Gradient flows in the geometry of Sinkhorn divergences

Hugo Lavenant

Bocconi University

Kantorovich Initiative Seminar

Vancouver (Canada), October 31, 2024

Joint work with

Mathis Hardion Jonas Luckhardt Gilles Mordant Bernhard Schmitzer Luca Tamanini

Lavenant, Luckhardt, Mordant, Schmitzer, Tamanini (2024). The Riemannian geometry of Sinkhorn divergences. Hardion (2024). Master thesis: Gradient Flows in the Geometry of the Sinkhorn Divergence.

Wasserstein gradient flows

 $E: \mathcal{P}(\mathbb{R}^d) \to [0, +\infty]$ and $\mu_0 \in \mathcal{P}(\mathbb{R}^d)$ generate a curve $(\mu_t)_{t\geq 0}$ of **steepest descent** with respect to Wasserstein geometry.

Examples

• $E(\mu) = \int V d\mu$ gives the transport equation $\partial_t \mu = \operatorname{div}(\mu \nabla V).$

•
$$E(\mu) = \int \mu \log \mu$$
 gives the heat equation
 $\partial_t \mu = \Delta \mu.$

Wasserstein gradient flows

 $E: \mathcal{P}(\mathbb{R}^d) \to [0, +\infty]$ and $\mu_0 \in \mathcal{P}(\mathbb{R}^d)$ generate a curve $(\mu_t)_{t\geq 0}$ of **steepest descent** with respect to Wasserstein geometry.

Recall
$$OT(\mu, \nu) = \min_{\pi \in \Pi(\mu, \nu)} \iint_{\mathbb{R}^d \times \mathbb{R}^d} |x - y|^2 d\pi(x, y)$$
Subset of $\mathcal{P}(\mathbb{R}^d \times \mathbb{R}^d)$, coupling between μ and ν

Curve
$$(\mu_t)$$

 μ_0
 μ_0

JKO/minimizing movement scheme. For $\tau > 0$, define, for $k \ge 0$, $\mu_{k+1}^{\tau} \in \arg\min_{\mu} E(\mu) + \frac{\operatorname{OT}(\mu, \mu_{k}^{\tau})}{2\tau}$ Then $\mu_{k}^{\tau} \simeq \mu_{k\tau}$ as $\tau \to 0$.

Jordan, Kinderlehrer, Otto (1998). The variational formulation of the Fokker-Planck equation.

(X,d) compact metric space with symmetric cost function c, and $\varepsilon > 0$.

Definition

$$OT_{\varepsilon}(\mu,\nu) = \min_{\pi \in \Pi(\mu,\nu)} \iint_{X \times X} c(x,y) \, d\pi(x,y) + \varepsilon KL(\pi | \mu \otimes \nu)$$

Why?

- 1. easier to compute (**Sinkhorn algorithm**),
- 2. better statistical complexity,
- 3. smoother dependence in (μ, ν) .

Kullback-Leibler divergence, a.k.a relative entropy

(X, d) compact metric space with symmetric cost function c, and $\varepsilon > 0$.

Definition

$$OT_{\varepsilon}(\mu,\nu) = \min_{\pi \in \Pi(\mu,\nu)} \iint_{X \times X} c(x,y) \, d\pi(x,y) + \varepsilon KL(\pi | \mu \otimes \nu)$$

If c quadratic cost on \mathbb{R}^d , Entropic JKO scheme:

$$\mu_{k+1}^{\tau} \in \arg\min_{\mu} E(\mu) + \frac{\operatorname{OT}_{\varepsilon}(\mu, \mu_{k}^{\tau})}{2\tau}$$

Peyré (2015). Entropic approximation of Wasserstein gradient flows.

(X,d) compact metric space with symmetric cost function c, and $\varepsilon > 0$.

Definition

$$OT_{\varepsilon}(\mu,\nu) = \min_{\pi \in \Pi(\mu,\nu)} \iint_{X \times X} c(x,y) d\pi(x,y) + \varepsilon KL(\pi | \mu \otimes \nu)$$

Recall

$$OT_{\varepsilon} = OT + C_{\varepsilon} + \varepsilon$$
[Bias] + . . .

If c quadratic cost on \mathbb{R}^d , Entropic JKO scheme:

$$\mu_{k+1}^{\tau} \in \arg\min_{\mu} E(\mu) + \frac{\operatorname{OT}_{\varepsilon}(\mu, \mu_{k}^{\tau})}{2\tau}$$
$$\mu_{k+1}^{\tau} \in \arg\min_{\mu} E(\mu) + \frac{\operatorname{OT}(\mu, \mu_{k}^{\tau})}{2\tau} + \frac{\varepsilon}{2\tau} \operatorname{Bias} + \dots$$

Conforti & Tamanini (2021). A formula for the time derivative of the entropic cost and applications.

