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Quadratically Regularized Optimal transport

QOTϵ(P, Q) = min
π∈Π(P,Q) ∫ℝd×ℝd

1
2 ∥x − y∥2dπ(x, y) +

ϵ
2

dπ
d(P × Q)

2

L2(P×Q)

,

The quadratically regularized optimal transport is 

Quadratic entropy penalty 
This talk we will see the some properties of QOT

Differences between EOT and QOT
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OT(P, Q) = min
π∈Π(P,Q) ∫ℝd×ℝd

1
2 ∥x − y∥2dπ(x, y)

Optimal transport
Let  and   be probability measures P Q

where  is the set of couplings between  and  Π(P, Q) P Q

The optimal transport plan is concentrated on the graph of the sub-differential of 
a l.s.c. convex function

The solution, , is called optimal transport plan π*
, is called optimal transport cost OT(P, Q)

If  is absolutely continous wrt Lebesgue:   , where   is a l.s.c. 
convex function

P π* = (I × ∇φ)#P φ



OT(P, Q) = sup
f(x)+g(y)≤∥x−y∥2 ∫ f(x)dP(x) + ∫ g(y)dQ(y),

Duality
Let  and   be probability measures P Q

A solution of the dual problem will be a pair  of functions where





are conjugate l.s.c. convex functions and    

( f, g)

(φ, ψ) = (∥ ⋅ ∥2/2 − f,∥ ⋅ ∥2/2 − g)

If  is absolutely continous wrt Lebesgue:   P π* = (I × ∇φ)#P



OT(Pn, Qn) =
1
n

min
π

⟨C, π⟩Fr : s . t . π ∈ Ωn

Finite sample approximation
Let  and   be empirical measures Pn =

1
n

n

∑
i=1

δXi
Qn =

1
n

n

∑
i=1

δYi

where  is the Birkhoff polytope of doubly stochastic matricesΩn

Ωn = π ∈ ℝn×n :
n

∑
i=1

πi,j = 1,
n

∑
j=1

πi,j = 1, πi,j ≥ 0

and   is the cost matrix C = (∥Xi − Yj∥2)i,j



Finite sample approximation

ΩnC
The vertexes of the Birkhoff polytope are 
the permutation matrices 

OT is a linear program

The empirical OT plans are sparse 



Regularized Optimal transport

EOTϵ(P, Q) = min
π∈Π(P,Q) ∫ℝd×ℝd

1
2 ∥x − y∥2dπ(x, y) + ϵH(π |P × Q),

The entropy regularized optimal transport is 

H(α |β) = { ∫ log( dα
dβ (x))dα(x) if α ≪ β

+∞ otherwise

Logarithmic entropy penalty 



Regularized Optimal transport

This problem can also be written in its dual formulation 

with , where the two variables are independent. The solutions satisfy 

      

EOTϵ(P, Q) = sup
f ∈ L1(P)
g ∈ L1(Q)

E (f(X) + g(Y) − ϵ e
f(X) + g(Y) − 1

2 | |X − Y | |2

ϵ ) + ϵ,

X ∼ P, Y ∼ Q

fP,Q = − ϵ log (∫ e
gP,Q(y) − 1

2 ∥⋅ −y∥2

ϵ dQ(y)) gP,Q = − ϵ log (∫ e
fP,Q(x) − 1

2 ∥x − ⋅∥2

ϵ dP(x))

We pass from a linear 
program to an strictly 

concave one



Regularized Optimal transport
Efficient computation Sinkhorn algorithm

The dual solutions are smooth 

The regularized plan is a noisy approximation 
of the OT plan

Exponential convergence in the fixed point iterations

(Franklin and Lorenz (1989) Carlier (2022), 
Instability when  is smallϵ

Some regularity properties of OT can be obtained 

via covariance inequalities (Chewi, Pooladian (2022))
Reduction of statistical complexity (Donsker class) 
Genevay et al. (2018), Mena and Weed  (2019)

The regularized plan has full support 

Similar behaviour to a Gaussian convolution of OT (Pal 
(2019))
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Quadratically Regularized Optimal transport
A. Dessein et al. (2018) considered optimal transport with convex regularization.


Essid and Solomon (2018) studied quadratic regularization for a minimum-cost flow problem on a 
graph, including discrete optimal transport as a special case.


M. Blondel et al. (2019) in explored QOT in the discrete setting, with experiments highlighting the 
sparsity and theoretical results including convergence for small regularization parameter. They 
proposed an application to image processing. 


