Applications of Optimal Transport in Causal Inference

Kantorovich Initiative Seminar

Florian Gunsilius

Goal of this talk

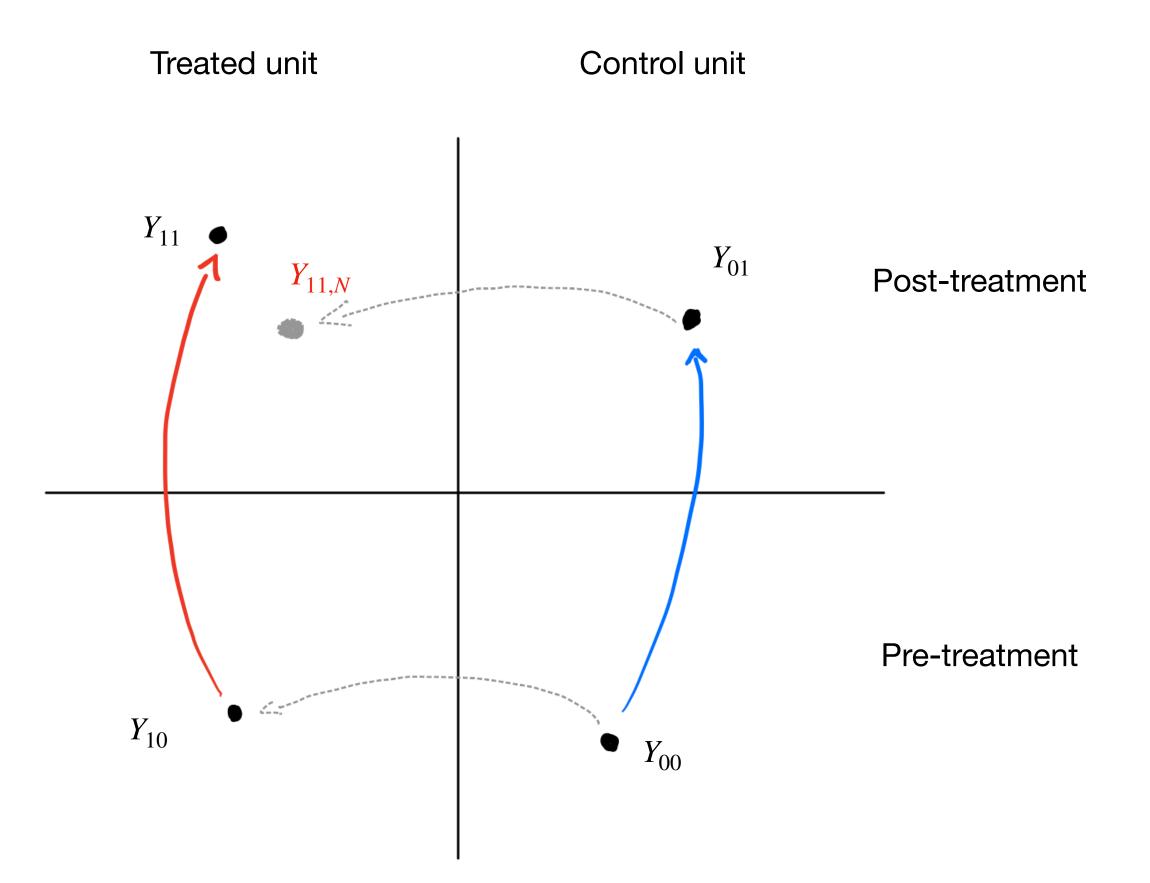
- **Very narrow** overview of approaches in optimal transport can be useful:
- 1. Difference-in-differences
- 2. Synthetic Controls
- 3. Matching

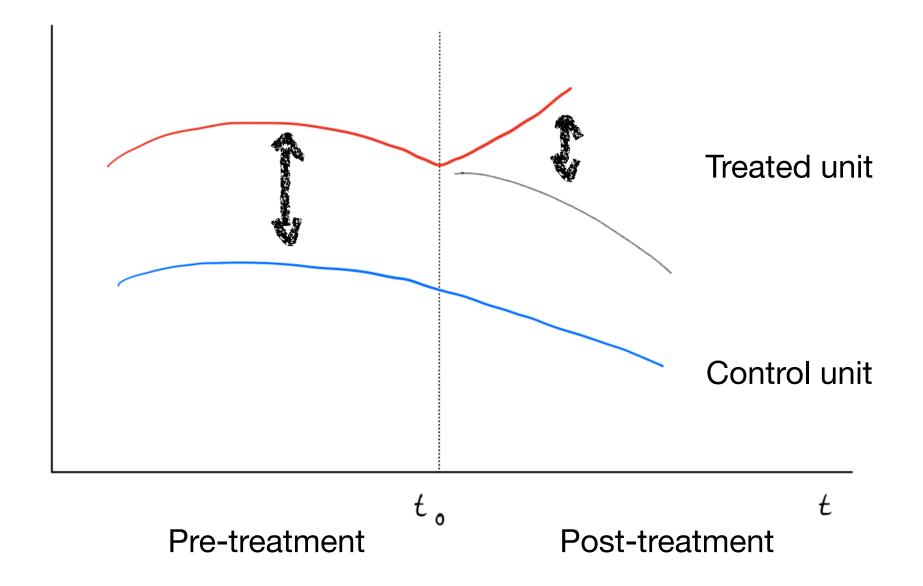
Many more: instrumental variables, domain adaptation, fairness,

OT can be very useful when dealing with treatment heterogeneity

Very narrow overview of approaches in causal inference and econometrics where

1. Optimal transport and difference-in-differences





joint work with Philippe Rigollet and William Torous

Treatment effect via difference-in-differences

Key: account for the underlying trend of the outcome of the treated group

Subtract the trend of the control unit, then any difference between treated- and control unit will be due to the causal effect of the treatment (Abadie 2005, Rev. Econ. Stud., Heckman et.al. 1997, Rev. Econ. Stud.)

$$E[Y_{11} - Y_{10} | T = 1] = \left(E[Y(1) | D = 1] - E[Y(1) | D = 0]\right) - \left(E[Y(0) | D = 1] - E[Y(0) | D = 0]\right)$$

ATT

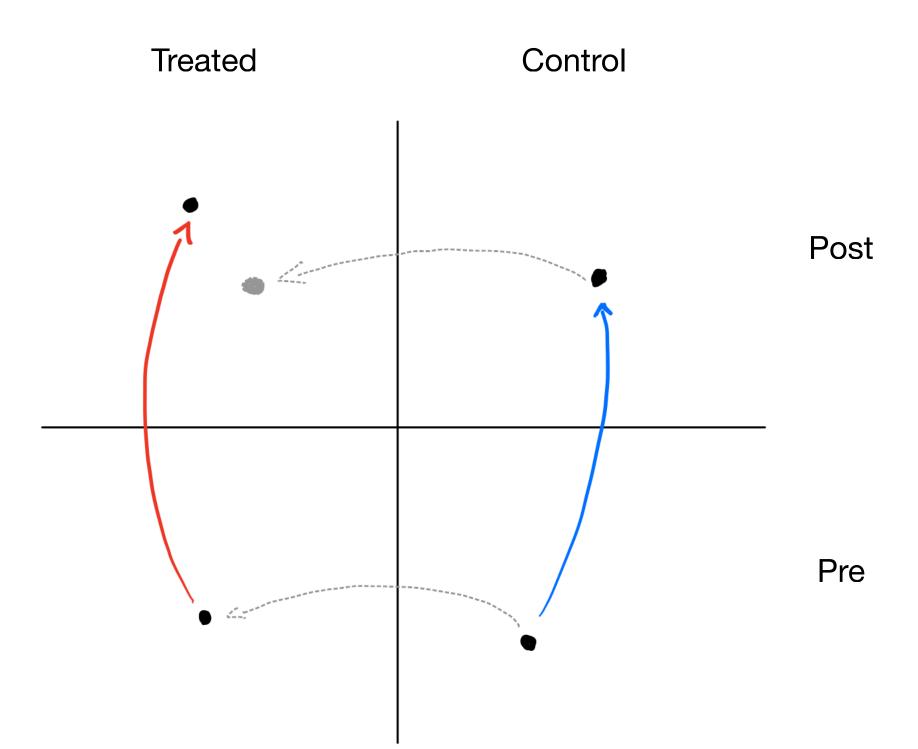
Change in observed outcomes Change in observed outcomes of treated unit of control unit