(X,d) compact metric space with symmetric cost function c, and $\varepsilon > 0$.

Definition

$$OT_{\varepsilon}(\mu,\nu) = \min_{\pi \in \Pi(\mu,\nu)} \iint_{X \times X} c(x,y) d\pi(x,y) + \varepsilon KL(\pi | \mu \otimes \nu)$$

Recall

$$OT_{\varepsilon} = OT + C_{\varepsilon} + \varepsilon$$
[Bias] + . . .

If c quadratic cost on \mathbb{R}^d , Entropic JKO scheme:

$$\mu_{k+1}^{\tau} \in \arg\min_{\mu} E(\mu) + \frac{\operatorname{OT}_{\varepsilon}(\mu, \mu_{k}^{\tau})}{2\tau}$$
$$\mu_{k+1}^{\tau} \in \arg\min_{\mu} E(\mu) + \frac{\operatorname{OT}(\mu, \mu_{k}^{\tau})}{2\tau} + \frac{\varepsilon}{2\tau} \operatorname{Bias} + \dots$$

• $\varepsilon \ll \tau$: convergence to the Wasserstein GF of E. • $\varepsilon \sim \tau$: convergence to a new flow.

• $\varepsilon \gg \tau$: the bias dominates, no evolution.

Conforti & Tamanini (2021). A formula for the time derivative of the entropic cost and applications. Carlier, Duval, Peyré, Schmitzer (2017). Convergence of entropic schemes for optimal transport and gradient flows. Baradat, Hraivoronska, Santambrogio (2024+). Using Sinkhorn in JKO adds diffusion in the limiting PDE.

(X,d) compact metric space with symmetric cost function c, and $\varepsilon > 0$.

Definition

$$OT_{\varepsilon}(\mu,\nu) = \min_{\pi \in \Pi(\mu,\nu)} \iint_{X \times X} c(x,y) \, d\pi(x,y) + \varepsilon KL(\pi | \mu \otimes \nu)$$

Recall

$$OT_{\varepsilon} = OT + C_{\varepsilon} + \varepsilon$$
[Bias] + . . .

If c quadratic cost on \mathbb{R}^d , Entropic JKO scheme:

$$\mu_{k+1}^{\tau} \in \arg\min_{\mu} E(\mu) + \frac{\operatorname{OT}_{\varepsilon}(\mu, \mu_{k}^{\tau})}{2\tau}$$
$$\mu_{k+1}^{\tau} \in \arg\min_{\mu} E(\mu) + \frac{\operatorname{OT}(\mu, \mu_{k}^{\tau})}{2\tau} + \frac{\varepsilon}{2\tau} \operatorname{Bias} + \dots$$

Today: I will keep ε fixed.

• $\varepsilon \ll \tau$: convergence to the Wasserstein GF of E. • $\varepsilon \sim \tau$: convergence to a new flow. • $\varepsilon \gg \tau$: the bias

dominates, no evolution.

As $\operatorname{OT}_{\varepsilon}(\mu,\mu) > 0$, debias by defining Sinkhorn divergence $S_{\varepsilon}(\mu,\nu) = \operatorname{OT}_{\varepsilon}(\mu,\nu) - \frac{1}{2}\operatorname{OT}_{\varepsilon}(\mu,\mu) - \frac{1}{2}\operatorname{OT}_{\varepsilon}(\nu,\nu).$

As $\operatorname{OT}_{\varepsilon}(\mu,\mu) > 0$, debias by defining Sinkhorn divergence $S_{\varepsilon}(\mu,\nu) = \operatorname{OT}_{\varepsilon}(\mu,\nu) - \frac{1}{2}\operatorname{OT}_{\varepsilon}(\mu,\mu) - \frac{1}{2}\operatorname{OT}_{\varepsilon}(\nu,\nu).$ Assumption until the end of the talk

Theorem Assume $\exp(-c/\varepsilon)$ positive definite universal kernel.

1. $S_{\varepsilon}(\mu, \nu) \ge 0$ with equality iff $\mu = \nu$, and S_{ε} "metrizes" weak convergence. 2. S_{ε} convex in each of its inputs.

