Optimal transport theory in incomplete econometric models

Marc Henry

Kantorovich Initiative 24 February 2022

Pacific Northwest connection*

The work surveyed is joint with Victor Chernozhukov, Arthur Charpentier, Arnaud Dupuy, Ivar Ekeland^{*}, Yanqin Fan^{*}, Alfred Galichon, Marc Hallin, Lixiong Li, Romuald Méango, Alexei Onatski, Brendan Pass^{*}, Maurice Queyranne^{*}.

Prologue: OT in Econometrics

- Vector quantiles and vector copulas
 - Quantile: unique increasing map that pushes uniform to P.
 - Vector quantile: unique gradient of convex map that pushes the uniform on $[0,1]^d$ to any given distribution P on \mathbb{R}^d , from Brenier-McCann.
 - Vector copula: transform random vectors X and Y to multivariate uniform, in order to distinguish within and between vector dependence.
- Nonparametric identification
 - Identification of $Y = f(X, \epsilon)$ from Brenier-McCann.
 - More generally, uniqueness of OT solutions yields identification results in discrete choice and hedonic models
- Partial Identification and inference
 - Subject of this talk

Plan of Talk

- 1. Presentation of the model to analyze
- 2. Motivation and applications
- 3. A stylized example
- 4. OT and partial identification
- 5. OT and inference in partially identified models
- 6. Perspectives for future work

Empirical Model

- Data: $((Y_1, X_1), \ldots, (Y_n, X_n)))$ with true distribution $P_0^{(n)}$.
- Structural constraints on the data: There is a fixed vector θ and random vectors $\epsilon_1, \ldots, \epsilon_n$ such that the following holds.
 - 1. Support restriction: $(Y_i, X_i, \epsilon_i) \in G(\theta)$ a.s. for all $i \leq n$.
 - 2. The $\epsilon_1, \ldots, \epsilon_n$ are independently distributed, $\epsilon_i \sim Q_{\epsilon|X_i;\theta}$.

The map $G_y(\epsilon, x | \theta) := \{(y, x) : (y, x, \epsilon) \in G(\theta)\}$ is multi-valued.

- ⇒ Hence for a given θ , the model may predict more than one data generating process (incompleteness).
- ⇒ For a given data generating process $P_0^{(n)}$, there may be more than one value of θ , such that 1&2 hold (partial identification).

Examples

- Game theoretic models of imperfect competition in industrial organization:
 - Economic agents characterized by their unobserved type.
 - Agents maximize payoff, function of the vector of types ϵ , observed X and profile of actions.
 - Chosen profile Y of actions is constrained by an equilibrium concept (e.g., Nash equilibrium).
 - \Rightarrow Multiplicity of equilibrium causes incompleteness.
- Models of network formation with stability constraints.
- Auctions, where bids only partially reveal unobserved valuations.
- Consumer choice between discrete objects, when the effective choice set in partially known.
- Sample selection, censoring, truncation.

Example of a 2×2 game

		Player 2	
		Н	L
Player 1	Н	$(\epsilon_1 - heta, \epsilon_2 - heta)$	$(\epsilon_1,0)$
	L	$(0,\epsilon_2)$	(0,0)

Compatibility of model and observables

- The object of inference is the true value of the parameter θ .
- If more than one value of the vector θ can rationalize the data, it is called *partially identified*.
- The set of values of θ that rationalizes the data is called *identified set* Θ_I .
 - If Θ_I is empty, the model is *misspecified*.
 - If Θ_I is reduced to a point, the model is *point identified*.
- \Rightarrow The first objective is an operational characterization of Θ_I .

OT and the characterization of Θ_I

Drop X from notation for simplicity of exposition.

 \Rightarrow 1&2 become: $Y \in G_y(\epsilon | \theta)$ and $\epsilon \sim Q_{\theta}$.

Ignore sampling uncertainty and assume $Y \sim P$ known.

Formalization of the identified set:

$$\Theta_I = \{ \theta : \exists \pi \in \mathcal{M}(Q_{\epsilon|\theta}, P) \text{ s.t. } Y \in G_y(\epsilon|\theta), \pi\text{-a.s.} \}.$$

Characterization with OT:

- Consider the OT problem with cost $c(\epsilon, Y) := 1\{Y \notin G_y(\epsilon|\theta)\},\$

$$V(\theta) := \min_{\pi \in \mathcal{M}(Q_{\epsilon|\theta}, P)} \mathbb{E}_{\pi} \left[c(\epsilon, Y) \right].$$

- We see that
$$\Theta_I = \{\theta : V(\theta) = 0\}.$$

Kantorovich duality and Choquet capacity functionals

By the Kantorovich Duality Theorem,

$$V(\theta) = \sup_{f,g} \mathbb{E}_{Q_{\epsilon|\theta}}[f(\epsilon)] + \mathbb{E}_{P}[g(Y)],$$

s.t. $f(\epsilon) + g(y) \le 1\{y \notin G_{y}(\epsilon|\theta)\}.$

With indicator cost functions, the supremum is achieved with indicator f and g, and it can be shown that

$$V(\theta) = \sup_{B} (c_{\theta}(B) - P(B)),$$

where

$$c_{\theta}(B) := Q_{\epsilon|\theta}(G_y(\epsilon|\theta) \cap B \neq \emptyset)$$

is the Choquet capacity functional of the random set $G_y(\epsilon|\theta)$.