Main Assumption: Parallel trends, i.e. treated group would have followed the same trend as control group without treatment

The changes-in-changes estimator and OT

Classical difference in differences is for aggregate outcomes In many setting one cares about **individual heterogeneity**, captures by **probability distributions**

Athey & Imbens (2006) introduce the changes in changes estimator:

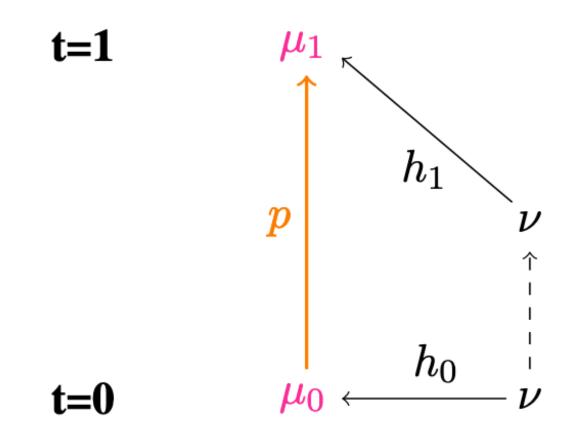


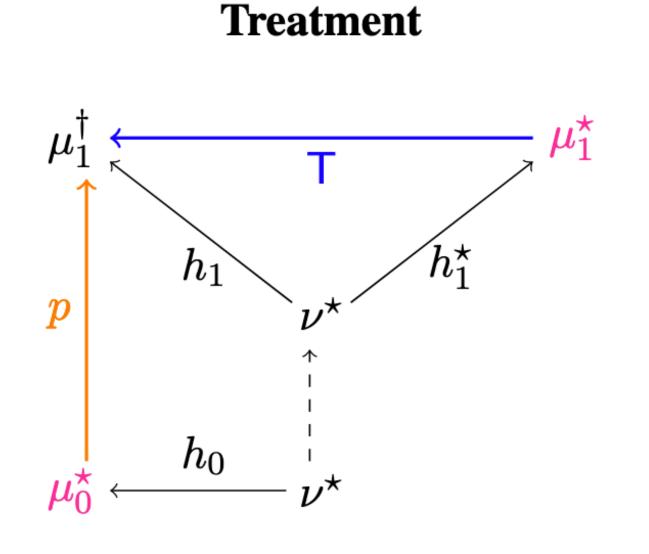
$$F_{Y_{11}^N}(y) = F_{Y_{10}}\left(F_{Y_{00}}^{-1}\left(F_{Y_{01}}(y)\right)\right)$$