– but $\sqrt{S_{\varepsilon}}$ not a distance

As $\operatorname{OT}_{\varepsilon}(\mu,\mu) > 0$, debias by defining Sinkhorn divergence $S_{\varepsilon}(\mu,\nu) = \operatorname{OT}_{\varepsilon}(\mu,\nu) - \frac{1}{2}\operatorname{OT}_{\varepsilon}(\mu,\mu) - \frac{1}{2}\operatorname{OT}_{\varepsilon}(\nu,\nu).$ Assumption until the end of the talk

– but $\sqrt{S_{\varepsilon}}$ not a distance

Theorem Assume $\exp(-c/\varepsilon)$ positive definite universal kernel.

1. $S_{\varepsilon}(\mu, \nu) \ge 0$ with equality iff $\mu = \nu$, and S_{ε} "metrizes" weak convergence. 2. S_{ε} convex in each of its inputs.

Sinkhorn JKO:

$$\mu_{k+1}^{\tau} \in \arg\min_{\mu} E(\mu) + \frac{S_{\varepsilon}(\mu, \mu_{k}^{\tau})}{2\tau}$$

Genevay, Peyré, & Cuturi (2018). Learning generative models with Sinkhorn divergences. Feydy, Séjourné, Vialard, Amari, Trouvé & Peyré (2019). Interpolating between optimal transport and MMD using Sinkhorn divergences.

As $\operatorname{OT}_{\varepsilon}(\mu,\mu) > 0$, debias by defining Sinkhorn divergence $S_{\varepsilon}(\mu,\nu) = \operatorname{OT}_{\varepsilon}(\mu,\nu) - \frac{1}{2}\operatorname{OT}_{\varepsilon}(\mu,\mu) - \frac{1}{2}\operatorname{OT}_{\varepsilon}(\nu,\nu).$ Assumption until the end of the talk

Theorem Assume $\exp(-c/\varepsilon)$ positive definite universal kernel.

1. $S_{\varepsilon}(\mu, \nu) \ge 0$ with equality iff $\mu = \nu$, and S_{ε} "metrizes" weak convergence. 2. S_{ε} convex in each of its inputs.

Sinkhorn JKO: $\mu_{k+1}^{\tau} \in \arg\min_{\mu} E(\mu) + \frac{S_{\varepsilon}(\mu, \mu_{k}^{\tau})}{2\tau}$ If — but $\sqrt{S_{\varepsilon}}$ not a distance

$$S_{\varepsilon}(\mu_t, \mu_{t+\tau}) \sim \tau^2 \mathbf{g}_{\mu_t}(\dot{\mu}_t, \dot{\mu}_t),$$

we expect the equation when $\tau \to 0$: $\dot{\mu}_t \in \arg\min_{\sigma} DE(\mu_t)[\sigma] + \frac{\mathbf{g}_{\mu_t}(\sigma, \sigma)}{2}.$ 5/21

1 - Optimal transport: metric tensor, geometry, gradient flows

2 - Building a Riemannian geometry out of Sinkhorn divergences

3 - Gradient flows of potential energies for the Sinkhorn geometry

2 - Building a Riemannian geometry out of Sinkhorn divergences

3 - Gradient flows of potential energies for the Sinkhorn geometry

The linearization of optimal transport

On \mathbb{R}^d , what happens to $OT(\mu, \nu)$ if $\mu \simeq \nu$? $\rightsquigarrow (\mu_t)_t$ curve in $\mathcal{P}(\mathbb{R}^d)$, we look at $OT(\mu_0, \mu_t)$.

The linearization of optimal transport

Ambrosio, Gigli & Savaré (2008). Gradient flows: in metric spaces and in the space of probability measures.

The linearization of optimal transport

The metric tensor and the geometry of optimal transport

Quadratic form in $\dot{\mu}$, depending on μ .

The metric tensor and the geometry of optimal transport

$$\mathbf{g}^{\mathrm{OT}}_{\mu}(\dot{\mu},\dot{\mu}) = \int_{X} |\nabla\psi|^2 \,\mathrm{d}\mu.$$

Theorem (Benamou and Brenier, 2000):

$$OT(\mu_0, \mu_1) = \min_{(\mu_t)_t} \int_0^1 \mathbf{g}_{\mu_t}^{OT}(\dot{\mu}_t, \dot{\mu}_t) dt$$
with μ_0, μ_1 fixed.
Minimizers are **geodesics**.

$$\mu_0 \qquad \qquad \mu_1$$

Example geodesic

The metric tensor and the geometry of optimal transport

Metric tensor:

$$\mathbf{g}^{\mathrm{OT}}_{\mu}(\dot{\mu},\dot{\mu}) = \int_{X} |\nabla\psi|^2 \,\mathrm{d}\mu.$$

Theorem (Benamou and Brenier, 2000): $OT(\mu_0, \mu_1) = \min_{(\mu_t)_t} \int_0^1 \mathbf{g}_{\mu_t}^{OT}(\dot{\mu}_t, \dot{\mu}_t) dt$ with μ_0, μ_1 fixed. Minimizers are **geodesics**.

