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What is learning
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What is learning?

Let {(Xi , Yi) ∈ X × Y : i = 1 . . . , n} be i.i.d. samples drawn by unknown
distribution µ, F = {f : X → Y} be a certain family of functions and
ℓ : Y × Y → R be a given loss function. A (supervised) learning problem
is to obtain a (potentially) nice function f ∗ by solving the minimization
of the empirical risk:

min
f ∈F

1
n

n∑
i=1

ℓ(f (Xi), Yi).

Since we don’t know µ, this is the best we can do. Our hope is that there
is a solution f ∗ for the above and it is a true solution in the sense that

E(X ,Y )∼µ[ℓ(f ∗(X ), Y )] ≈ min
f ∈F

E(X ,Y )∼µ[ℓ(f (X ), Y )].
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Better than human?

Since deep learning revolution, there have been enormous progresses in
machine learning. In particular, state-of-art neural networks outperform
humans in image classification.
Suppose there are some images of dogs and cats. We call each image as
a feature (vector) and dog/cat as class. Image classification problem is
given image, to match it to the correct class(dog/cat). In other words,
one should answer the question: “Is this picture dog or cat?”
According to Dodge and Karam1, Human top-5 classification accuracy2

on the large scale ImageNet dataset has been reported to be 94.9%,
while 2023 best performance show 99% accuracy.

1Dodge and Karam, “A study and comparison of human and deep learning
recognition performance under visual distortions”.

2Top-5 accuracy measures whether top 5 predictions include the correct label.
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Figure: Image Classification on ImageNet: top 5 accuracy3,

3Yuan et al., “Florence: A new foundation model for computer vision”.
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Adversarial attack
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Adversarial attack
Researchers observed that neural networks are sometimes very sensitive
to a small noise, and their performance completely breaks down by this
well-designed noise, called adversarial attack.

Figure: Adversarial examples generated for AlexNet [9].(Left) is a correctly
predicted sample, (center) difference between correct image, and image
predicted incorrectly magnified by 10x (values shifted by 128 and clamped),
(right) adversarial example4.

4Szegedy et al., “Intriguing properties of neural networks”.
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Adversarial attack(cont.)
We emphasize that the size of adversarial attacks is usually small so that
they are imperceptible to humans. Also, not every noise is adversarial:
adversarial attack is delicately designed by maximizing empirical risk.

Figure: Adversarial examples generated for GoogLeNet. (Left) is a correctly
predicted sample, (center) difference between correct image and (right)
adversarial example(Goodfellow et al.5).

5Goodfellow, Shlens, and Szegedy, “Explaining and harnessing adversarial
examples”.

PIMS Kantotrovich Initiative, UBC Adversarial training and MOT



References

Adversarial attack is not artificial

Figure: The car with a camouflage pattern is misdetected as a “cake” (Zhang
et al.6).

6Zhang et al., “CAMOU: Learning Physical Vehicle Camouflages to Adversarially
Attack Detectors in the Wild”.
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Adversarial attack is not artificial(cont.)

Figure: Sample of physical adversarial examples against LISA-CNN and
GTSRB-CNN7.

7Eykholt et al., “Robust Physical-World Attacks on Deep Learning Visual
Classification”.
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Adversarial attack is not artificial(cont.)

Figure: Physical adversarial example against the Inception-v3 classifier. The left
shows the original cropped image identified as microwave (85.2%) while the
right shows the cropped physical adversarial example identified as
phone(77.8%)8).

8Eykholt et al., “Robust Physical-World Attacks on Deep Learning Visual
Classification”.

PIMS Kantotrovich Initiative, UBC Adversarial training and MOT



References

Connection between adversarial training and
optimal transport
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Classical classification problem : Bayes classifier

(X , d) : a feature space with metric d , Y := {1, . . . , K} : a class
space, Z := X × Y.
µ = (µ1, . . . , µK ) : a (Borel probability) data distribution; (after a
normalization) each µi is a conditional distribution over X given
Y = i .
Θ : a parametric family of functions from X to Y: e.g. neural
networks.
ℓ(x) := 1 − fi(x) : loss function.

A formal problem is

inf
θ∈Θ

R(f , µ) := inf
θ∈Θ

∑
i∈Y

ˆ
X

(1 − f θ
i (x))dµi(x).