Monotone rearrangement

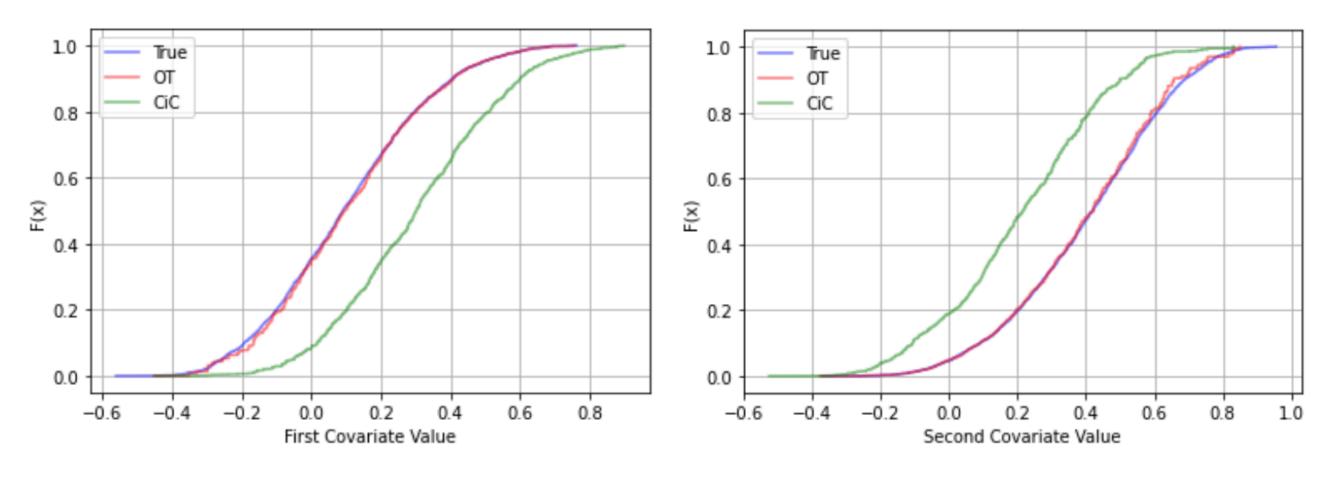
Multivariate extension

Control

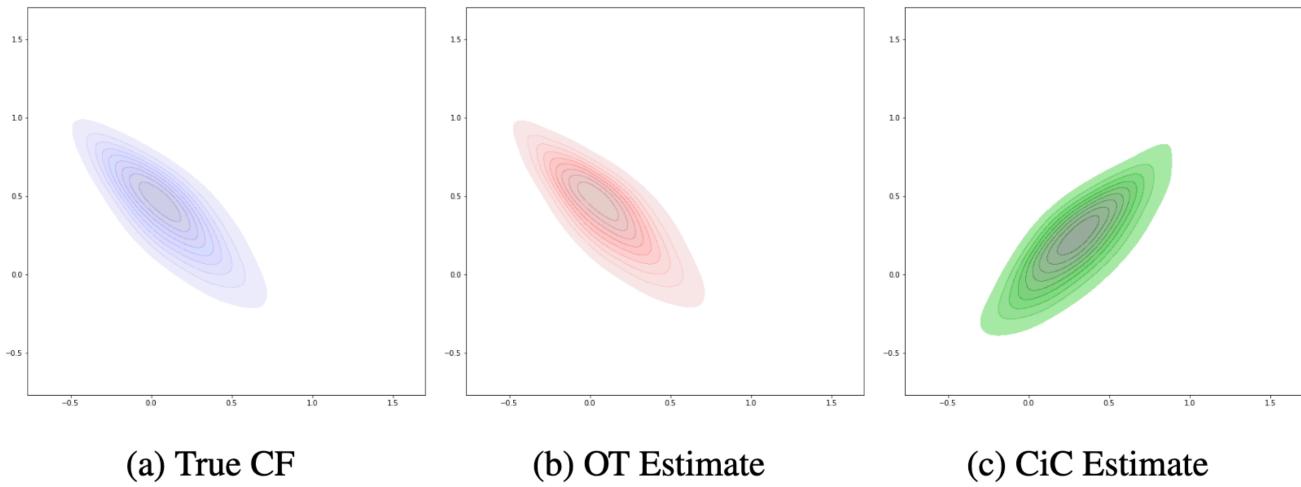




The main identifying assumption now is not monotonicity, but cyclic monotonicity



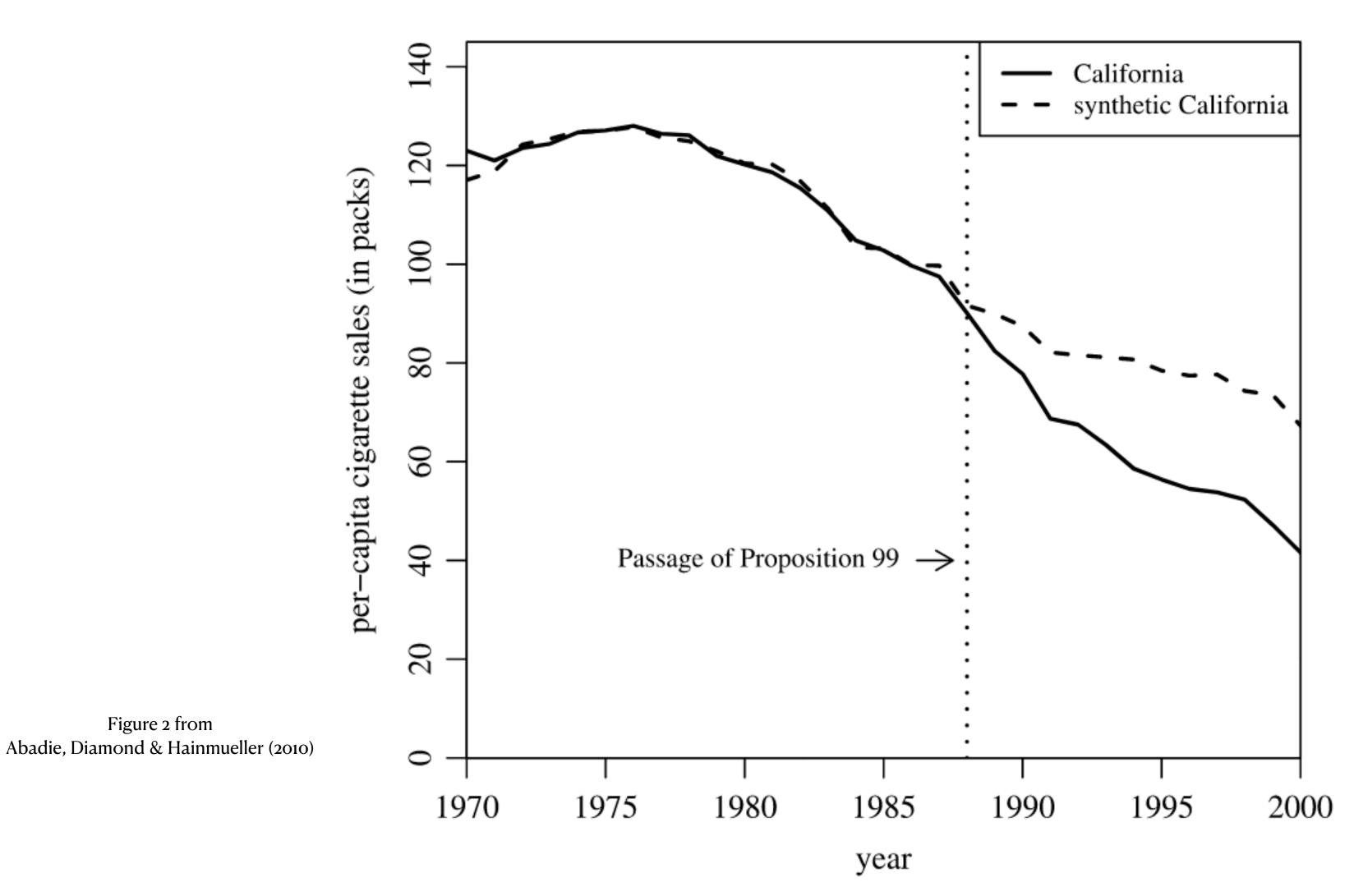
(a) First Marginal



(b) Second Marginal

Figure 2: Recovery of counterfactual marginals by OT and CiC.

2. Optimal transport for synthetic controls

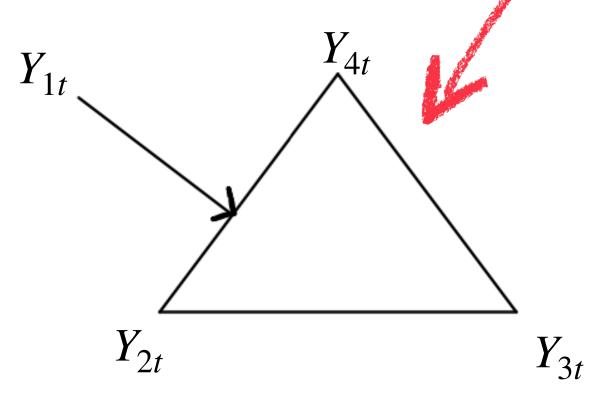


In parts joint with Rex Hsieh and MJ Lee

Classical approach

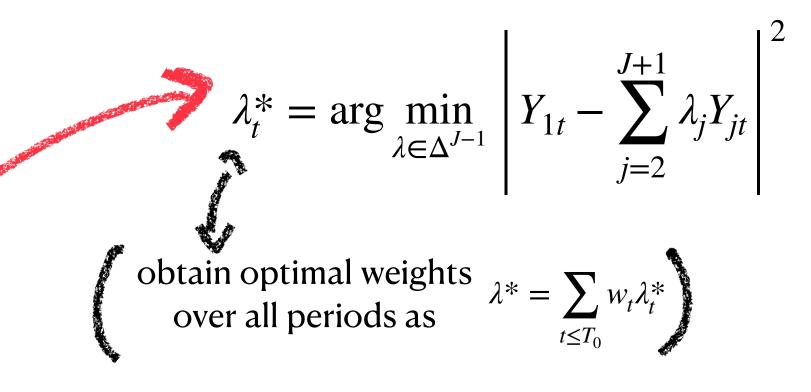
- $0 \le t \le T$ time periods
- $0 < T_0 < T$ pre-intervention periods
- j = 2, ..., J + 1 control units
- j = 1 treatment/target unit

 $\left\{Y_{jt}\right\}_{j=1,\ldots,J+1}$ observable outcomes



Two steps:

1. For all $0 \le t \le T_0$:



2. For all $t > T_0$:

$$Y_{1t,N} = \sum_{j=2}^{J+1} \lambda_{jt}^* Y_{jt}$$

Distributional approach

Classical version only deals with **aggregate outcomes**: e.g. aggregate household income, population size, average income, etc.

OT allows to design a **distributional approach** that can deal with entire

patterns, individual income, etc.

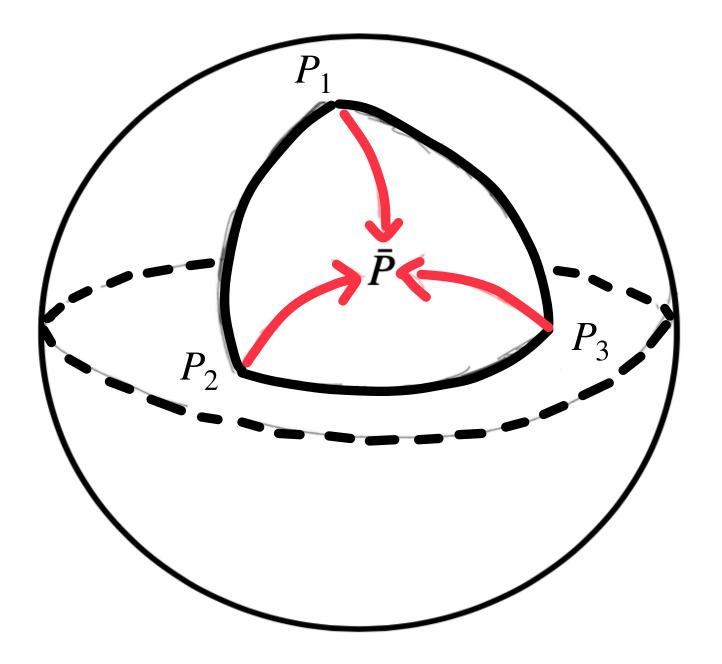
distributions, which allows to take into account general heterogeneity of treatment e.g. distribution of individual household income, population movement

