - L

Tangent space for regular targets:
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Implementation

Tangential Wasserstein projections (regular target measure):
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by x1) = J dxz dyoix,(X2) is the barycentric projection of the optimal transport plans Yo;
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Weights of control states

State AL |FL | GA | KS| MS | NC | SC SD | TN | TX | WI | WY
Weight | 0.184 | O 0O [0.174 | O | 0.010 | 0.513 | O 0O (0119 | O
€€ )4
p-values
Year (t) | pr (Weights Using All Years) | p: (Averaged Weights Over All Years)
2017 0.231 0.308
2018 0.077 0.077
2019 0.077 0.077
2020 0.535 0.385

Permutation test over time
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5. Optimal transport as a matching estimator
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The problem: Unobserved confounders

Unobserved confounders

Control
Treatment

Observed Covariates

Treatment Outcome



Matching to correct for endogeneity bias

Use information from covariates!

Potential outcome notation

T=1,....J Treatment

YGYER, j=1,..J

Potential outcomes

X € R4 Observed covariates

J

D(j)e{T€E {O,l}J . Z T, = 1 Treatment indicator
i=1

=] < D=1

Assumptions for causal inference

Y(j) L D() X

O0<p<PD(G)=1|X)<1-p<1 Overlap

Weak unconfoundedness

X|D(j) ~ Hi Covariate distribution

yX,)) =EXY|T=j,X) bd,cont Regularity



Key to reduce bias: use unbalanced optimal transport

Classical (balanced) OT:
All elements are matched

Unbalanced OT:
Only keep good matches



Unbalanced optimal transport
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Galichon & Salanié¢ (2010), Cuturi (2013)




Causal effects via unbalanced OT matching

DEFINITION 1. For the j-th treatment and ¢ # j denote vy, as the conditional measure
of covariates in group j given the covariates in group ¢ under the joint distribution ~y. Then
under Assumption 1, the expected potential outcome can be expressed in the sample version
as

N N
A A, 1 ) 1 NN ~
(10) Bx [V ()| = 1 D VI(Di(G) = 1)+ 1 D D D Vi e (Xel Xa) [(Di(t) = 1),
i=1 i=1 t#£j ki
where N = Z}’zl N 1s the overall number of sample points over all treatment arms and 4y

1s the empirical counterpart to the optimal matching estimated via the generalized Sinkhorn
algorithm (8) by replacing p; with the empirical measures /iy, defined below 1n (11).
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Fig 2: Top 3 pairs with the largest unbalanced OT weights in the simulation case 2, and the
corresponding KNN matches for the selected treated individuals.



Conclusion

= Overview of some settings in causal inference where optimal transport is interesting and
can be useful.

= OT is often an interesting choice when dealing with heterogeneity in the treatment effect
= Many other applications and settings: instrumental variables, domain adaptation, etc.

= Problems in causal inference can inform new optimal transport estimators



