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Supervised learning and inverse problems

Deterministic supervised learning

I Input x and output y.

I Training data (xj , yj).

I Given new x∗ predict y∗(x∗).

I Assume input-output map Ψ† so that y = Ψ†(x).

I Typically, approximate Ψ† with Ψ∗ so that y∗ ≈ Ψ∗(x∗).

Inverse problems

I Unknown parameter y and indirect measurement x so that
F†(y) = x.

I Given new measurement x∗ find y∗ ≈
(
F†
)−1

(x∗).

I Typically, solve optimization problem to find minimal norm solution.
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Supervised learning and inverse problems

Probabilistic supervised learning

I Training data (xj , yj).

I Joint measure ν(dx, dy) s.t. (xj , yj) ∼ ν.

I Given new x∗ identify/sample ν(dy|x∗).

Bayesian inverse problems

I Measurement and parameter pairs (x, y).

I Prior measure ν0(dy) on parameter.

I Joint measure ν(dx, dy) = Law{(x, y) : x = F†(y), y ∼ ν0}.
I Identify posterior ν(dy|x∗).

[1] F Gressmann et al. “Probabilistic supervised learning”. In: arXiv:1801.00753
(2019).
[2] Andrew M Stuart. “Inverse problems: a Bayesian perspective”. In: Acta numerica
19 (2010), pp. 451–559.
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Generative modeling and measure transport

Generative modeling

I Given training data zi ∼ ν(dz).

I Generate new samples z∗j so that z∗j ∼ ν(dz).

I Choose reference measure η and train map T so that T]η ≈ ν.

I Draw sj ∼ η and set z∗j = T(sj).

Measure transport

I Given measures η, ν find mapping T so that T]η = ν.
I Optimal transport.
I Image registration.
I Triangular transformations.

[3] C. Villani. Optimal transport: Old and new. Springer, 2009.
[4] L. Younes. Shapes and diffeomorphisms. Springer, 2010.
[5] VI Bogachev, AV Kolesnikov, and KV Medvedev. “Triangular transformations of
measures”. In: Sbornik: Mathematics 196.3 (2005), p. 309.
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Measure transport and conditioning
The missing link

Generative modeling

Measure transport

Conditional sampling

Supervised learning/inverse problems

Data-driven supervised learning/inversion with UQ.

[6] Gregory Ongie et al. “Deep learning techniques for inverse problems in imaging”.
In: IEEE Journal on Selected Areas in Information Theory 1.1 (2020), pp. 39–56.
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Measure transport and conditioning
Abstract problem statement

Measure transport approach to conditioning

I Joint measure ν ∈ P(X × Y).

I Reference measure ηY ∈ P(Y).

I Goal: Find transport map S : X × Y → Y s.t.

S(x∗, ·)]ηY = ν(·|x∗)

for νX a.e. x∗.
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Measure transport and conditioning
The Knothe-Rosenblatt map

I Concatenate variables z = (x, y) ∈ Rm+n.
I Knothe-Rosenblatt (KR) map is a triangular example

T : Rm+n → Rm+n, T (z) =


T 1(z1)
T 2(z1, z2)

...
Tm+n(z1, . . . , zm+n)

 .

KR map in R2

I η = h(z)dz, ν = g(z)dz.
I Define first marginals h1(z1) =

∫
h(z1, z2)dz2, g1(z1) =

∫
f(z1, z2)dz2.

I T 1(z1) is OT map pushing h1 to g1.
I Disintegration/conditioning h2

z1(z2) := h(z1,z2)

h1(z1)
, g2z1(z2) := g(z1,z2)

g1(z1)
.

I T 2(z1, z2) is OT map pushing h2
z1(z2) to g2T1(z1)

(z2).
I T 2((T 1)−1(z1), z2) is the desired conditioning map.

[7] F. Santambrogio. Optimal transport for applied mathematicians. Springer, 2015.
[8] N. Bonnotte. “From Knothe’s rearrangement to Brenier’s optimal transport map”.
In: SIAM Journal on Mathematical Analysis 45.1 (2013), pp. 64–87.

10 / 40



Monotone GANs
Overview of our approach

I Input and output spaces X ,Y.

I Joint target measure: ν ∈ P(X × Y).

I Reference: η ∈ P(X × Y) (mostly standard normal).

I Empirical measures with N samples νN , ηN .

I Block-triangular map:

T(x, y) =
(

K(x),S(K(x), y)
)
, K : X → X , S : X × Y → Y.

I Neural networks K,S.

I Optimization problem:

(K∗,S∗) = arg min
K,S

Divergence (T]ηN ||νN )+ Monotonicity penalty on T.