Wasserstein Projections

Weighted Barycenter

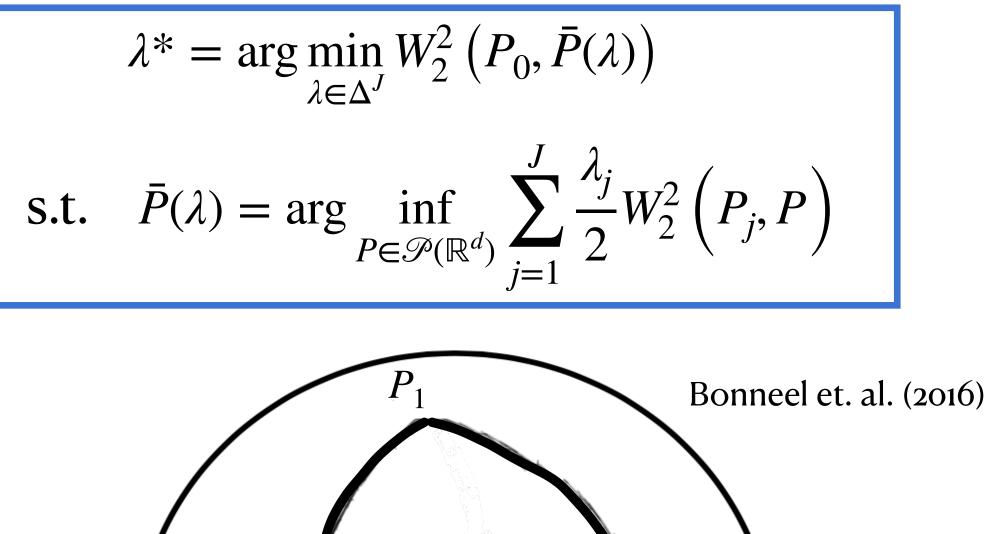
$$\bar{P}(\lambda) = \arg \inf_{P \in \mathscr{P}(\mathbb{R}^d)} \sum_{j=1}^J \frac{\lambda_j}{2} W_2^2\left(P_j, P\right)$$

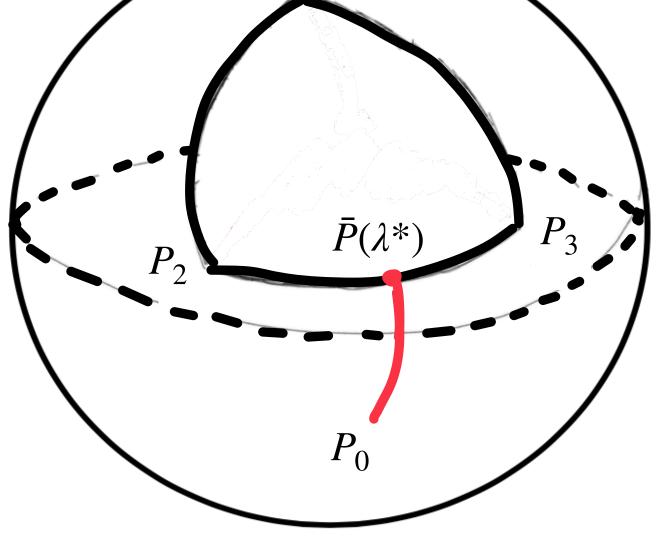
 $\lambda \equiv (\lambda_1, \dots, \lambda_d) \in \Delta^J$



Bilevel program

Projection





Using the tangential structure of $\mathcal{W}_2(\mathbb{R}^d)$

Tangent cone structure for general target measures (AGS 2005):

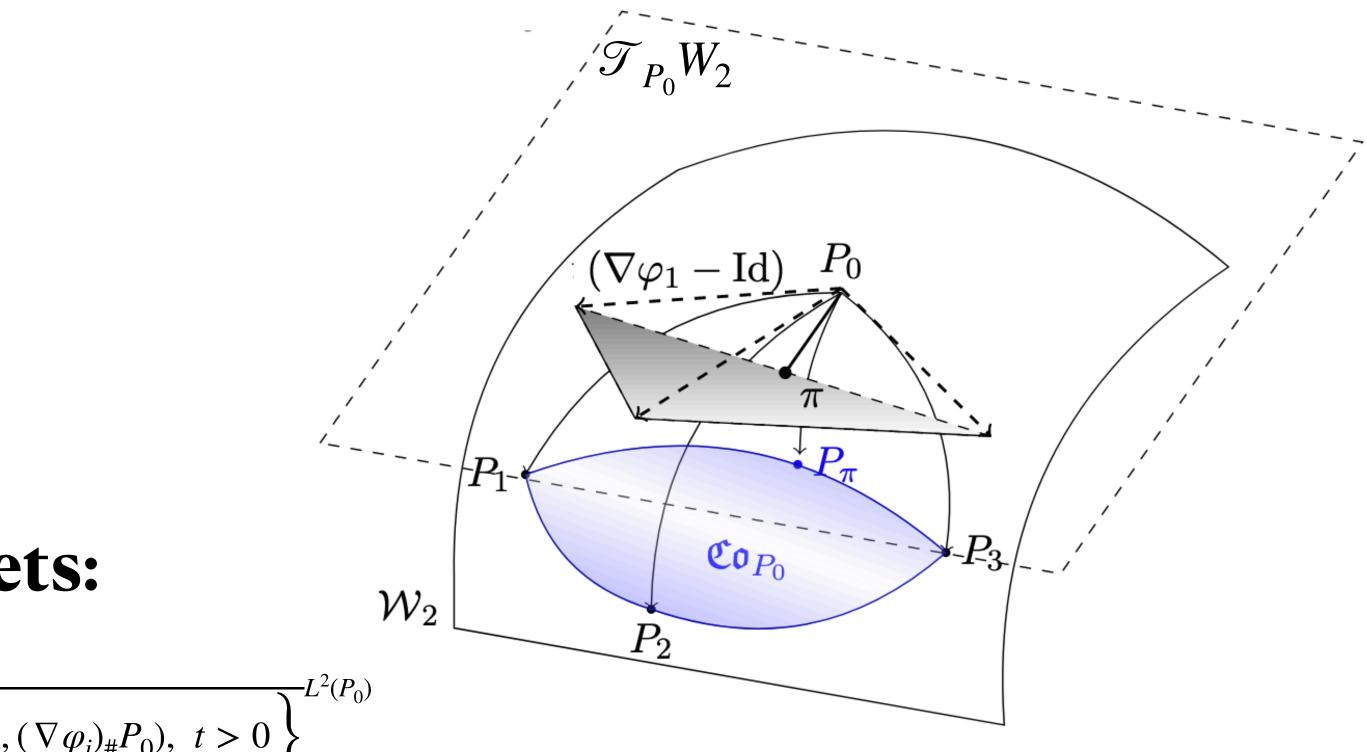
 $\mathscr{G}(P_0) \equiv \left\{ \gamma \in \mathscr{P}_2(\mathbb{R}^d \times \mathbb{R}^d) : (\pi_1)_{\#} \gamma = P_0, \ (\pi_1, \pi_1 + \varepsilon \pi_2)_{\#} \gamma \text{ is optimal for some } \varepsilon > 0 \right\}$

closed under local Wasserstein distance $W_P^2(\gamma_{12}, \gamma_{13}) \equiv \min \left\{ \int_{(\mathbb{R}^d)^3} \left| x_2 - x_3 \right|^2 d\gamma_{123} : \gamma_{123} \in \Gamma_1(\gamma_{12}, \gamma_{13}) \right\}$

with the corresponding exponential map $\exp_P(\gamma) = (\pi_1 + \pi_2)_{\#} \gamma.$

Tangent space for regular targets:

 $\mathcal{T}_{P_0} W_2(\mathbb{R}^d) \equiv \overline{\left\{ t(\nabla \varphi_j - \mathrm{Id}) : \left(\mathrm{Id} \times \nabla \varphi_j \right)_{\#} P_0 \text{ is optimal in } \Gamma(P_0, (\nabla \varphi_j)_{\#} P_0), \ t > 0 \right\}}^{L^2(P_0)}$