There is always an optimal Bayes hard classifier: f ∗
i (x) = 1 if

dµi(x) ≥ dµj(x) for all j ̸= i .
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Data-perturbing adversarial model

Fix ε > 0 be the adversarial budget. The adversary only attacks a
feature, i.e., for each x ∈ X

x 7−→ x̃ ∈ arg max{1 − f θ
i (x ′) : x ′ ∈ Bε(x)}.

The usual adversarial training model is defined as

inf
θ∈Θ

{∑
i∈Y

ˆ
X

sup
x̃∈Bε(x)

{1 − f θ
i (x̃)}dµi(x)

}
.
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Two problems of (AT)

Neural networks in practice are huge and complex, so hard to
understand supx̃∈Bε(x){1 − f θ

i (x̃)}: consider the largest possible
space(agnostic learner)

F := {(f1, . . . , fK ) : 0 ≤ fi ≤ 1,
∑

fi = 1, Borel measurable}.

supx̃∈Bε(x){1 − f θ
i (x̃)} might not be Borel measurable, hence the

problem is not well-defined: replace µ by its universal completion µ.
The data-perturbing adversarial model is

inf
f ∈F

{∑
i∈Y

ˆ
X

sup
x̃∈Bε(x)

{1 − fi(x̃)}dµi(x)
}

. (AT)
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DRO adversarial model

The adversary attacks the distribution µ, i.e., given unknown µ (the
adversary is assumed to know)

µ 7−→ µ̃ ∈ arg max{R(f , ν) : ν ∈ P(Z), Wp(µ, ν) ≤ ε}.

The distributionally robust optimization(DRO) adversarial model is

RDRO
ε := inf

f ∈F
sup

µ̃∈P(Z)
{R(f , µ̃) − C(µ, µ̃)} (DRO)

where C : P(Z) × P(Z) → [0, ∞] is a transport cost defined as

C(µ, µ̃) := inf
π∈Γ(µ,µ̃)

ˆ
cZ(z , z̃)dπ(z , z̃).
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Cost function for (DRO)

We always assume that a cost function is

cZ (z , z̃) :=
{

cε(x , x̃) if y = ỹ ,

∞ otherwise
.

Then,
C(µ, µ̃) =

∑
i∈Y

C(µi , µ̃i).

A typical choice of cε(x , x̃) is

cε(x , x̃) :=
{

0 if d(x , x̃) ≤ ε,

∞ if d(x , x̃) > ε
.
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Connection between (AT) and (DRO)

Theorem
(Pydi and Joga, Garcıa Trillos, Jacobs and K.b) With cε(x , x̃) as above,

(AT) = (DRO).
aPydi and Jog, “The Many Faces of Adversarial Risk”.
bGarcıa Trillos, Jacobs, and Kim, On the existence of solutions to adversarial

training in multiclass classification.

Question : (DRO) is a minimax problem: hard to compute in general.
Can we get a better formulation to be computationally tractable?
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Geometry of adversarial learning: generalized
barycenter problem.
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Toy example: three points distribution

Recall

cε(x , x̃) :=
{

0 if d(x , x̃) ≤ ε,

∞ if d(x , x̃) > ε
.

Consider a simple data distribution

µ = (ω1δ(x1,1), ω2δ(x2,2), ω3δ(x3,3)), ω1 ≥ ω2 ≥ ω3.

Q. What is the optimal attack for the adversary?
A. Use (possible) barycenters of ω1δ(x1,1), ω2δ(x2,2), ω3δ(x3,3).

PIMS Kantotrovich Initiative, UBC Adversarial training and MOT
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Toy example: three points distribution(cont.)
Case 1 : d(xi , xj) > 2ε for all 1 ≤ i ̸= j ≤ 3.

x1

x2

x3

Case 1
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Toy example: three points distribution(cont.)
Case 2 : There is some x such that d(x , xi) ≤ ε for all 1 ≤ i ≤ 3.

x1

x2

x3

1

2

3

x

Case 2
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Toy example: three points distribution(cont.)
Case 3 : d(x1, x2) ≤ 2ε, d(x1, x3) > 2ε and d(x2, x3) > 2ε.