I Result: S∗(x∗, ·)]ηY ≈ ν(·|x∗).
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Monotone GANs
Overview of our approach
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Monotone GANs
Practical motivation

T(x, y) =
(

K(x),S(K(x), y)
)
, T∗]η = ν.

I Probabilistic supervised learning and uncertainty quantification.
I Compute statistics of y|x∗: mean, median, maximal probability points,

variance, confidence intervals, error bars etc.

I Model agnostic/likelihood-free inference.
I Only require knowledge of ν(dx, dy), η(dx, dy) and marginal ηY (dy).
I No explicit/functional model assumptions on the relationship between

output y and input x.

I Conditional sampling with many new inputs.
I Offline training of the map S∗.
I Parallel acquisition of training data.
I Sampling many conditionals.

S∗(x∗j , ·)]ηY ≈ ν(·|x∗j ).
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Related literature
GANs, Normalizing flows, VAEs
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I Goodfellow et al. (2014), “Generative adversarial nets”.
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I Kobyzev, Prince, Brubaker (2019), “Normalizing Flows: Introduction and Ideas”.

I Variational auto encoders (VAEs):
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Related literature
Neural networks in inverse problems

I Inverse problems:
I Vogel (2002), “Computational methods for inverse problems”.

I Kaipio and Somersalo (2006), “Statistical and computational inverse problems”.

I Data-driven methods for inverse problems:
I Adler and Öktem (2017), “Solving ill-posed inverse problems using iterative deep

neural networks”.
I McCann, Jin and Unser (2017), “Convolutional neural networks for inverse problems

in imaging: A review”.
I Lunz, Öktem and Schonlieb (2018), “Adversarial regularizers in inverse problems”.
I Gilton, Ongie and Willett (2019), “Learned patch-based regularization for inverse

problems in imaging”.
I Arridge et al. (2019), “Solving inverse problems using data-driven models”.

I **Gottschling et al. (2020), “The troublesome kernel: why deep learning for inverse

problems is typically unstable”.
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Related literature
Generative models and conditional sampling

I Mirza and Osindero (2014), “Conditional generative adversarial nets”.

I Sohn, Yan and Lee (2015), “Learning structured output representation using deep
conditional generative models”

I *Adler and Öktem (2018), “Deep Bayesian inversion”.

I Belghazi et al. (2019), “Learning about an exponential amount of conditional distributions”.

I *Whang, Lindgren and Dimakis (2020), “Approximate probabilistic inference with composed
flows”.

I [KBHM’ 20], “Conditional sampling with monotone GANs”.

We train a single map (network) that characterizes the condi-
tional ν(·|x∗) for any new input x∗ + supported by theory.
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Block-triangular maps

I Separable Banach spaces X ,Y.

I Block-triangular map:

T : X × Y → X × Y, T(x, y) :=
(

T1(x),T2(x, y)
)
.

I Jacobian of T is block-triangular when X ,Y are finite-dimensional
Euclidean spaces.
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Theoretical foundations
Conditioning

Theorem [KBHM]

Suppose

I η = ηX ⊗ ηY ∈ P(X × Y).

I T : X × Y → X × Y is a block-triangular map of the form

T(x, y) =
(

K(x),S(K(x), y)
)
.

If T]η = ν then
S(x∗, ·)]ηY = ν(·|x∗),

for νX a.e. x∗.

I Also true for T : X ′ × Y ′ → X × Y where X ′,Y ′ are also Banach
spaces.
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Theoretical foundations
Variational formulation

T∗ = arg min
T∈T

D(T]η||ν)

I Statistical divergence D : P(X × Y)×P(X × Y) 7→ R+ s.t.
D(µ1||µ2) = 0 iff µ1 = µ2.

I Class of block-triangular maps

T :=
{

T : X × Y → X × Y
∣∣∣ T(x, y) =

(
K(x),S(K(x), y)

)}
.
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Theoretical foundations
Existence of minimizers

T∗ = arg min
T∈T

D(T]η||ν)

Theorem [KBHM]

Suppose

I η = ηX ⊗ ηY .

I ηX and ηY have no atoms.

Then there exists at least one global minimizer T∗ satisfying T∗]η = ν.

I Generalization of the KR map.

I All conditions stated for reference η.

I Minimizers are not unique.

[5] Bogachev, Kolesnikov, and Medvedev, “Triangular transformations of measures”.
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Theoretical foundations
Lack of uniqueness

T∗ = arg min
T∈T

D(T]η||ν)

y

x
Target ν

y

x
Good ordering

y

x
Bad ordering
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Conditional optimal transport

Theorem [Carlier, Chernozhukov and Galicon ’16]

Suppose

I X ,Y are finite-dimensional Euclidean spaces.