Implementation

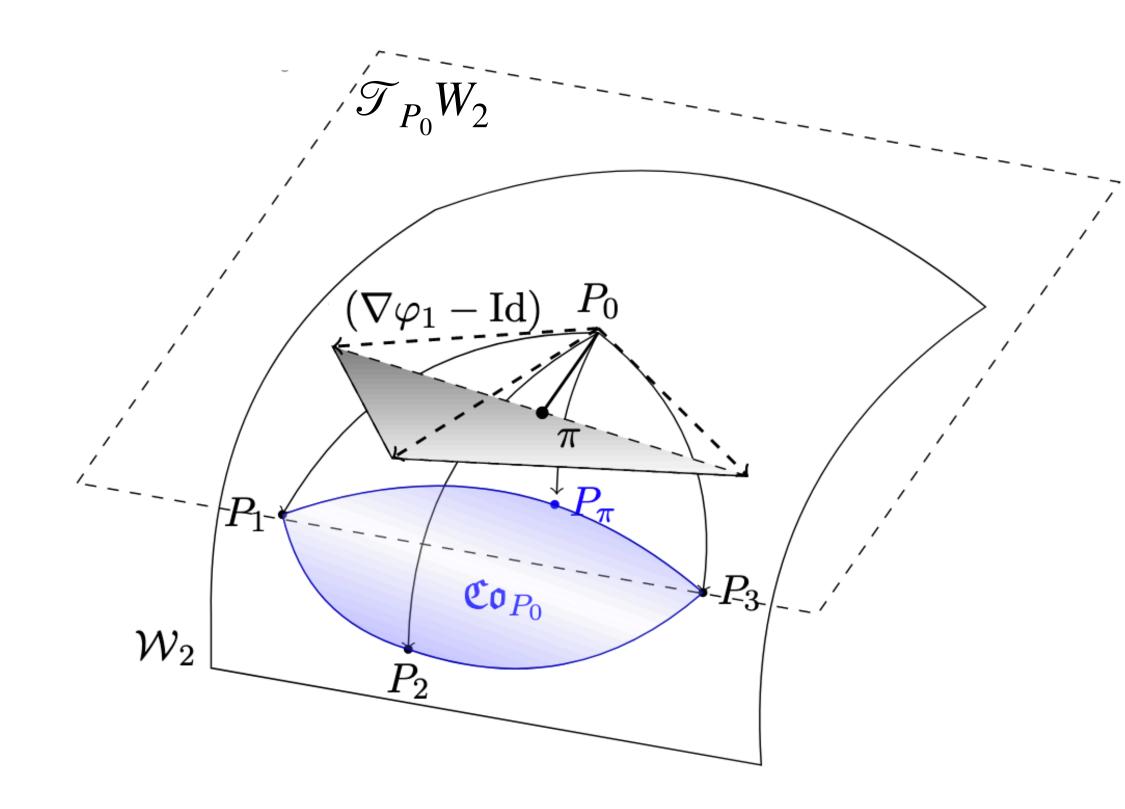
Tangential Wasserstein projections (regular target measure):

$$\lambda^* \equiv \underset{\lambda \in \Delta^J}{\operatorname{arg\,min}} \left\| \sum_{j=1}^J \lambda_j \left(\nabla \varphi_j - \operatorname{Id} \right) \right\|_{L^2(P_0)}^2$$

General target measure:

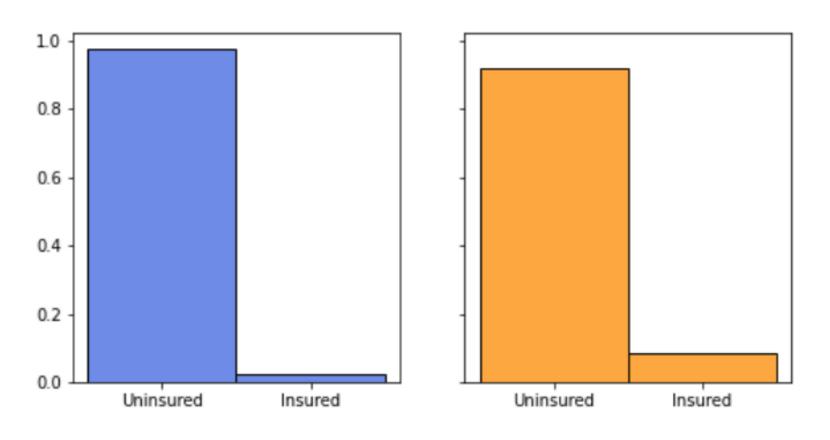
$$\lambda^* \equiv \underset{\lambda \in \Delta^J}{\operatorname{arg min}} \left\| \sum_{j=1}^J \lambda_j \left(b_{\gamma_{0j}} - \operatorname{Id} \right) \right\|_{L^2(P_0)}^2$$

$$b_{\gamma_{0j}}(x_1) \equiv \int_{\mathbb{R}^d} x_2 \, d\gamma_{0j,x_1}(x_2)$$
 is the barycentric