Gradient flows: JKO scheme $\mu_{k+1}^{\tau} \in \arg\min_{\mu} E(\mu) + \frac{\operatorname{OT}(\mu, \mu_{k}^{\tau})}{2\tau},$ becomes with $\tau \to 0$ $\dot{\mu}_{t} \in \arg\min_{\sigma} DE(\mu_{t})[\sigma] + \frac{\mathbf{g}_{\mu_{t}}^{\mathrm{OT}}(\sigma, \sigma)}{2}.$

1 - Optimal transport: metric tensor, geometry, gradient flows

2 - Building a Riemannian geometry out of Sinkhorn divergences

1. Define $\mathbf{g}_{\mu}(\dot{\mu}, \dot{\mu})$ by $S_{\varepsilon}(\mu_0, \mu_t) \sim t^2 \mathbf{g}_{\mu_t}(\dot{\mu}_t, \dot{\mu}_t)$. 2. Define $\mathbf{d}_S(\mu_0, \mu_1)^2 = \inf \int_0^1 \mathbf{g}_{\mu_t}(\dot{\mu}_t, \dot{\mu}_t) \, \mathrm{d}t$.

See also Park & Slepčev (2023). Geometry and analytic properties of the sliced Wasserstein space.

3 - Gradient flows of potential energies for the Sinkhorn geometry

Understanding $OT_{\varepsilon}(\mu, \mu)$

With $f_{\mu}: X \to \mathbb{R}$ Schrödinger potential, π_{ε} entropic optimal plan between μ and μ is:

$$d\pi_{\varepsilon}(x,y) = \exp\left(\frac{f_{\mu}(x) + f_{\mu}(y) - c(x,y)}{\varepsilon}\right) d\mu(x)d\mu(y).$$

(Defines a reversible Markov chain with equilibirum measure μ .)

Definition:

$$k_{\mu}(x, y) = \exp\left(\frac{f_{\mu}(x) + f_{\mu}(y) - c(x, y)}{\varepsilon}\right).$$

 $\mu_t = \mu + t\dot{\mu}$, with $\dot{\mu}$ signed measure with zero mass.

 $\dot{\mu} > 0 \qquad \qquad \dot{\mu} < 0$

 $\mu_t = \mu + t\dot{\mu}$, with $\dot{\mu}$ signed measure with zero mass.

neorem.

$$S_{\varepsilon}(\mu_0,\mu_t) \sim t^2 \frac{\varepsilon}{2} \langle \dot{\mu}, (\mathrm{Id} - K_{\mu}^2)^{-1} H_{\mu}[\dot{\mu}] \rangle.$$

Where $k_{\mu}(x, y) = \exp((f_{\mu}(x) + f_{\mu}(y) - c(x, y))/\varepsilon)$ and:

$$\begin{split} K_{\mu}(\phi)(x) &= \int_{X} k_{\mu}(x, y) \phi(y) \,\mathrm{d}\mu(y), \qquad (\mathrm{Id} - K_{\mu}^{2})/\varepsilon \sim \mathsf{Laplacian} \\ H_{\mu}[\sigma](x) &= \int_{X} k_{\mu}(x, y) \,\mathrm{d}\sigma(y). \end{split}$$

 $\mu_t = \mu + t\dot{\mu}$, with $\dot{\mu}$ signed measure with zero mass.

$$\begin{aligned} \begin{array}{l} \textbf{Theorem.} \\ S_{\varepsilon}(\mu_{0},\mu_{t}) \sim t^{2} \frac{\varepsilon}{2} \langle \dot{\mu}, (\mathrm{Id} - K_{\mu}^{2})^{-1} H_{\mu}[\dot{\mu}] \rangle \\ \end{array} \\ \begin{array}{l} \textbf{Main message: heavy but explicit} \\ \textbf{and interpretable formula!} \\ \end{aligned} \\ \begin{array}{l} \textbf{Where } k_{\mu}(x,y) = \exp((f_{\mu}(x) \\ \textbf{Main message: heavy but explicit} \\ \textbf{and interpretable formula!} \\ \end{array} \\ \begin{array}{l} \textbf{K}_{\mu}(\phi)(x) = \int_{X} k_{\mu}(x,y)\phi(y) \, \mathrm{d}\mu(y), \\ \textbf{H}_{\mu}[\sigma](x) = \int_{X} k_{\mu}(x,y) \, \mathrm{d}\sigma(y). \\ \end{array} \end{aligned}$$

11/21

 $\mu_t = \mu + t\dot{\mu}$, with $\dot{\mu}$ signed measure with zero mass.