x1

x2

x3

1

2

3

x12

Case 3
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Toy example: three points distribution(cont.)
Case 4-(i) : d(xi , xj) ≤ 2ε for any xi , xj but
B(x1, ε) ∩ B(x2, ε) ∩ B(x3, ε) = ∅ and ω1 < ω2 + ω3.

x1

x2

x3

x12

x13

x23

1

2 2

1 1

3

2

3 3

Case 4 - (i)
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Toy example: three points distribution(cont.)
Case 4-(ii) : d(xi , xj) ≤ 2ε for any xi , xj but
B(x1, ε) ∩ B(x2, ε) ∩ B(x3, ε) = ∅ and ω1 ≥ ω2 + ω3.
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Toy example: three points distribution(cont.)
The optimal adversarial attack uses barycenters of {x1, x2, x3}. Also, it
depends on not only the geometry of the support of µ but also the
magnitudes of its marginals, (ω1, ω2, ω3).
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Toy example: three points distribution(cont.)
For general cost function cε,

1, {1, 2, 3}

2, {1, 2, 3}

3, {1, 2, 3}

x{1, 2, 3} x1
1, {1}

x2
2, {2}

x3
3, {3}

x{1, 2}

x{1, 3}

x{2, 3}

1, {1, 2}

2, {1, 2}

1, {1, 3}

3, {1, 3}

2, {2, 3}

3, {2, 3}
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Generalized barycenter problem

Recall (DRO):

inf
f ∈F

sup
µ̃∈P(Z)

{R(f , µ̃) − C(µ, µ̃)}

= inf
f ∈F

sup
µ̃∈P(Z)

{∑
i∈Y

ˆ
X

(1 − fi(x̃))d µ̃i(x̃) +
∑
i∈Y

C(µi , µ̃i)
}

= 1 − sup
f ∈F

inf
µ̃∈P(Z)

{∑
i∈Y

ˆ
X

fi(x̃)d µ̃i(x̃) +
∑
i∈Y

C(µi , µ̃i)
}

.
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Generalized barycenter problem(cont.)

For the supf ∈F infµ̃∈P(Z) term, if we can swap them,

inf
µ̃∈P(Z)

sup
f ∈F

{∑
i∈Y

ˆ
X

fi(x̃)d µ̃i(x̃) +
∑
i∈Y

C(µi , µ̃i)
}

= inf
µ̃∈P(Z)

{
sup
f ∈F

∑
i∈Y

ˆ
X

fi(x̃)d µ̃i(x̃) +
∑
i∈Y

C(µi , µ̃i)
}

.

Notice that

sup
f ∈F

∑
i∈Y

ˆ
X

fi(x̃)d µ̃i(x̃) = inf
λ

{λ(X ) : λ ≥ µ̃i for all i ∈ Y} .
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Generalized barycenter problem(cont.)

The generalized barycenter problem is

inf
λ,µ̃1,...,µ̃K

λ(X ) +
∑
i∈Y

C(µi , µ̃i) s.t. λ ≥ µ̃i ∀i ∈ Y. (GB)

Theorem
(Garcıa Trillos, Jacobs and K.a) Under some assumptions on cε,

(DRO) = 1 − (GB).

Furthermore, the infimum of (GB) is achieved.
aGarcıa Trillos, Jacobs, and Kim, “The multimarginal optimal transport

formulation of adversarial multiclass classification”.
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Generalized barycenter problem(cont.)

μ1

μ3

μ2

λ
μ2

μ3

μ1

The adversary transports each µi to µ̃i by paying C(µi , µ̃i). λ is chosen
to be the minimum positive measure covering all µ̃i ’s.

PIMS Kantotrovich Initiative, UBC Adversarial training and MOT



References

Generalized barycenter problem(cont.)