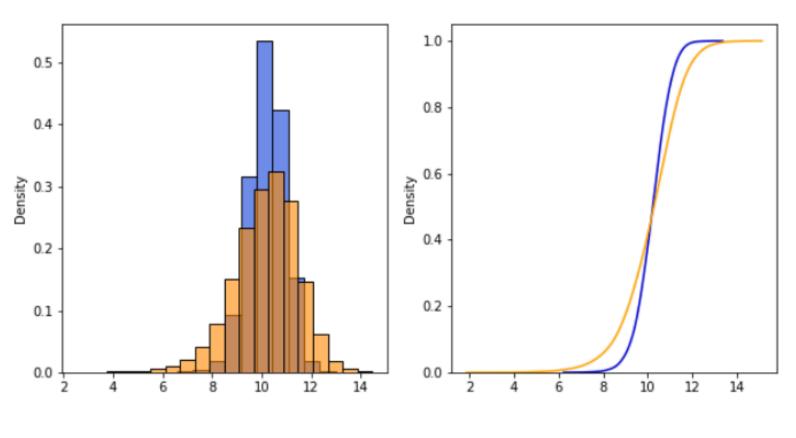


projection of the optimal transport plans γ_{0j}

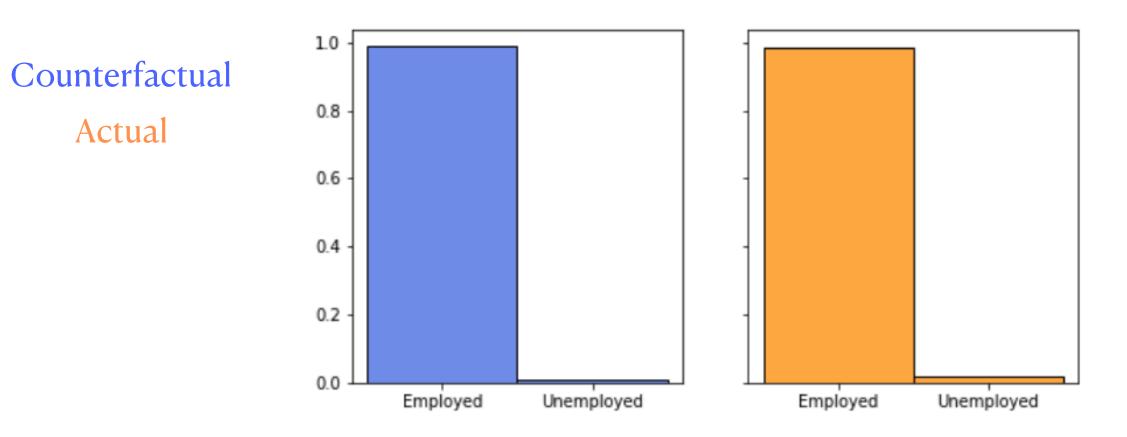
Application: Medicaid in Montana



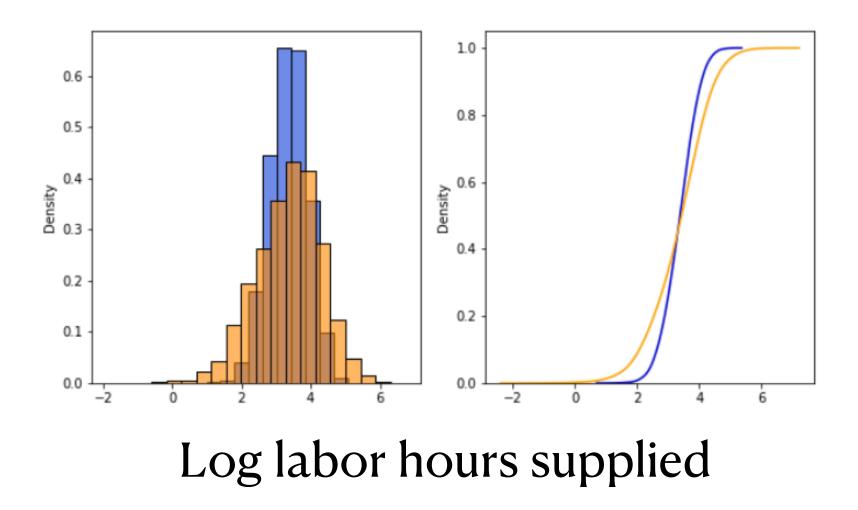
Medicaid coverage



Log wage



Employment status



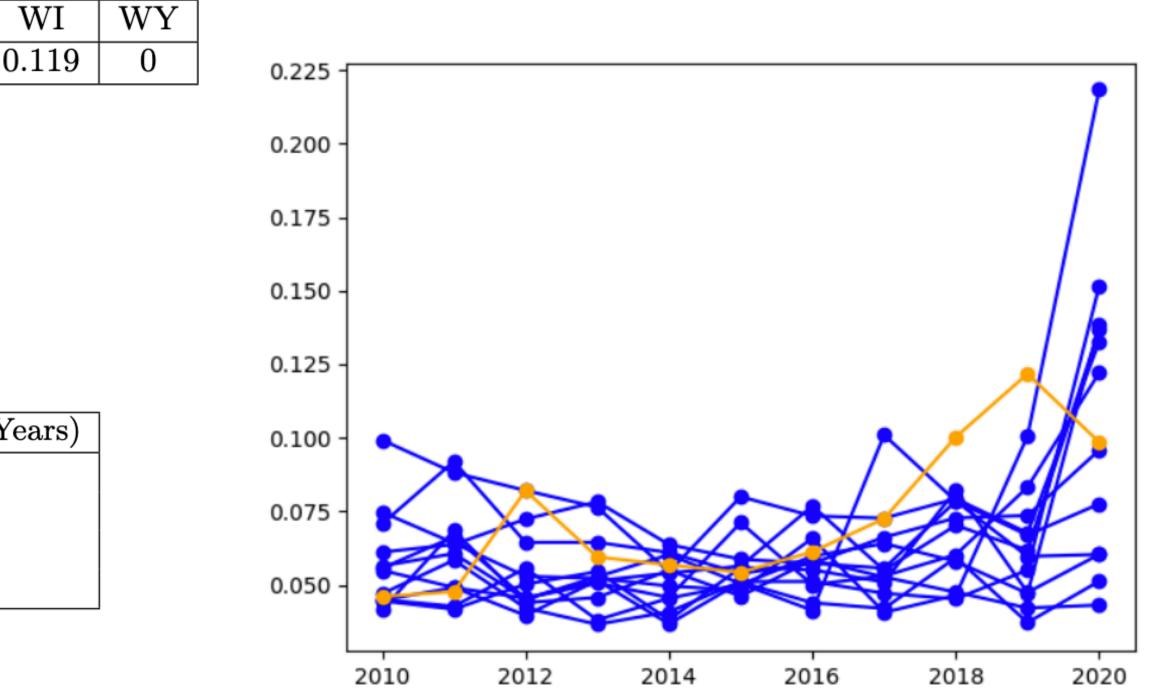
Weights of control states

State	AL	FL	GA	KS	MS	NC	SC	SD	TN	TX	
Weight	0.184	0	0	0	0.174	0	0.010	0.513	0	0	0

"p-values"

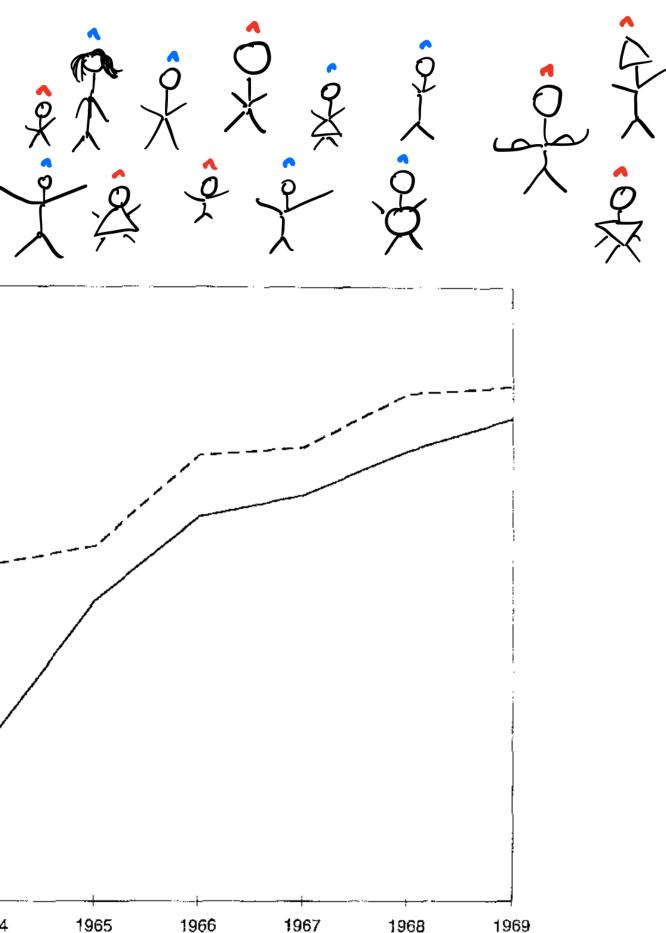
	· · · · · · · · · · · · · · · · · · ·	
Year (t)	p_t (Weights Using All Years)	p_t (Averaged Weights Over All Ye
2017	0.231	0.308
2018	0.077	0.077
2019	0.077	0.077
2020	0.535	0.385