Theorem.

$$S_{\varepsilon}(\mu_{0},\mu_{t}) \sim t^{2} \frac{\varepsilon}{2} \langle \dot{\mu}, (\mathrm{Id} - K_{\mu}^{2})^{-1} H_{\mu}[\dot{\mu}] \rangle.$$
Main message: heavy but explicit and interpretable formula!
Where $k_{\mu}(x,y) = \exp((f_{\mu}(x) - K_{\mu}^{2})^{-1} H_{\mu}[\dot{\mu}])$.

$$K_{\mu}(\phi)(x) = \int_{X} k_{\mu}(x,y)\phi(y) d\mu(y), \qquad (\mathrm{Id} - K_{\mu}^{2})/\varepsilon \sim \mathrm{Laplacian}$$

$$H_{\mu}[\sigma](x) = \int_{X} k_{\mu}(x,y) d\sigma(y).$$
Same formula
Definition. $\mathbf{g}_{\mu}(\dot{\mu},\dot{\mu}) = \frac{\varepsilon}{2} \langle \dot{\mu}, (\mathrm{Id} - K_{\mu}^{2})^{-1} H_{\mu}[\dot{\mu}] \rangle.$
11/21

Definition of the Riemannian distance and main results

Recall X compact,
$$\mathbf{g}_{\mu}(\dot{\mu},\dot{\mu}) = \frac{\varepsilon}{2} \langle \dot{\mu}, (\mathrm{Id} - K_{\mu}^2)^{-1} H_{\mu}[\dot{\mu}] \rangle.$$

Definition. Given μ_0, μ_1 : $\mathbf{d}_S(\mu_0, \mu_1)^2 = \inf \int_0^1 \mathbf{g}_{\mu_t}(\dot{\mu}_t, \dot{\mu}_t) \, \mathrm{d}t$

where infimum over (μ_t) on a class of path to be specified in the next slides.

Both "vertical" and "horizontal" are allowed!

Definition of the Riemannian distance and main results

Recall X compact,
$$\mathbf{g}_{\mu}(\dot{\mu}, \dot{\mu}) = \frac{\varepsilon}{2} \langle \dot{\mu}, (\mathrm{Id} - K_{\mu}^2)^{-1} H_{\mu}[\dot{\mu}] \rangle.$$

Definition. Given μ_0, μ_1 : $\mathbf{d}_S(\mu_0, \mu_1)^2 = \inf \int_0^1 \mathbf{g}_{\mu_t}(\dot{\mu}_t, \dot{\mu}_t) \, \mathrm{d}t$

where infimum over (μ_t) on a class of path to be specified in the next slides.

Both "vertical" and "horizontal" are allowed!

Theorem. d_S is a distance over $\mathcal{P}(X)$ **metrizing weak convergence of measures**, and the infimum in the definition is reached (geodesics exist).

Definition of the Riemannian distance and main results

Recall X compact,
$$\mathbf{g}_{\mu}(\dot{\mu}, \dot{\mu}) = \frac{\varepsilon}{2} \langle \dot{\mu}, (\mathrm{Id} - K_{\mu}^2)^{-1} H_{\mu}[\dot{\mu}] \rangle.$$

Definition. Given μ_0, μ_1 : $\mathsf{d}_S(\mu_0, \mu_1)^2 = \inf \int_0^1 \mathbf{g}_{\mu_t}(\dot{\mu}_t, \dot{\mu}_t) \, \mathrm{d}t$

where infimum over (μ_t) on a class of path to be specified in the next slides.

Both "vertical" and "horizontal" are allowed!

Theorem. d_S is a distance over $\mathcal{P}(X)$ **metrizing weak convergence of measures**, and the infimum in the definition is reached (geodesics exist).

Elements of the proof: next slides.

Reminder on Reproducing Kernel Hilbert Spaces (RKHS)

defines dot product

Fix $k: X \times X \to \mathbb{R}$ positive definite.