Li et al. (2020) computes regularized Wasserstein barycenters using neural networks and finds that the 
quadratic penalty produces sharper results than the logarithmic.


The first work rigorously addressing a continuous setting is Lorenz et al. (2021). The authors derive 
duality results and present two algorithms, a nonlinear Gauss–Seidel method and a semismooth 
Newton method.


Zhang et al. (2023) uses quadratic regularization in a manifold learning task related to single cell RNA 
sequencing and notes that sparsity is crucial to avoid biasing the affinity matrix.



Dual formulation

QOTϵ(P, Q) = sup
a,b∈L2(P)×L2(Q) ∫ a(x)dP(x) + ∫ b(y)dQ(y)

1
ϵ (aϵ(x) + bϵ(y) −

1
2

∥x − y∥2)
+

d(P × Q)(x, y)

−
1
2ϵ (a(x) + b(y) −

ϵ
2

∥x − y∥2)
2

+
d(P × Q)(x, y)

This problem can also be written in its dual formulation 

Primal-dual relation

 solves Dual(aϵ, bϵ) ⟺
solves Primal



Optimality Conditions

∫ (aϵ(x) + bϵ(y) −
1
2

∥x − y∥2)
+

dQ(y) = ϵ P − a . e . x

QOT

∫ (aϵ(x) + bϵ(y) −
1
2

∥x − y∥2)
+

dP(x) = ϵ Q − a . e . y

∫ e
aϵ(x) + bϵ(y) − 1

2 ∥x − y∥2

ϵ dQ(y) = 1 P − a . e . x
EOT

∫ e
aϵ(x) + bϵ(y) − 1

2 ∥x − y∥2

ϵ dP(x) = 1 Q − a . e . y



Empirical approximation

QOTϵ(Pn, Qn) =
1
n

min
π

⟨C, π⟩Fr +
ϵ
2

∥π∥2 : s . t . π ∈ Ωn

Let  and   be empirical measures Pn =
1
n

n

∑
i=1

δXi
Qn =

1
n

n

∑
i=1

δYi

where  is the Birkhoff polytope of doubly stochastic matricesΩn

Ωn = π ∈ ℝn×n :
n

∑
i=1

πi,j = 1,
n

∑
j=1

πi,j = 1, πi,j ≥ 0

and   is the cost matrix C = (∥Xi − Yj∥2)i,j



Sationary approximation
QOTϵ(Pn, Qn) =

1
n

min
π

⟨C, π⟩Fr +
ϵ
2

∥π∥2 : s . t . π ∈ Ωn

QOT is a quadratically regularized linear program 

(Mangasarian, Meyer, 1979) As  the convergence of the QOT plans towards 
the OT plans is stationary: 

ϵ → 0

There exists  such that   ϵ0 > 0 (QOT plan) (OT plans)∈ ∀ ϵ ≤ ϵ0

The QOT plan is the projection of −
C
2ϵ



Sationary convergence

Ωn

−
C
2ϵ

QOT plan at  πϵ = ϵ

Cost matrix C =
Birkhoff polytopeΩn =

πϵ

OT plan π* =

π*

Regularization parameter where the effect of 
regularization is meaningless

ϵ0 =

ϵ0



Sationary convergence

ϵ−1 ≤ (ϵ*)−1 := 2 N ⋅ max
π∈Permutations∖OTplans

⟨π*, π* − π⟩
⟨C, π − π*⟩

,

Theorem (GS, Nutz, 2024)

(QOT plan) (OT plans)∈ ⟺
where  is the OT plan with smallest normπ*

Example rates as sample size increases

ϵ* =
1

2N3

If the points are a uniform grid of [0,1]



Comparison with EOT
Theorem (Niles-Weed, 2021) The convergence of EOT plans is exponentially fast

Why the convergence of EOT is not stationary?

Ωn

πQOT
ϵ π*

πEOT
ϵ

EOT approaches OT from inside of the polytope
QOT approaches OT by changing to better faces

Changing from faces to surfaces of  is means 
creating new zeroes

Ωn

The relative interior of  are the couplings with 
full support

Ωn



Sparsity

EOT approaches OT from inside of the polytope

QOT approaches OT by changing to better faces

Changing from faces to subfaces of   means 
creating new zeroes

Ωn

The relative interior of  are the couplings with 
full support

Ωn
EOT plans full support

QOT plans sparse

(All the entries of the 
matrix are strictly positive)

(Progressively new zeroes 
are created)

Is the creation of zeroes monotone? That is, is the support of the QOT plan decreasing monotously?