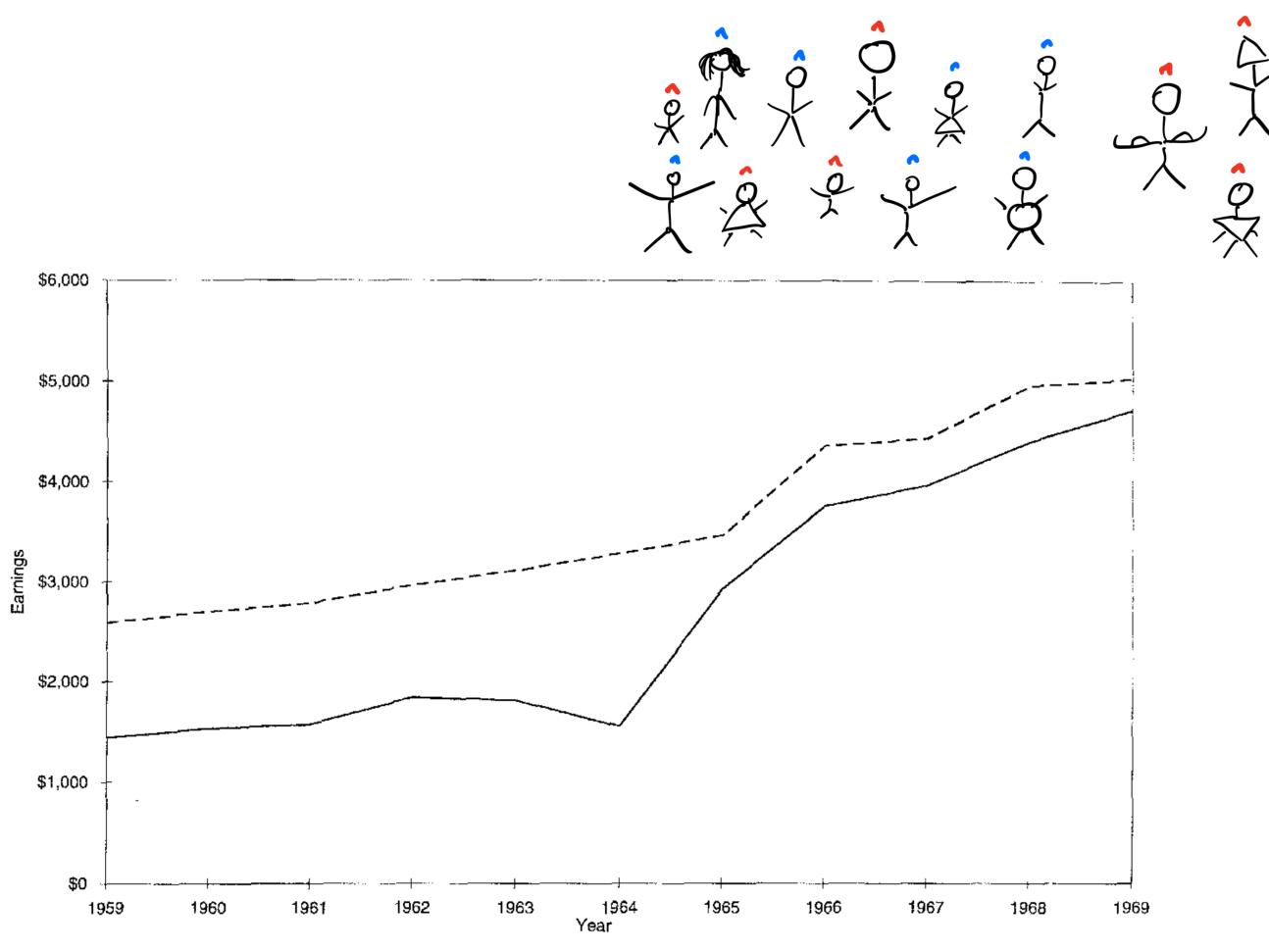
Permutation test over time



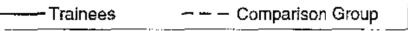
3. Optimal transport as a matching estimator

Treatment





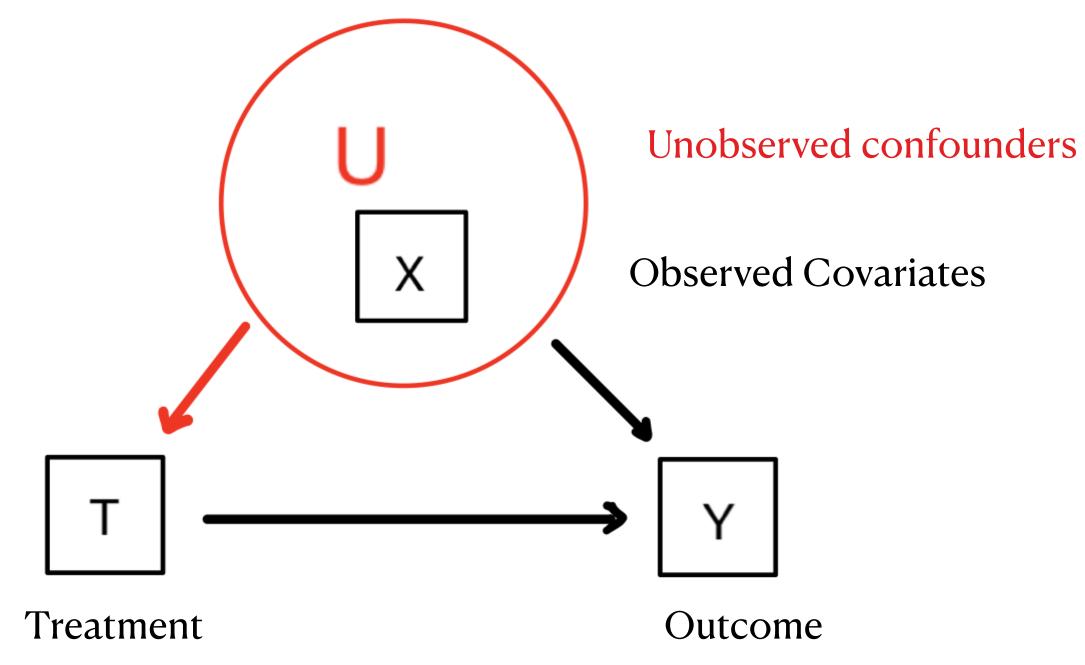
Source: Ashenfelter (1978).

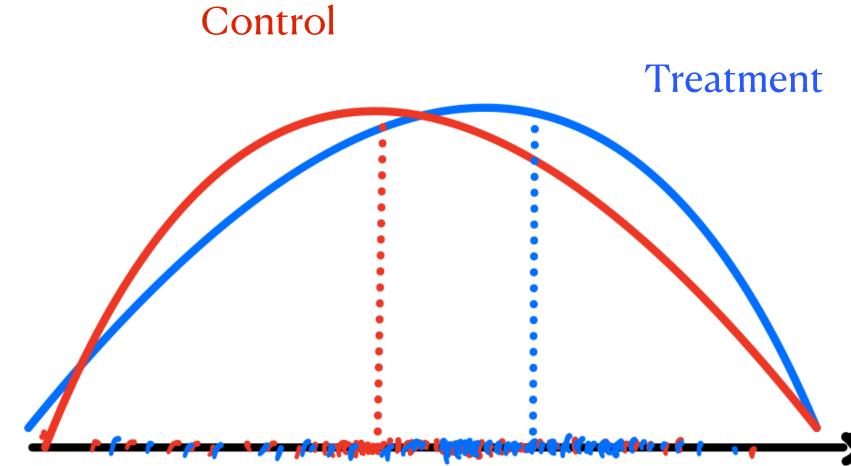


Control

joint work with Yuliang Xu

The problem: Unobserved confounders





Matching to correct for endogeneity bias

Use information from covariates!

Potential outcome notation

T = 1, ..., J $Y(j) \in \mathbb{R}, \quad j = 1, ..., J$ $V(j) \in \mathbb{R}, \quad j = 1, ..., J$ $X \in \mathbb{R}^{d}$ $D(j) \in \left\{ \tau \in \{0,1\}^{J} : \sum_{j=1}^{J} \tau_{j} = 1 \right\}$ Treatment indicator $T = j \iff D(j) = 1$

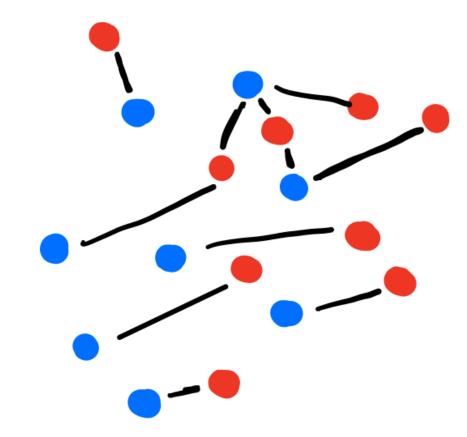
Assumptions for causal inference

$Y(j) \perp D(j) \mid X$			Weak unconfoundedr
$0 < \rho \le P(D(j)) =$	= 1 <i>X</i>) ≤	$\leq 1 - \rho < 1$	Overlap
$X D(j) \sim \mu_j$			Covariate distribution
$y(X,j) = \mathbb{E}(Y T)$	= j, X)	bd, cont	Regularity