Definition. \mathcal{H}_k Hilbert space of functions $X \to \mathbb{R}$: start with $\operatorname{span} \{k(\cdot, x) : x \in X\}$ with $\langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}_k} = k(x, y)$. Then take completion. k positive definite if this

(k universal $\Leftrightarrow \mathcal{H}_k$ dense in C(X))

Reminder on Reproducing Kernel Hilbert Spaces (RKHS)

Fix $k: X \times X \to \mathbb{R}$ positive definite.

Definition. \mathcal{H}_k Hilbert space of functions $X \to \mathbb{R}$: start with $\operatorname{span} \{k(\cdot, x) : x \in X\}$ with $\langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}_k} = k(x, y)$. Then take completion.

Remark. \mathcal{H}_k Hilbert space of functions on X such that $\phi \mapsto \phi(x)$ is continuous for any x, and this characterizes a RKHS.

Paulsen & Raghupathi (2016). An Introduction to the Theory of Reproducing Kernel Hilbert Spaces.

Reminder on Reproducing Kernel Hilbert Spaces (RKHS)

Fix $k: X \times X \to \mathbb{R}$ positive definite.

Definition. \mathcal{H}_k Hilbert space of functions $X \to \mathbb{R}$: start with span $\{k(\cdot, x) : x \in X\}$ with $\langle k(\cdot, x), k(\cdot, y) \rangle_{\mathcal{H}_k} = k(x, y)$. Then take completion.

Remark. \mathcal{H}_k Hilbert space of functions on X such that $\phi \mapsto \phi(x)$ is continuous for any x, and this characterizes a RKHS.

In our case:

Typically smooth functions!

- $k = \exp(-c/\varepsilon)$, space \mathcal{H}_c .
- $k=k_{\mu}=\exp((f_{\mu}\oplus f_{\mu}-c)/arepsilon)$, space \mathcal{H}_{μ} .

Paulsen & Raghupathi (2016). An Introduction to the Theory of Reproducing Kernel Hilbert Spaces.

A useful change of variable

Define: $b = B(\mu) = \exp\left(-\frac{f_{\mu}}{\varepsilon}\right)$ where $f_{\mu} : X \to \mathbb{R}$ self Schrödinger potential. **Theorem**. The map B is an homeomorphism between $\mathcal{P}(X)$ and the intersection of a convex cone and the unit sphere of \mathcal{H}_c .

 $B(\mathcal{P}$

Unit sphere of \mathcal{H}_c 14/21

R

 \mathcal{H}_c : Reproducing Kernel Hilbert Space built on $\frac{1}{2} \exp(-c/\varepsilon)$.

(Change of variable suggested by Feydy et al, Séjourné et al)

Feydy, Séjourné, Vialard, Amari, Trouvé & Peyré (2019). Interpolating between optimal transport and MMD using Sinkhorn divergences. Séjourné, Feydy, Vialard, Trouvé & Peyré (2019). Sinkhorn divergences for unbalanced optimal transport.

A useful change of variable

Define: $b = B(\mu) = \exp\left(-\frac{f_{\mu}}{\varepsilon}\right)$ where $f_{\mu} : X \to \mathbb{R}$ self Schrödinger potential. **Theorem**. The map B is an homeomorphism between $\mathcal{P}(X)$ and the intersection of a convex cone and the unit sphere of \mathcal{H}_c .

Theorem. We have
$$\mathbf{g}_{\mu_t}(\dot{\mu}_t, \dot{\mu}_t) = \tilde{\mathbf{g}}_{\mu_t}(\dot{b}_t, \dot{b}_t)$$
 and:
• $(\mu, \dot{b}) \mapsto \tilde{\mathbf{g}}_{\mu_t}(\dot{b}, \dot{b})$ jointly continuous.

• $\tilde{\mathbf{g}}_{\mu}(\dot{b}, \dot{b}) \simeq \|\dot{b}\|_{\mathcal{H}_{c}}^{2}$ uniformly in μ (but not in ε).

A useful change of variable

Define: $b = B(\mu) = \exp\left(-\frac{f_{\mu}}{\varepsilon}\right)$ where $f_{\mu} : X \to \mathbb{R}$ self Schrödinger potential. **Theorem**. The map B is an homeomorphism between $\mathcal{P}(X)$ and the intersection of a convex cone and the unit sphere of \mathcal{H}_c .