λ{1,3}

λ{1,2}

λ{1,2,3}

λ{1}
λ{2}

λ{2,3}
λ{3}

Partition λ indexed by non-empty interactions A ⊂ Y. λA is in fact
(Wasserstein) barycenter of µi,A’s for i ∈ A.
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MOT formulation

λ{1,3}

λ{1,2}

λ{1,2,3}

λ{1}
λ{2}

λ{2,3}
λ{3}

μ1,{1}

μ1,{1,2,3}μ1,{1,2} μ1,{1,3}

μ2,{2,3}

μ2,{1,2,3}

μ2,{1,2}μ2,{2}

μ3,{3}μ3,{2,3}
μ3,{1,3}

μ3,{1,2,3}

Using decompositions, the problem can be written in terms of µi,A’s and
λA’s. Furthermore, λA ∈ arg minλ′

A

∑
i∈A C(µi,A, λ′

A) is a solution to a
classical (Wasserstein) barycenter problem.
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Stratified MOT

Theorem
Let SK = {A ⊆ Y : A ̸= ∅}, Sk(i) = {A ∈ SK : i ∈ A} and

cε,A(x1, . . . , xK ) := inf
x ′∈X

∑
i∈A

cε(xi , x ′).

Consider

inf
{πA:A∈SK }

∑
A∈SK

ˆ
X K

(
cε,A(x1, . . . , xK ) + 1

)
dπA(x1, . . . , xK )

s.t.
∑

A∈SK (i)

Pi #πA = µi for all i ∈ Y.
(MOT)

Then, (GB) = (MOT).
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Duality

Theorem

Consider

sup
g1,...,gK ∈Cb(X )

∑
i∈Y

ˆ
X

gi(xi)dµi(xi)

s.t.
∑
i∈A

gi(xi) ≤ 1 + cε,A(xi : i ∈ A) for all (xi : i ∈ A) ∈ X A, A ∈ SK .

(Dual)
Then, (MOT) = (Dual).
If cε is bounded Lipschitz, then (Dual) is achieved by g ∈ Cb(X )K .

PIMS Kantotrovich Initiative, UBC Adversarial training and MOT
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Full MOT

Theorem
Under some assumptions on c, there exists c : X K

∗ → R which defines

inf
π∈Π(µ̂1,...,µ̂K )

{ˆ
X K

∗

c(x1, . . . , xK )dπ(x1, . . . , xK )
}

(MOT’)

where X∗ = X ∪ { } and d µ̂i = dµi +
(∑

j ̸=i ||µj ||
)

δ . Then,

(MOT) = (MOT’)
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Implication : universal lower bound

Suppose we were interested in

inf
f ∈G

sup
µ̃∈P(Z)

{R(f , µ̃) − C(µ, µ̃)}

where G can be any family of classifiers: e.g. neural networks. It is
always the case that

inf
f ∈F

sup
µ̃∈P(Z)

{R(f , µ̃) − C(µ, µ̃)}

≤ inf
f ∈G

sup
µ̃∈P(Z)

{R(f , µ̃) − C(µ, µ̃)} .
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Real data: MNIST and CIFAR-10
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Use off-the-shelf MOT solvers: Lin et al.9, Tupitsa et al.10.
9Lin et al., “On the complexity of approximating multimarginal optimal transport”.

10Tupitsa et al., “Multimarginal optimal transport by accelerated alternating
minimization”.
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The existence of optimal robust classifiers
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For the learner?

Notice that (GB) and (MOT) are problems for the adversary. Solutions
from these problems are optimal adversarial attacks.
Q: What about the learner? How do we compute an optimal robust
classifier?
A: Consider the dual of (GB) and (MOT).

PIMS Kantotrovich Initiative, UBC Adversarial training and MOT



References

Existence of Borel measurable robust classifiers

Corollary
(García Trillos, Jacobs, K.a) Let 0 ≤ g ≤ 1 be a solution to (Dual).
Define

f ∗
i (x̃) := sup

x∈spt(µi )
{gi(x) − cε(x , x̃)} ∨ 0.

Suppose f ∗ is Borel measurable. Then, f ∗ is a Borel robust classifier.
aGarcıa Trillos, Jacobs, and Kim, “The multimarginal optimal transport

formulation of adversarial multiclass classification”.

The issue is that a priori we do not know f ∗ is Borel measurable unless c
is continuous. A measurability issue is common in distributional robust
optimization literature.
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Existence of Borel measurable robust classifiers(cont.)