I η = νX ⊗ ηY and ηY has convex support.

I Conditionals ν(·|x) have Lebesgue densities.

I
∫
Y
∫
X ‖y‖

2ν(dx, dy) +
∫
Y
∫
X ‖y‖

2η(dx, dy) < +∞.

Then there exists a map S = ∇ys(x, y) where y 7→ s(x, y) is convex for
all x ∈ X and

S(x∗, ·)]ηY = ν(·|x∗).

Furthermore, S is unique among such maps.


inf
T−1

∫
X×Y

‖z − T−1(z)‖2ν(dz),

subject to T−1
] ν = η and T−1

] ν(·|x) = ηY .

[9] G. Carlier, V. Chernozhukov, and A. Galichon. “Vector quantile regression: an
optimal transport approach”. In: The Annals of Statistics 44.3 (2016), pp. 1165–1192.
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Theoretical foundations
Existence and uniqueness

Theorem [KBHM]

Suppose

I X ,Y are finite-dimensional Eucledian spaces.

I η = ηX ⊗ ηY and ηY has convex support.

I Conditionals ν(·|x) have Lebesgue densities.

I
∫
Y
∫
X ‖y‖

2ν(dx, dy) +
∫
Y
∫
X ‖y‖

2η(dx, dy) < +∞.

Consider the problem

T∗ = arg min
T∈TB

D(T]η||ν),

TB :=
{

T(x, y) =
(
K(x),S(K(x), y

)
such that K = ∇xk, S = ∇ys

and x 7→ k(x), y 7→ s(x, y) are convex
}
.

Then T∗ exists, is unique, and S∗(x∗, ·)]ηY = ν(·|x∗).
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Monotone GANs
Building an algorithm based on theory

T∗ = arg min
T∈T̂

DWGAN(T]η||ν),

I WGAN-GP discrepancy

DWGAN(T]η||ν) := sup
f∈Γ

E z∼νf(z)− E w∼ηf(T(w)) + Penalty(f).

I Two choices for T̂ :

TB =
{

T(x, y) =
(
K(x),S(K(x), y

)
s.t. K = ∇xk, S = ∇ys, k(·), s(x, ·) are convex.

}
,

TM =
{

T(x, y) =
(
K(x),S(K(x), y

)
s.t. 〈T(w)− T(w′), w − w′〉 > 0 η − a.e.

}
.

[10] J. Birrell et al. “(f,Γ)-Divergences: Interpolating between f -Divergences and
Integral Probability Metrics”. In: arXiv preprint:2011.05953 (2020).
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Monotone GANs
Implementation with input-convex networks

T∗ = arg min
T

DWGAN(T]ηN ||νN ),

I Training data: {zj = (xj , yj)}Nj=1
iid∼ ν.

I Reference samples (free): {wk}2Jk=1
iid∼ η.

I Empirical WGAN-GP approximation

DWGAN(T]ηN ||νN ) := max
f

1

N

N∑
j=1

f(zj)−
1

J

J∑
k=1

f(T(wk)) + Penalty(f).

I Take K(x) = ∇xk(x) and S(x, y) = ∇ys(x, y).
I Parameterize k, s as input-convex neural nets.
I Parameterize f as neural net (discriminator).

Basic idea:

I Nonnegative sums of convex functions are convex.

I Composition of a convex and convex non-decreasing function is also
convex.

[11] B. Amos, L. Xu, and JZ Kolter. “Input convex neural networks”. In: International
Conference on Machine Learning. 2017, pp. 146–155. 26 / 40



Monotone GANs
Implementation with average monotonicity constraints

T∗ = arg min
T

D̃WGAN(T]η||ν),

I Similar setting as before.

I Parameterize K,S, f as arbitrary neural networks.

I Impose average monotonicity by adding Lagrange multiplier

1

J

J∑
k=1

〈T(wk)− T(wk+J), wk − wk+J〉 > 0.
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Input-convex neural nets versus average monotonicity

Input-convex neural nets:

I Pros:
I Backed by theory (uniqueness).
I Real valued neural network.

I Cons:
I Requires specific architectures.
I Training may be more involved.
I Intrusive.

Average monotonicity:

I Pros:
I Convenience.
I Retrofit existing architectures.
I Can track during training.

I Cons:
I Sensitive dependence on Lagrange multiplier.
I May be violated depending on problem.
I Not supported theoretically (yet).
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Monotone GANs
Sampling and UQ

T∗ = arg min
T

DWGAN(T]ηN ||νN ),

T∗(x, y) =
(

K∗(x),S∗(K∗(x), y)
)

I Compute T∗ and extract the component S∗.