Non Monotonicity
Is the creation of zeroes monotone? That is, is the support of the QOT plan decreasing monotously?

Each time the QOT plan enters in a face of the polytope it remains in that face 

Theorem (GS, Nutz, Riveros Valdevenito, 2024)
The monotonicity of the support fails for n larger or equal than 5 and it is true otherwise. That is, for 

, there exists a configuration of points (or respectively a cost matrix) such that a zero created 
becomes positive for smaller regularization parameter

n ≥ 5

⟺
⟺ (GS, Nutz, Riveros Valdevenito, 2024)

The point of minimum norm of each face of the polytope belongs to the relative interior of that face



Non Monotonicity
Theorem (GS, Nutz, Riveros Valdevenito, 2024)
The monotonicity of the support fails for n larger or equal than 5 and it is true otherwise. That is, for 

, there exists a configuration of points (or respectively a cost matrix) such that a zero created 
becomes positive for smaller regularization parameter.

n ≥ 5

π1/2.5 =

0 0.05 0.05 0.05 0.05
0.05 0.15 0 0 0
0.05 0 0.15 0 0
0.05 0 0 0.15 0
0.05 0 0 0 0.15

π0 =

0.2 0 0 0 0
0 0.2 0 0 0
0 0 0.2 0 0
0 0 0 0.2 0
0 0 0 0 0.2

Cost =

−1.1 −1 −1 −1 −1
−1 −1.1 0 0 0
−1 0 −1.1 0 0
−1 0 0 −1.1 0
−1 0 0 0 −1.1

.



Continous case

supp(πϵ)
P

Q Does in the continuous case the size of the 
support decreases?  

How fast?  



Qualitative result

Theorem (Nutz, 2024) 
As  the support of the QOT plan tends to the support of the OT plan (graph of OT map) in 

Hausdorff distance.  
ϵ → 0

The proof is a consequence of the following facts


• The QOT potentials are uniformly Lipschitz 


• and they converge uniformly to the OT potentials


• The shape of the conditional support


𝒮x = {aϵ(x) + bϵ(y) −
1
2

∥x − y∥2 ≥ 0}



Explicit solutions
Let us solve it in a place where the solutions are explicit in order to gain some intuition

Consider the marginals
P = Q = Uniform[0,1]d

and the cost
d2

T(x, y) =
1
2

inf
z∈ℤd

∥x − y − z∥2

The QOT plan has density (for small regularization)

1
ϵ (Cd ϵ

2
d + 2 − d2

T(x, y))+

As , the diameter of the support of the density tends to zero with rate ϵ → 0 ϵ
1

d + 2

As , ϵ → 0 QOTϵ(P, Q) − OT(P, Q) = O(ϵ 2
d + 2)



Geometric properties of QOT

1
ϵ (aϵ(x) + bϵ(y) −

1
2

∥x − y∥2)
+

d(P × Q)(x, y) =
1
ϵ (⟨x, y⟩ − fϵ(x) − gϵ(y))+

d(P × Q)(x, y)

fϵ(x) = 1
2 ∥x∥2 − aε(x), gϵ(y) = 1

2 ∥y∥2 − gε(y)

We rewrite things in a more proper way

where

Lemma (GS, Nutz, 2024)
Assume that  and  are a.c. w.r.t. Lebesgue with bounded support.  Then  is a convex function 
with derivative 

P Q fϵ

∇fϵ(x) =
∫

𝒮x
ydQ(y)

Q(𝒮x)
𝒮x = {y : ⟨x, y⟩ − fϵ(x) − gϵ(y) ≥ 0}



Geometric properties of QOT

For fixed x the function   is concave and integrates .y ↦ ξ(x, y) = ⟨x, y⟩ − fϵ(x) − gϵ(y) ϵ

ξ(x, ⋅ )

ϵmax
y

ξ(x, y)

|𝒮x |

Therefore, if   and  with  bounded away from zero and infinity, then P = p1Ω0
dx Q = q1Ω1

dx p, q

|𝒮x | = |{y : ξ(x, y) ≥ 0} ||𝒮x | max
y∈Ω1

ξ(x, y) ≈ ϵ where 

Then


• We need to understand the relation 
between  the maximun of the paraboloid 
and its basis


• This involves controlling the second 
derivative of the paraboloid  




Bound on the second derivative

f′￼′￼ε(x) = q(ym(x))
( f′￼ε(x) − ym(x))2

(x − g′￼ε(ym(x)))Q(𝒮x)
χΩ(2)

0 ∪Ω(3)
0

(x) + q(yM(x))
( f′￼ε(x) − yM(x))2

(g′￼ε(yM(x)) − x)Q(𝒮x)
χΩ(1)

0 ∪Ω(2)
0

(x) .