Theorem

(García Trillos, Jacobs, K.a)There exists a (Borel) solution f ∗ of (DRO).
Furthermore, there exists µ̃∗ ∈ P(Z) such that (f ∗, µ̃∗) is a saddle point
for (DRO). In other words, the following holds: for any µ̃ ∈ P(Z) and
any f ∈ F we have

R(f ∗, µ̃) − C(µ, µ̃) ≤ R(f ∗, µ̃∗) − C(µ, µ̃∗) ≤ R(f , µ̃∗) − C(µ, µ̃∗).
aGarcıa Trillos, Jacobs, and Kim, On the existence of solutions to adversarial

training in multiclass classification.
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Existence of Borel measurable robust classifiers(cont.)

Let cn
ε be a bounded and Lipschitz cost function converging to cε

pointwise. Let gn be optimal for (Dual) with each cn
ε . By Corollary, for

each n
f n
i := sup

x∈spt(µi )
{gn

i (x) − cn
ε (x , x̃)} ∨ 0

is a lower semi-continuous robust classifier. A candidate for robust
classifier is

f ∗
i = lim sup

n→∞
f n
i .
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Existence of Borel measurable robust classifiers(cont.)

Proposition

Let g be the weak∗ limit of the gn, and let f ∗ be defined as before.
Then, for every i ∈ Y,

g∗
i (x) = inf

x̃∈X
{f ∗

i (x̃) + cε(x , x̃)}

for µi -a.e. x ∈ X .

It holds thatˆ
X

f ∗
i (x̃)d µ̃∗

i (x̃) +
ˆ

X ×X
cε(x , x̃)dπ∗

i (x , x̃) =
ˆ

X
gi(x)dµi(x).

In words, given optimal adversarial attack µ̃∗, (g , −f ∗) is an optimal dual
pair.
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Efficient numerics
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What happens in reality
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Case 4 - (ii)

In reality, different classes are mostly far from each other compared to
the adversarial budget.
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(GB) in reality

λ{1,2} λ{1}
λ{2}

λ{2,3}
λ{3}

μ1,{1,2}

μ2,{2,3}

μ2,{1,2}

μ2,{2}

μ3,{3}μ3,{2,3}

μ1,{1}

For example, since µ1 and µ3 are separated enough, you can’t use
λ{1,2,3}: 3rd order interaction does not occur.
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Truncation

From OT perspective, it suffices to solve

inf
{πA:A∈SK ,|A|≤L}

∑
A∈SK

ˆ
X K

(
cε,A(x1, . . . , xK ) + 1

)
dπA(x1, . . . , xK )

s.t.
∑

A∈SK (i)

Pi #πA = µi for all i ∈ Y.

for some L which is the maximum order of interactions. Notice that
(MOT’) cannot capture the truncation. It always needs to compute cost
tensor c of order K .
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Two approaches

Theorem (Informal)
(García Trillos et ala) Assume that classes are separated well, and let
L ≪ K be the truncation level. Then, there are algorithms whose
computational complexity is Õ(nL).

aGarcıa Trillos et al., Two approaches for computing adversarial training lower
bounds based on optimal transport frameworks.

Note that the complexity of off-the-shelf MOT solver is Õ(nK ).
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Conclusions and future works
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Conclusions

In a series of works,
Connect (DRO) to (GB), generalized barycenter problem, and
rewrite it in terms of (MOT) via mutlimarginal optimal transport.
Prove the existence of Borel measurable robust classifiers of (DRO),
and (AT) by using (Dual) and c-transform formula.
In our recent work, we develop efficient algorithms based on (GB)
and (MOT), respectively. The idea is that in real data, higher order
interactions are rare so that sufficient to focus on lower order ones.
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Future works

Restrict F to a parameter family, e.g. neural nets, what can we say
about it?
Sample complexity of (DRO): how many samples do we need to
achieve the approximate of the value of (DRO)?
The asymptotic behavior of dual potentials/robust classifiers.
How to choose a certain saddle point? There are possibly many
equilibria...
Regularity of robust classifiers: see Bungert, García Trillos and
Murray11

Different loss function: cross entropy, quadratic loss etc...
Divergence-type barycenter problems: KL-divergence, χ2-divergence,
Rényi-divergence etc...
A condition to characterize the optimal truncation level.

11Bungert, García Trillos, and Murray, “The geometry of adversarial training in
binary classification”.
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