⇒ The identified set is characterized by $\Theta_I = \{\theta : P(B) \le c_\theta(B), \text{ all } B \text{ Borel}\}.$

OT and Max flow characterization of Θ_I

Call \mathcal{U} the set of possible values of $G_y(\epsilon|\theta)$,

Define $Q(u|\theta) = \mathbb{P}(G_y(\epsilon|\theta) = u|\theta)$.

In the 2×2 game,

 $\mathcal{U} = \{\{(L,L)\}, \{(L,H)\}, \{(H,L)\}, \{(H,H)\}, \{(L,H), (H,L)\}\},\$

The relation between model and observables can be represented graphically in a bipartite graph.

OT and Max flow characterization of Θ_I (continued)

The following statements are equivalent:

- Parameter value θ rationalizes the data (i.e., $\theta \in \Theta_I$),
- For all subset A,

$$P(A) \hspace{.1in} \leq \hspace{.1in} \sum_{u \cap A
eq arnothing} Q(u| heta).$$

- There exists a joint probability on $\mathcal{G} = \{(y, u) : y \in u\}$ and with marginal probabilities P(.) and $Q(.|\theta)$,
- A mass of 1 can flow through the directed network above.

OT again: inference on θ , Rest of the talk based on recent work with Lixiong Li

- Back to our empirical model. For each θ , call $\mathcal{P}_{\theta}^{(n)}$ the set of distributions $P^{(n)}$ of samples (Y_1, \ldots, Y_n) such that there exist random vectors $\epsilon_1, \ldots, \epsilon_n$ which satisfy:
 - 1. Support restriction: $(Y_i, \epsilon_i) \in G(\theta)$ a.s. for all $i \leq n$.

- Equivalently: $Y_i \in G_y(\epsilon|\theta)$ or $\epsilon_i \in G_\epsilon(y|\theta)$.

2. The $\epsilon_1, \ldots, \epsilon_n$ are independently distributed, $\epsilon_i \sim Q_{\epsilon|\theta}$.

• We want to learn about θ : more precisely, we want a confidence region

$$CR_n := \{\theta : T_n(\theta) \leq c_{n,1-\alpha}(\theta)\},\$$

where $T_n(\theta)$ is a statistic and $c_{n,1-\alpha}(\theta)$ a critical value, such that

$$\inf_{P^{(n)}\in\mathcal{P}_{\theta}^{(n)}}P^{(n)}\left(T_{n}(\theta)\leq c_{n,1-\alpha}(\theta)\right) = 1-\alpha,$$

Statistic $T_n(\theta)$

The test statistic is

$$T_n(\theta) = \min_{\pi \in \Pi_n} \sum_{i,j=1}^n \pi_{ij} C_{ij}(\theta) \left(\text{also} = \min_{\sigma \in S_n} \sum_{i=1}^n C_{i\sigma(i)}(\theta) \right),$$

where:

- 1. Π_n is the set of $n \times n$ non negative matrices π such that $\Sigma_i \pi_{ij} = \Sigma_j \pi_{ij} = 1/n$, for all $i, j \leq n$ (i.e., $n\pi$ is bi-stochastic).
- 2. The cost matrix $C(\theta)$ has entries

$$C_{ij}(\theta) := d\Big(\tilde{\epsilon}_i, G_{\epsilon}(Y_j|\theta) \Big), \text{ for each } i, j \leq n,$$

3. $\tilde{\epsilon}^{(n)} := (\tilde{\epsilon}_1, \dots, \tilde{\epsilon}_n)$ is an iid simulated sample from $Q_{\epsilon|\theta}$.

Sample analogue of the OT problem from before

$$\min_{\pi \in \mathcal{M}(Q_{\epsilon|\theta}, P)} \mathbb{E}\Big[d\Big(\epsilon_i, G_{\epsilon}(Y_j|\theta)\Big)\Big]$$

Critical value $c_{n,1-\alpha}(\theta)$

The critical values are the quantiles of the distribution

$$\tilde{T}_n(\theta) = \sup_{C \in \mathcal{C}_{\theta}} \min_{\pi \in \Pi_n} \sum_{i,j=1}^n \pi_{ij} C_{ij},$$

where

- C_{θ} is the class of all cost matrices with elements C_{ij} satisfying $C_{ij} = d((\tilde{\epsilon}_i, G_{\epsilon}(y|\theta)), \text{ for some } y \in G_y(\tilde{\epsilon}'_j|\theta).$

- $(\tilde{\epsilon}'_1, \ldots, \tilde{\epsilon}'_n)$ is another iid simulated sample from $Q_{\epsilon|\theta}$.

In practice, the following is much faster to compute (finite sequence of OT and small dimensional LP problems):

$$\tilde{T}'_n(\theta) = \sup_{C \in co(\mathcal{C}_{\theta})} \min_{\pi \in \Pi_n} \sum_{i,j=1}^n \pi_{ij} C_{ij},$$

OT and econometrics, future directions

- 1. Analysis of a class of incomplete models, where the support restriction is individual specific.
- 2. Beyond the parametric case: multi marginal OT and independence restrictions.
- 3. OT formulation of the problem of inference on a low dimensional function of the parameter, which is relevant to policy.

That's it for now.