Step 1) Exact shape of the derivative

Step 2) A Bound on the derivative
1
4

|𝒮′￼yM(x) | ≤ |g′￼ε(yM(x)) − x | ≤ |𝒮′￼yM(x) |

[ym(x), yM(x)] = 𝒮x

1
4

|𝒮′￼ym(x) | ≤ |g′￼ε(ym(x)) − x | ≤ |𝒮′￼ym(x) |

⟹ f′￼′￼ε(x) ≈
|𝒮x |

|𝒮′￼ym(x) |
+

|𝒮x |
|𝒮′￼yM(x) |



Bound on the second derivative

f′￼′￼ε(x) ≈
|𝒮x |

|𝒮′￼ym(x) |
+

|𝒮x |
|𝒮′￼yM(x) |

supp(πϵ)

P

Q 𝒮′￼yM(x)

𝒮′￼ym(x)

𝒮x
We need to show that the blue segments decrease 

with the same order as the red one 



Bound on the second derivative

σm( fε) := inf
x∈Ω0∖{x(m),x(M)}

f′￼′￼ε(x) > 0 σM( fε) := sup
x∈Ω0∖{x(m),x(M)}

f′￼′￼ε(x) < + ∞ .

C−1(σM( fε))−1/2 max
y∈[a1,b1]

(ξ(x, y))3/2
+ ≤ ε ≤ C(σm( fε))−1/2 max

y∈[a1,b1]
(ξ(x, y))3/2

+ .

ξ(x, y) = ⟨x, y⟩ − fϵ(x) − gϵ(y)
|𝒮x | max

y∈[a1,b1]
ξ(x, y) ≈ ϵ

⟹

Step 3) A Bound the derivative w.r.t. the maximum of the parabola

where

C−1 ( ε
σM( fε) )

1
3

≤ |𝒮x | ≤ C ( ε
σm( fε) )

1
3

.

and use 

Call



Bound on the second derivative
Step 4) Use the estimates

C−1 ( ε
σM( fε) )

1
3

≤ |𝒮x | ≤ C ( ε
σm( fε) )

1
3

and f′￼′￼ε(x) ≈
|𝒮x |

|𝒮′￼ym(x) |
+

|𝒮x |
|𝒮′￼yM(x) |

to get

σM( fε) ≤ C ( σM(gε)
σm( fε) )

1
3

and σm( fε) ≥
1
C ( σm(gε)

σM( fε) )
1
3

.

σM(gε) ≤ C ( σM( fε)
σm(gε) )

1
3

and σm(gε) ≥
1
C ( σm( fε)

σM(gε) )
1
3



Bound on the second derivative

σM( fε) ≤ C ( σM(gε)
σm( fε) )

1
3

and σm( fε) ≥
1
C ( σm(gε)

σM( fε) )
1
3

.

σM(gε) ≤ C ( σM( fε)
σm(gε) )

1
3

and σm(gε) ≥
1
C ( σm( fε)

σM(gε) )
1
3

Step 5)  Use 

to get

σM( fε) ≤ CσM( fε)
4

49 and σm(gε) ≥ C−1σm(gε)
4
49

Which yields the bound on the derivative



Bound on the second derivative
Theorem (GS, Nutz, 2024) 

If dimension=1, if    and  with  bounded away from zero and infinity, 


• then  is  in  except at two points,


• and there exists a constant  such that  for all 


P = p1[a0,b0]dx Q = q1[a1,b1]dx p, q

fϵ 𝒞2 (a0, b0)

C > 0 C−1 ≤ f′￼′￼ϵ(x) ≤ C x ∈ dom( f′￼′￼ϵ )

Corollary (GS, Nutz, 2024) 

If dimension=1,  if   and  with  bounded away from zero and infinity, 
there exists a constant  such that

P = p1[a0,b0]dx Q = q1[a1,b1]dx p, q
C > 0

,              for all C−1ϵ
1
3 ≤ |𝒮x | ≤ Cϵ

1
3 x ∈ [a0, b0]



Difficulties on general dimension

• The sections are convex sets


• We can always introduce an ellipsoid  of maximal 
volume (John ellipsoid) inside each section. 