I New input x∗ ∈ X .

I Generate new samples from reference marginal ỹk
iid∼ ηY .

I Set yk = S∗(x∗, ỹk).

I Use the yk to compute statistics of ν(·|x∗).
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A 1D example
y = tanh(x) + γ γ ∼ Γ(1, 0.3), (1)

y = tanh(x+ γ) γ ∼ N(0, 0.05), (2)

y = γ tanh(x) γ ∼ Γ(1, 0.3). (3)

I N = 5× 104 training samples with input x ∼ U(−3, 3).

I Three layer fully connected networks for K, S and discriminator f .
T

ru
th

(1) (2) (3)

M
G

A
N

A
&

Ö

[12] J. Adler and O. Öktem. “Deep Bayesian inversion”. In: arXiv preprint:1811.05910
(2018). 30 / 40



A 1D example

y = tanh(x) + γ γ ∼ Γ(1, 0.3), (4)

y = tanh(x+ γ) γ ∼ N(0, 0.05), (5)

y = γ tanh(x) γ ∼ Γ(1, 0.3). (6)

I N = 5× 104 training samples with input x ∼ U(−3, 3).

I Three layer fully connected networks for K, S and discriminator f .

(1)

y
|x
∗

(2) (3)
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Darcy flow

{
−∇ · (a(t)∇p(t)) = 1, t ∈ (0, 1)2,

p(t) = 0, t ∈ ∂(0, 1)2.

I Pressure field p(t).

I Permeability field a(t) = A1ΩA
(t) +B1ΩB

(t).

I Goal: Recover y = (A,B) from measurements xj = p(tj) + γj for
j = 1, . . . , 16 and γj ∼ N(0, 10−7).

a(t)

ΩA

ΩB

p(t)

tj
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Darcy flow {
−∇ · (a(t)∇p(t)) = 1, t ∈ (0, 1)2,

p(t) = 0, t ∈ ∂(0, 1)2.

I Prior A ∼ U(3, 5), B ∼ U(12, 16).
I Discretize PDE using finite differences.
I Train MGAN using 105 training samples and three layer fully connected networks.
I Three data sets x∗1, x

∗
2, x
∗
3 generated from

y∗1 = (3.5, 13), y∗2 = (4, 14), y∗3 = (4.5, 15).

I Posterior KDEs of MGAN and MCMC (pCN), both with 3× 104 samples.

M
C

M
C

M
G

A
N

x∗1 x∗2 x∗3I 100% monotone.
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CelebA in-painting

I CelebA training set: 162,770 images of size 64× 64× 3 (RGB).

I Observation x: top half of image.

I Parameter y: entire image.

I Given top half x∗ from CelebA test set generate 1000 possible
MGAN in-paintings y|x∗.

I Compute pixel-wise variances and sample mean.

y x∗
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CelebA in-painting
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Summary

I A model agnostic method for conditional sampling.
I Probabilistic supervised learning.
I Bayesian inverse problems.
I Likelihood-free inference.

I Measure transport view point towards conditioning.

I Straightforward implementation:
I Retrofitting existing architectures with average monotonicity

constraints.
I Exact monotonicity constraints with input-convex neural nets.

I When to use MGANs:
I Large training sets.
I Inverse problems with unknown or black-box forward maps.
I Intractable likelihood.

I When not to use MGANs:
I Limited amounts of training data.
I Expensive forward maps.
I Highly concentrated target distributions.
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Open questions and future directions

I Approximation theory: (KBHM + Sagiv)
I Connecting map approximations to quality of samples.
I Different approximation classes (polynomials, splines, RBFs, neural

nets, etc).
I Tail behavior of maps.
I Consistency of minimizers in large data limits.

I Kernel formulation: (H + Owhadi)
I Maximum mean discrepancy.
I Parameterize T in RKHS (kernels, random features, etc).
I Warped kernels and compositions of Gaussian processes.

37 / 40



Open questions and future directions

I Sample complexity.

I Choice of architecture:
I GANs, ICNNs, Monotone nets, Neural ODEs, etc.

I Choice of cost function:
I GAN, Wasserstein GAN, Kullback-Leibler divergence, Wasserstein

metrics, etc.

I MGAN for inverse problems:
I How does MGAN compare to MCMC?
I Non-Gaussian priors and complicated posteriors.
I Experimental design/active learning for MGANs?
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Thank you

“Conditional Sampling with Monotone GANs”
arXiv:2006.06755
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