Theorem. We have
$$\mathbf{g}_{\mu_t}(\dot{\mu}_t, \dot{\mu}_t) = \tilde{\mathbf{g}}_{\mu_t}(\dot{b}_t, \dot{b}_t)$$
 and:

- $(\mu, \dot{b}) \mapsto \tilde{\mathbf{g}}_{\mu}(\dot{b}, \dot{b})$ jointly continuous,
- $\tilde{\mathbf{g}}_{\mu}(\dot{b},\dot{b}) \simeq \|\dot{b}\|_{\mathcal{H}_{c}}^{2}$ uniformly in μ (but not in ε).

Consequence. Admissible paths: $(b_t) H^1$ valued in \mathcal{H}_c ,

$$\mathbf{d}_S(\mu_0,\mu_1) \asymp \|b_1 - b_0\|_{\mathcal{H}_c}.$$

 μ $B(\mathcal{P}(X))$ Rb Unit sphere of \mathcal{H}_c 14/21

1 - Optimal transport: metric tensor, geometry, gradient flows

2 - Building a Riemannian geometry out of Sinkhorn divergences

3 - Gradient flows of potential energies for the Sinkhorn geometry

Notations, object of study

X compact metric, $\exp(-c/\varepsilon)$ p. d. and universal, and $V: X \to \mathbb{R}$ continuous.

Sinkhorn JKO:

$$\mu_{k+1}^{\tau} \in \arg\min_{\mu} E(\mu) + \frac{S_{\varepsilon}(\mu, \mu_{k}^{\tau})}{2\tau}.$$

with S_{ε} Sinkhorn divergence and $E(\mu) = \int V d\mu$ potential energy.

Notations, object of study

X compact metric, $\exp(-c/\varepsilon)$ p. d. and universal, and $V: X \to \mathbb{R}$ continuous.

Sinkhorn JKO:

$$\mu_{k+1}^{\tau} \in \arg\min_{\mu} E(\mu) + \frac{S_{\varepsilon}(\mu, \mu_{k}^{\tau})}{2\tau}.$$

Formal limit when $\tau \to 0$:

Evolution equation, Sinkhorn flow $\frac{\varepsilon}{2}(\mathrm{Id} - K_{\mu_t}^2)^{-1}H_{\mu_t}[\dot{\mu}_t] + V + p_t = \mathsf{Cst}.$ with S_{ε} Sinkhorn divergence and $E(\mu) = \int V d\mu$ potential energy.

Recall

$$K_{\mu}(\phi)(x) = \int_{X} k_{\mu}(x, y)\phi(y) d\mu(y),$$

$$H_{\mu}[\sigma](x) = \int_{X} k_{\mu}(x, y) d\sigma(y).$$

 p_t pressure: $p_t \leq 0$, and $p_t = 0$ on $supp(\mu_t)$

Notations, object of study

X compact metric, $\exp(-c/\varepsilon)$ p. d. and universal, and $V: X \to \mathbb{R}$ continuous.

Sinkhorn JKO:

$$\mu_{k+1}^{\tau} \in \arg\min_{\mu} E(\mu) + \frac{S_{\varepsilon}(\mu, \mu_{k}^{\tau})}{2\tau}.$$

Formal limit when $\tau \to 0$:

Evolution equation, Sinkhorn flow $\frac{\varepsilon}{2} (\mathrm{Id} - K_{\mu_t}^2)^{-1} H_{\mu_t} [\dot{\mu}_t] + V + p_t = \mathsf{Cst}.$ with S_{ε} Sinkhorn divergence and $E(\mu) = \int V d\mu$ potential energy.

Recall

$$K_{\mu}(\phi)(x) = \int_{X} k_{\mu}(x, y)\phi(y) d\mu(y),$$

$$H_{\mu}[\sigma](x) = \int_{X} k_{\mu}(x, y) d\sigma(y).$$

 $rac{}{}: p_t \leq 0$, and $p_t = 0$ on

16/21

So $\dot{\mu}_t = H_{\mu_t}^{-1}[...]$ with H_{μ_t} "convolution". Non local equation of infinite order.

 $rac{2}{arepsilon}(V-V^*)$ skew-symmetric: generates group of unitary operators, but unbounded.

"Rotation" generated by $\frac{2}{\varepsilon}(V-V^*)$

 $B(\mathcal{P}(X))$

multiplication by Vin \mathcal{H}_c V^* Adjoint of multiplication by V for $\langle \cdot, \cdot \rangle_{\mathcal{H}_c}$

 $\frac{2}{\varepsilon}(V - V^*)$ skew-symmetric: generates group of unitary operators, but unbounded.