• To imitate the arguments of the 1D case, we need to 
ensure that the ellipsoid behaves like a ball. That is, 
the eigenvalues of the matrix defining the ellipsoid 
decrease to zero with the same order of convergence. 


ℰ ℰ 𝒮x



Sharp rates for the self-transport 
Theorem (Wiesel, Xu, 2024) 
If  then  
P = Q = p1Ω0

dx

,              for all C−1ϵ
1

d + 2 ≤ diam(𝒮x) ≤ Cϵ
1

d + 2 x ∈ Ω0

If   and  then  
P = p1Ω0
dx Q = q1Ω1

dx

,              for all diam(𝒮x) ≤ Cϵ
1

4(d + 1)2 x ∈ Ω0

• The rates are sharp for the self-transport case (where the symmetry facilitates things a lot)


• The general case is far from the conjectured rate of  
ϵ1/(d+2)



Behaviour of QOT cost

OT(P, Q) = min
π∈Π(P,Q) ∫ℝd×ℝd

1
2 ∥x − y∥2dπ(x, y)

We want to find the rate of convergence of the difference between the QOT and OT costs

QOTϵ(P, Q) = min
π∈Π(P,Q) ∫ℝd×ℝd

1
2 ∥x − y∥2dπ(x, y) +

ϵ
2

dπ
d(P × Q)

2

L2(P×Q)

,

QOTϵ(P, Q) − OT(P, Q)

where



Behaviour of QOT cost
Theorem (Eckstein, Nutz, 2024) 

C−1 ≤ ϵ
2

d + 2(QOTϵ(P, Q) − OT(P, Q)) ≤ C

If   and  then  
P = p1Ω0
dx Q = q1Ω1

dx

• The proof is based on a quantization argument and an approximation 
by shadows instead to the block approximation of Carlier et al. (2017)


• The result holds for more general regularizations of OT


• In EOT the rate is 


C−1 ≤ ϵ log(ϵ−1)(EOTϵ(P, Q) − OT(P, Q)) ≤ C



First order development 

lim
ϵ→0

ϵ
2

d + 2(QOTϵ(P, Q) − OT(P, Q)) = ?

We want to find the exact limit

lim sup
ϵ→0

ϵ
2

d + 2(QOTϵ(P, Q) − OT(P, Q)) ≤ L

Strategy: 

lim inf
ϵ→0

ϵ
2

d + 2(QOTϵ(P, Q) − OT(P, Q)) ≥ L Lower bound (use dual QOT) 

Upper bound (use primal QOT) 



Lower bound
Strategy: 

lim inf
ϵ→0

ϵ
2

d + 2(QOTϵ(P, Q) − OT(P, Q)) ≥ L Lower bound (use dual QOT) 

Γ(a, b) = ∫ a(x)dP(x) + ∫ b(y)dQ(y) −
1
2ϵ (a(x) + b(y) −

ϵ
2

∥x − y∥2)
2

+
d(P × Q)(x, y)

Since QOTϵ(P, Q) ≥ Γ(a, b) ⟹ we need to find a correct candidate

Cϵ(x) :=
ϵ

2
d + 2

C
2

d + 2
d (p(x)q[∇f(x)]) 1

d + 2

for Cd := 2d + 2
2 ℋd−1(𝒮d−1)

1
d(d + 2)

.



Lower bound

Since QOTϵ(P, Q) ≥ Γ(a, b) ⟹ we need to find a correct candidate (ãϵ, b̃ϵ)

Cϵ(x) :=
ϵ

2
d + 2

C
2

d + 2
d (p(x)q[TP→Q(x)]) 1

d + 2

for Cd := 2d + 2
2 ℋd−1(𝒮d−1)

1
d(d + 2)

.ãϵ(x) = f0(x) + Cϵ(x),

where  solves Dual OT and  is the OT map from P to Q( f0, g0) TP→Q

b̃ϵ(y) = g0(y)

Γ(ãϵ, b̃ϵ) = OT(P, Q) + ϵ
2

d + 2
d

d + 4
d + 2(d + 2) 2

d + 2

(ℋd−1(𝒮d−1))
2

d + 2 ∫Ω0

(p(x)q[TP→Q(x)])− 1
(d + 2) dP(x) + o(ϵ 2

d + 2)



Upper bound

lim sup
ϵ→0

ϵ
2

d + 2(QOTϵ(P, Q) − OT(P, Q)) ≤ L

Strategy: 

