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Wasserstein gradient flows
E : P(Rd) → [0,+∞] and µ0 ∈ P(Rd) generate
a curve (µt)t≥0 of steepest descent with
respect to Wasserstein geometry.

Space P(Rd)

Level sets ECurve (µt)

Examples
• E(µ) =

∫
V dµ gives the transport equation
∂tµ = div(µ∇V ).

• E(µ) =
∫
µ logµ gives the heat equation

∂tµ = ∆µ.

Jordan, Kinderlehrer, Otto (1998). The variational formulation of the Fokker–Planck equation.
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Wasserstein gradient flows
E : P(Rd) → [0,+∞] and µ0 ∈ P(Rd) generate
a curve (µt)t≥0 of steepest descent with
respect to Wasserstein geometry.

Space P(Rd)

Level sets ECurve (µt)

JKO/minimizing movement scheme. For τ > 0, define, for k ≥ 0,

µτ
k+1 ∈ arg min

µ
E(µ) +

OT(µ, µτ
k)

2τ
Then µτ

k ' µkτ as τ → 0.

OT(µ, ν) = min
π∈Π(µ,ν)

∫∫
Rd×Rd

|x− y|2 dπ(x, y)

Subset of P(Rd × Rd), coupling between µ and ν

µ0

Recall

Jordan, Kinderlehrer, Otto (1998). The variational formulation of the Fokker–Planck equation.
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With entropic optimal transport?

µ
ν

OTε(µ, ν) = min
π∈Π(µ,ν)

∫∫
X×X

c(x, y) dπ(x, y)

(X, d) compact metric space with symmetric cost function c, and ε > 0.
π(dx, dy)x

yDefinition

+εKL(π|µ⊗ ν)

1. easier to compute (Sinkhorn algorithm),
2. better statistical complexity,
3. smoother dependence in (µ, ν).

Why?

Peyré & Cuturi (2018). Computational Optimal Transport.

Kullback-Leibler
divergence, a.k.a relative
entropy
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With entropic optimal transport?

OTε(µ, ν) = min
π∈Π(µ,ν)

∫∫
X×X

c(x, y) dπ(x, y)

(X, d) compact metric space with symmetric cost function c, and ε > 0.
Definition

+εKL(π|µ⊗ ν)

µτ
k+1 ∈ arg min

µ
E(µ) +

OTε(µ, µ
τ
k)

2τ

If c quadratic cost on Rd, Entropic JKO scheme:

Peyré (2015). Entropic approximation of Wasserstein gradient flows.
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With entropic optimal transport?

OTε(µ, ν) = min
π∈Π(µ,ν)

∫∫
X×X

c(x, y) dπ(x, y)

(X, d) compact metric space with symmetric cost function c, and ε > 0.
Definition

+εKL(π|µ⊗ ν)

µτ
k+1 ∈ arg min

µ
E(µ) +

OTε(µ, µ
τ
k)

2τ

If c quadratic cost on Rd, Entropic JKO scheme:

OTε = OT + Cε + ε[Bias]+ . . .

µτ
k+1 ∈ arg min

µ
E(µ) +

OT(µ, µτ
k)

2τ
+

ε

2τ
Bias+ . . .

Recall

Conforti & Tamanini (2021). A formula for the time derivative of the entropic cost and applications.
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With entropic optimal transport?

OTε(µ, ν) = min
π∈Π(µ,ν)

∫∫
X×X

c(x, y) dπ(x, y)

(X, d) compact metric space with symmetric cost function c, and ε > 0.
Definition

+εKL(π|µ⊗ ν)

µτ
k+1 ∈ arg min

µ
E(µ) +

OTε(µ, µ
τ
k)

2τ

If c quadratic cost on Rd, Entropic JKO scheme:

OTε = OT + Cε + ε[Bias]+ . . .

µτ
k+1 ∈ arg min

µ
E(µ) +

OT(µ, µτ
k)

2τ
+

ε

2τ
Bias+ . . .

• ε� τ : convergence to
the Wasserstein GF of E.
• ε ∼ τ : convergence to a
new flow.
• ε� τ : the bias
dominates, no evolution.

Recall

Conforti & Tamanini (2021). A formula for the time derivative of the entropic cost and applications.
Carlier, Duval, Peyré, Schmitzer (2017). Convergence of entropic schemes for optimal transport and gradient flows.
Baradat, Hraivoronska, Santambrogio (2024+). Using Sinkhorn in JKO adds diffusion in the limiting PDE.
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With entropic optimal transport?

OTε(µ, ν) = min
π∈Π(µ,ν)

∫∫
X×X

c(x, y) dπ(x, y)

(X, d) compact metric space with symmetric cost function c, and ε > 0.
Definition

+εKL(π|µ⊗ ν)

µτ
k+1 ∈ arg min

µ
E(µ) +

OTε(µ, µ
τ
k)

2τ

If c quadratic cost on Rd, Entropic JKO scheme:

OTε = OT + Cε + ε[Bias]+ . . .