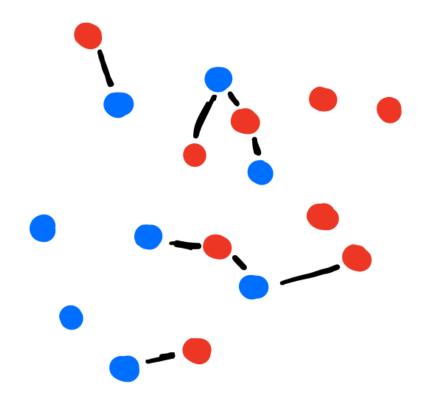
lness

n

Key to reduce bias: use unbalanced optimal transport

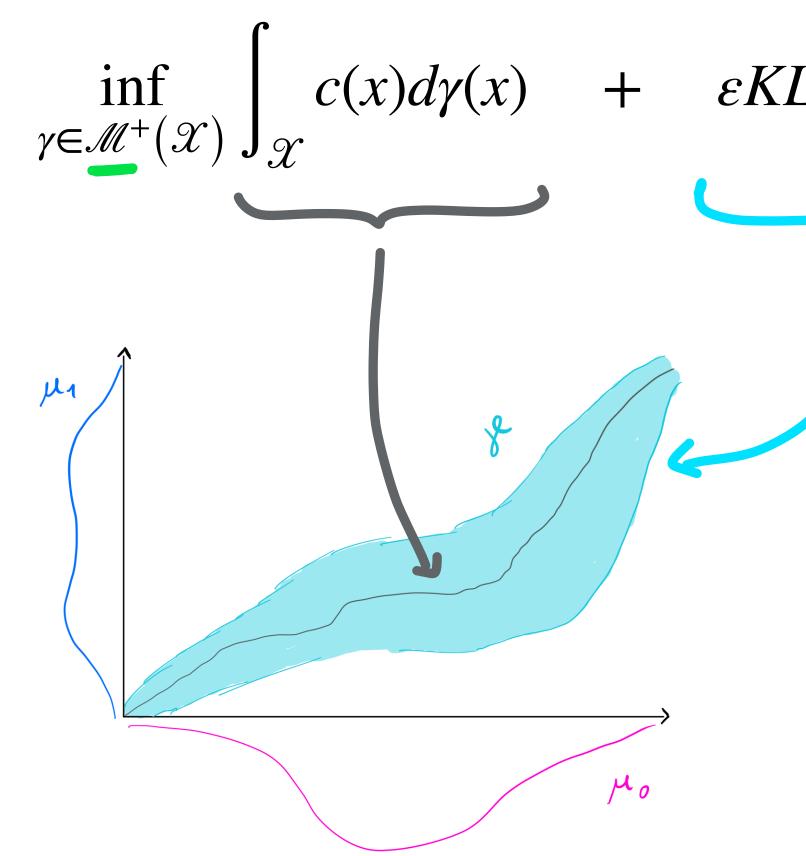


Classical (balanced) OT: All elements are matched



Unbalanced OT: Only keep good matches

Unbalanced optimal transport



Galichon & Salanié (2010), Cuturi (2013)

$$XL(\gamma \mid \mid \bigotimes_{j=1}^{J} \mu_{j}) + \sum_{j=1}^{J} D_{\phi} \left(\pi_{j} \gamma \mid \mid \mu_{j} \right)$$

Relaxing the constraint that measures have to have the same overall mass

$$KL(\gamma \mid |\bigotimes_{j} \mu_{j}) \equiv \int_{\mathcal{X}} \ln \frac{d\gamma}{d\bigotimes_{j} \mu_{j}}(x)d\gamma(x) + \left(\int_{\mathcal{X}} d\bigotimes_{j} \mu_{j}(x) - \int_{\mathcal{X}} d\gamma\right) d\gamma(x)$$

$$D_{\phi}\left(\mu \mid \mid \nu\right) \equiv \int_{\mathcal{X}} \phi\left(\frac{d\mu}{d\nu}\right) d\nu + \phi_{\infty}' \int_{\mathcal{X}} d\mu^{\perp}$$

Causal effects via unbalanced OT matching

as

(10)
$$\hat{\mathbb{E}}_N\left[\hat{Y}(j)\right] = \frac{1}{N} \sum_{i=1}^N Y_i I(D_i(j) = 1) + \frac{1}{N} \sum_{i=1}^N \sum_{k \neq i} \sum_{k \neq i} Y_k \hat{\gamma}_{N,j|t}(X_k|X_i) I(D_i(t) = 1),$$

DEFINITION 1. For the *j*-th treatment and $t \neq j$ denote $\gamma_{j|t}$ as the conditional measure of covariates in group j given the covariates in group t under the joint distribution γ . Then under Assumption 1, the expected potential outcome can be expressed in the sample version

where $N = \sum_{j=1}^{J} N_j$ is the overall number of sample points over all treatment arms and $\hat{\gamma}_N$ is the empirical counterpart to the optimal matching estimated via the generalized Sinkhorn algorithm (8) by replacing μ_i with the empirical measures $\hat{\mu}_{N_i}$ defined below in (11).

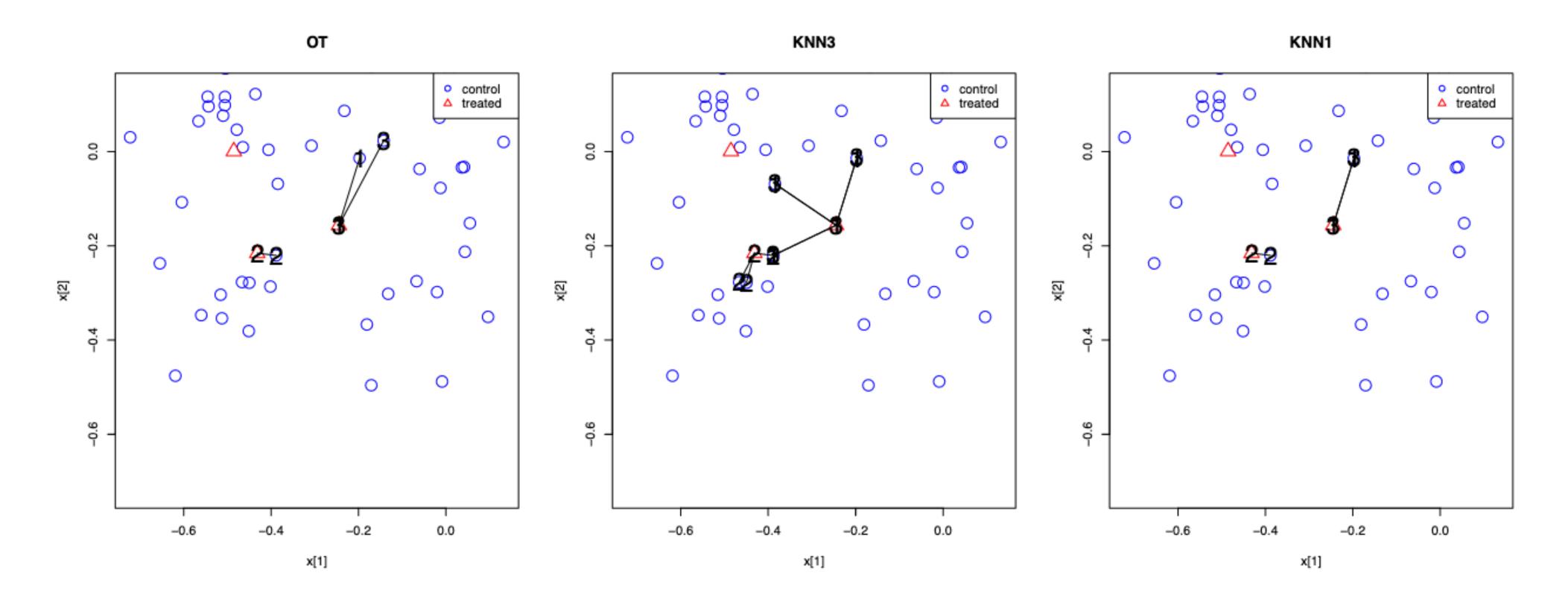


Fig 2: Top 3 pairs with the largest unbalanced OT weights in the simulation case 2, and the corresponding KNN matches for the selected treated individuals.

Conclusion

- Overview of some settings in causal inference where optimal transport is interesting and can be useful.
- OT is often an interesting choice when dealing with heterogeneity in the treatment effect
- Many other applications and settings: instrumental variables, domain adaptation, etc.
- Problems in causal inference can inform new optimal transport estimators