Upper bound (use primal QOT) 

Θ(π) = ∫ℝd×ℝd

1
2 ∥x − y∥2dπ(x, y) +

ϵ
2

dπ
d(P × Q)

2

L2(P×Q)

,

We need to find  such that the functional π̃ϵ ∈ Π(P, Q)

evaluated at  achieves the correct limit.π̃ϵ



Upper bound
There are several strategies to find this candidate. For instance, in EOT:


• Block approximation (Carlier et al., 2017) 

• Gaussian approximation (or heat diffusion) (Pal, 2019) 

• Shadows (Eckstein, Nutz, 2024)

For EOT Gaussian approximation is the correct approach because 

• The Wasserstein gradient flow of the logarithmic entropy describes the flow of the heat 
equation (Otto, 2001) 


• The EOT potentials are created via iterative Gaussian convolutions 



Upper bound

For QOT a Barenblatt–Pattle type approximation is the correct approach because 

• The Wasserstein gradient flow of the quadratic entropy describes the flow of the porous 
media equation (Otto, 2001) 


• The QOT potentials are created via an iterative modification of a Barenblatt–Pattle profile 
to create a coupling

{∂tu(t, x) = Δu(t, x)2, t > 0, x ∈ ℝd

u(0,x) = u0(x) x ∈ ℝd,

Porous media equation

ℬ(t, x) =
1

t d
d + 2 [C − β

1
4

∥x∥2

t 2
d + 2 ]

+

,

Fundamental solution (Barenblatt–Pattle)



Upper bound

v(t, x; x′￼) =
1
ϵ

Cd ϵ
2

d + 2

(p(x′￼)q(TP→Q(x′￼))) 1
d + 2

−
1
2

∥x − x′￼∥2
DTP→Q(x′￼)

+

,Candidate

∥x − x′￼∥2
DTP→Q(x′￼) = ⟨x − x′￼, DTP→Q(x′￼)(x − x′￼)⟩,

Send Q to P via OT map and Find a nice coupling in Π(P, P)

This is not a 
feasible coupling

v(t, x; x′￼) := u (t, [TP→Q(x′￼)]
1
2

x; [TP→Q(x′￼)]
1
2

x)
∂tu(t, x; x′￼) = 1

2(d + 2) Δxu(t, x; x′￼)2, t > 0, x ∈ Ω0

u(0,x; x′￼) = p(x′￼)− 1
d + 2 ⋅ δx′￼

(x) x ∈ ℝd



Upper bound

v(t, x; x′￼) =
1
ϵ

Cd ϵ
2

d + 2

(p(x′￼)q(TP→Q(x′￼))) 1
d + 2

−
1
2

∥x − x′￼∥2
DTP→Q(x′￼)

+

,Candidate

∥x − x′￼∥2
DTP→Q(x′￼) = ⟨x − x′￼, DTP→Q(x′￼)(x − x′￼)⟩,

Send Q to P via OT map and Find a nice coupling in Π(P, P)

This is not a 
feasible coupling

To make  a feasible coupling: 

• Normalize in order that it is a probability measure

• Send both marginals to P via the OT map 

• Control the errors using Caffarelli’s interior regularity theory 

ν



Upper bound

Theorem (Garriz Molina, GS, Mordant, 2024) 
Assume   and  with density bounded away from zero and infinity and supports 
with Lipschitz boundary. Then 


P = p1Ω0
dx Q = q1Ω1

dx

QOTϵ(P, Q) = OT(P, Q) + ϵ
2

d + 2
d

d + 4
d + 2(d + 2) 2

d + 2

(ℋd−1(𝒮d−1))
2

d + 2 ∫Ω0

(p(x)q[TP→Q(x)])− 1
(d + 2) dP(x) + o(ϵ 2

d + 2)



Conclusions

• QOT represents a sparse alternative of EOT.


• In the discrete case the convergence is stationary.


• The contraction of the support is not monotone in general.


• In one dimension and the self-transport cases the rates of convergence of the 
support are .


• The rate of the cost is  and the first order limit is obtained by an 
approximation of the solutions via a modification of the fundamental solution of 
the Porous Media equation.

ϵ1/(d+2)

ϵ2/(d+2)



Open questions

• Sharp rates of convergence of the support in general dimension


• First order developments of the cost for other penalisations of OT


• Is there a variational formulation of QOT?


• Does a PL inequality hold?


• Statistical complexity of QOT (rates of convergence from the empirical to the 
population QOT)