Pressure: in the polar cone of $B(\mathcal{M}_+(X))$ for $\langle \cdot, \cdot \rangle_{\mathcal{H}_c}$, maintains $\mu_t \ge 0$.

Theorem (on the Sinkhorn flow).

1. **Existence**: for any $b_0 = B(\mu_0)$, there exists a solution, with $(b_t) \in H^1([0, +\infty), \mathcal{H}_c)$.

Proof idea: approximate X by a finite space $X_N = \{x_1, \ldots, x_N\}$. For measures supported on X_N , the Sinkhorn flow is a maximal monotone evolution.

Theorem (on the Sinkhorn flow).

1. **Existence**: for any $b_0 = B(\mu_0)$, there exists a solution, with $(b_t) \in H^1([0, +\infty), \mathcal{H}_c)$.

2. The flow is **non-expansive** in \mathcal{H}_c : for two flows (b_t^1) and (b_t^2) , we have $\|b_t^2 - b_t^1\|_{\mathcal{H}_c} \le \|b_0^2 - b_0^1\|_{\mathcal{H}_c}$ for all $t \ge 0$. It implies **uniqueness**.

Proof idea: Maximal monotone operators are non-expansive.

Theorem (on the Sinkhorn flow).

1. **Existence**: for any $b_0 = B(\mu_0)$, there exists a solution, with $(b_t) \in H^1([0, +\infty), \mathcal{H}_c)$.

2. The flow is **non-expansive** in \mathcal{H}_c : for two flows (b_t^1) and (b_t^2) , we have $\|b_t^2 - b_t^1\|_{\mathcal{H}_c} \le \|b_0^2 - b_0^1\|_{\mathcal{H}_c}$ for all $t \ge 0$. It implies **uniqueness**.

3. Convergence to global minimum: $E(\mu_t) \to \min E$ as $t \to +\infty$.

Recall. The flow of the Wasserstein GF $\partial \mu_t = \operatorname{div}(\mu_t \nabla V)$ gets trapped in local minima.

Proof idea. The only critical points of *E* are global minima because vertical perturbations (teleportation) is allowed in the Sinkhorn geometry (no convexity of *V* needed).

Examples

Proposition. If $X = \mathbb{R}^d$, V convex, c quadratic cost and $\mu_0 = \delta_{x_0}$ then $\mu_t = \delta_{x_t}$ with $\dot{x}_t \in -\partial V(x_t)$. (Same as Wasserstein GF).

Examples

But if V not convex there can be **teleportation**!

Here a Lagrangian 0.2 t = 0.50t = 0.00t = 0.25

discretization won't

work.

19/21

Link with the Sinkhorn JKO scheme

Sinkhorn flow in the *b*-variable:

$$\dot{b}_t + \frac{2}{\varepsilon} \left(V - V^* \right) b_t + p_t = 0.$$

with S_{ε} Sinkhorn divergence and $E(\mu) = \int V d\mu$ potential energy.

with
$$b_t = \exp(-f_{\mu_t}/\varepsilon)$$
.

Link with the Sinkhorn JKO scheme

Sinkhorn flow in the *b*-variable: $\dot{b}_t + \frac{2}{c} (V - V^*) b_t + p_t = 0.$ with S_{ε} Sinkhorn divergence and $E(\mu) = \int V d\mu$ potential energy.

with
$$b_t = \exp(-f_{\mu_t}/\varepsilon)$$
.

Proposition. If X is a **finite set**, the solutions of the Sinkhorn JKO scheme, properly interpolated in time, converge to the Sinkhorn flow as $\tau \to 0$ in $C([0,T], \mathcal{P}(X))$.

Future works

What I have not presented:

- Explicit computations for Gaussians, two points space,
- Proof that Sinkhorn divergence is not jointly convex,
- Proof that Sinkhorn divergence is not a metric.

Some topics we are working on:

- Extend the convergence SJKO \rightarrow Sinkhorn flow,
- Numerical approximation of geodesics,
- Limit $\varepsilon \to 0$ towards optimal transport,
- Homogeneization when space is refined.

Future works

What I have not presented:

- Explicit computations for Gaussians, two points space,
- Proof that Sinkhorn divergence is not jointly convex,
- Proof that Sinkhorn divergence is not a metric.

Some topics we are working on:

- Extend the convergence SJKO \rightarrow Sinkhorn flow,
- Numerical approximation of geodesics,
- Limit $\varepsilon \to 0$ towards optimal transport,
- Homogeneization when space is refined.

Thank you for your attention