µτ
k+1 ∈ arg min

µ
E(µ) +

OT(µ, µτ
k)

2τ
+

ε

2τ
Bias+ . . .

Today: I will keep ε fixed.

• ε� τ : convergence to
the Wasserstein GF of E.
• ε ∼ τ : convergence to a
new flow.
• ε� τ : the bias
dominates, no evolution.

Recall
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Using Sinkhorn divergences

Sε(µ, ν) = OTε(µ, ν)−
1

2
OTε(µ, µ)−

1

2
OTε(ν, ν).

As OTε(µ, µ) > 0, debias by defining Sinkhorn divergence

Genevay, Peyré, & Cuturi (2018). Learning generative models with Sinkhorn divergences.
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Using Sinkhorn divergences

Sε(µ, ν) = OTε(µ, ν)−
1

2
OTε(µ, µ)−

1

2
OTε(ν, ν).

As OTε(µ, µ) > 0, debias by defining Sinkhorn divergence

Theorem Assume exp(−c/ε) positive definite universal kernel.
1. Sε(µ, ν) ≥ 0 with equality iff µ = ν, and Sε “metrizes” weak convergence.
2. Sε convex in each of its inputs.

Assumption
until the end
of the talk

but
√
Sε not a distance

Feydy, Séjourné, Vialard, Amari, Trouvé & Peyré (2019). Interpolating between optimal transport and MMD using Sinkhorn divergences.
Genevay, Peyré, & Cuturi (2018). Learning generative models with Sinkhorn divergences.
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k+1 ∈ arg min

µ
E(µ) +

Sε(µ, µ
τ
k)

2τ

Sinkhorn JKO:
If
we expect the equation when τ → 0:

µ̇t ∈ arg min
σ

DE(µt)[σ] +
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2
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but
√
Sε not a distance

Sε(µt, µt+τ ) ∼ τ2gµt
(µ̇t, µ̇t),
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Using Sinkhorn divergences

Sε(µ, ν) = OTε(µ, ν)−
1

2
OTε(µ, µ)−

1

2
OTε(ν, ν).

As OTε(µ, µ) > 0, debias by defining Sinkhorn divergence

Theorem Assume exp(−c/ε) positive definite universal kernel.
1. Sε(µ, ν) ≥ 0 with equality iff µ = ν, and Sε “metrizes” weak convergence.
2. Sε convex in each of its inputs.

Assumption
until the end
of the talk

µτ
k+1 ∈ arg min

µ
E(µ) +

Sε(µ, µ
τ
k)

2τ

Sinkhorn JKO:
If
we expect the equation when τ → 0:

µ̇t ∈ arg min
σ

DE(µt)[σ] +
gµt(σ, σ)

2
.

but
√
Sε not a distance

Metric tensor gµ(µ̇, µ̇), defining the
geometry of Sinkhorn divergences

Sε(µt, µt+τ ) ∼ τ2gµt
(µ̇t, µ̇t),
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1 - Optimal transport: metric tensor, geometry,
gradient flows

2 - Building a Riemannian geometry out of
Sinkhorn divergences

3 - Gradient flows of potential energies for the
Sinkhorn geometry
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The linearization of optimal transport

On Rd, what happens to OT(µ, ν) if µ ' ν?
 (µt)t curve in P(Rd), we look at OT(µ0, µt).

µ0

µt

Ambrosio, Gigli & Savaré (2008). Gradient flows: in metric spaces and in the space of probability measures.
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The linearization of optimal transport

On Rd, what happens to OT(µ, ν) if µ ' ν?
 (µt)t curve in P(Rd), we look at OT(µ0, µt).

OT(µ0, µt) ∼ t2
(

min
v

∫
Rd

|v(x)|2 dµ0(x)

)
,

µ0

µt

v(x1)
v(x2)

Ambrosio, Gigli & Savaré (2008). Gradient flows: in metric spaces and in the space of probability measures.

where v : Rd → Rd such that ∂µ
∂t

∣∣∣∣
t=0

= −div(µ0v).

Theorem.
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The linearization of optimal transport

On Rd, what happens to OT(µ, ν) if µ ' ν?
 (µt)t curve in P(Rd), we look at OT(µ0, µt).

OT(µ0, µt) ∼ t2
(

min
v

∫
Rd

|v(x)|2 dµ0(x)

)
,

Optimal v is ∇ψ, obtained by solving −div(µ0∇ψ) = µ̇0.

elliptic equation in ψ

µ0

µt

v(x1)
v(x2)

Ambrosio, Gigli & Savaré (2008). Gradient flows: in metric spaces and in the space of probability measures.

where v : Rd → Rd such that ∂µ
∂t

∣∣∣∣
t=0

= −div(µ0v).

Theorem.



8/21

The metric tensor and the geometry of optimal transport

“Point” µ

“direction” µ̇ = −div(µ∇ψ)

gOT
µ (µ̇, µ̇) =

∫
X

|∇ψ|2 dµ.

Metric tensor:

P(Rd)

Otto (2001). The geometry of dissipative evolution equations: the porous medium equation.

Quadratic form in µ̇, depending on µ.
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The metric tensor and the geometry of optimal transport

gOT
µ (µ̇, µ̇) =

∫
X

|∇ψ|2 dµ.

Metric tensor:

Theorem (Benamou and Brenier, 2000):

OT(µ0, µ1) = min
(µt)t

∫ 1

0

gOT
µt

(µ̇t, µ̇t) dt

with µ0, µ1 fixed.

P(Rd)

Minimizers are geodesics.

µ0

µ1

Example geodesic

Benamou and Brenier (2000). A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem.

µ0 µ1
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The metric tensor and the geometry of optimal transport

gOT
µ (µ̇, µ̇) =

∫
X

|∇ψ|2 dµ.

Metric tensor:

Theorem (Benamou and Brenier, 2000):

OT(µ0, µ1) = min
(µt)t

∫ 1

0

gOT
µt

(µ̇t, µ̇t) dt

with µ0, µ1 fixed.

P(Rd)

Minimizers are geodesics.

µτ
k+1 ∈ arg min

µ
E(µ)+

OT(µ, µτ
k)

2τ
,

µ̇t ∈ arg min
σ
DE(µt)[σ]+

gOT
µt

(σ, σ)

2
.

Gradient flows: JKO scheme

becomes with τ → 0
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1 - Optimal transport: metric tensor, geometry,
gradient flows

2 - Building a Riemannian geometry out of
Sinkhorn divergences

3 - Gradient flows of potential energies for the
Sinkhorn geometry

1. Define gµ(µ̇, µ̇) by Sε(µ0, µt) ∼ t2gµt
(µ̇t, µ̇t).

2. Define dS(µ0, µ1)
2 = inf

∫ 1

0
gµt(µ̇t, µ̇t) dt.

See also Park & Slepčev (2023). Geometry and analytic properties of the sliced Wasserstein space.
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Understanding OTε(µ, µ)

dπε(x, y) = exp
(
fµ(x) + fµ(y)− c(x, y)

ε

)
dµ(x)dµ(y).

With fµ : X → R Schrödinger potential, πε entropic optimal
plan between µ and µ is:

µ

kµ(x, y) = exp
(
fµ(x) + fµ(y)− c(x, y)

ε

)
.

Definition:

(Defines a reversible Markov chain with equilibirum measure µ.)
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The Hessian of the Sinkhorn divergence

µt = µ+ tµ̇, with µ̇ signed measure with zero mass.
µ0µt

µ̇ > 0 µ̇ < 0
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The Hessian of the Sinkhorn divergence

µt = µ+ tµ̇, with µ̇ signed measure with zero mass.

Theorem.

Kµ(ϕ)(x) =

∫
X

kµ(x, y)ϕ(y) dµ(y),

Hµ[σ](x) =

∫
X

kµ(x, y) dσ(y).

Where kµ(x, y) = exp((fµ(x) + fµ(y)− c(x, y))/ε) and:

(Id −K2
µ)/ε ∼ Laplacian

µ0µt

Sε(µ0, µt) ∼ t2
ε

2
〈µ̇, (Id −K2

µ)
−1Hµ[µ̇]〉.
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Main message: heavy but explicit
and interpretable formula!
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The Hessian of the Sinkhorn divergence

µt = µ+ tµ̇, with µ̇ signed measure with zero mass.

Theorem.

Kµ(ϕ)(x) =

∫
X

kµ(x, y)ϕ(y) dµ(y),

Hµ[σ](x) =

∫
X

kµ(x, y) dσ(y).

Where kµ(x, y) = exp((fµ(x) + fµ(y)− c(x, y))/ε) and:

(Id −K2
µ)/ε ∼ Laplacian

Definition. gµ(µ̇, µ̇) =
ε

2
〈µ̇, (Id −K2

µ)
−1Hµ[µ̇]〉.

µ0µt

Sε(µ0, µt) ∼ t2
ε

2
〈µ̇, (Id −K2

µ)
−1Hµ[µ̇]〉.

Main message: heavy but explicit
and interpretable formula!

Same formula
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Definition of the Riemannian distance and main results

Definition. Given µ0, µ1:
dS(µ0, µ1)

2 = inf
∫ 1

0

gµt(µ̇t, µ̇t) dt

where infimum over (µt) on a class of path to be
specified in the next slides.

µ0

µ1

P(X)

gµ(µ̇, µ̇) =
ε

2
〈µ̇, (Id −K2

µ)
−1Hµ[µ̇]〉.Recall X compact,

Both “vertical” and “horizontal” are allowed!
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Definition of the Riemannian distance and main results

Definition. Given µ0, µ1:
dS(µ0, µ1)

2 = inf
∫ 1

0

gµt(µ̇t, µ̇t) dt

where infimum over (µt) on a class of path to be
specified in the next slides.

Theorem. dS is a distance over P(X) metrizing weak convergence of
measures, and the infimum in the definition is reached (geodesics exist).

µ0

µ1

P(X)

Elements of the proof : next slides.

gµ(µ̇, µ̇) =
ε

2
〈µ̇, (Id −K2

µ)
−1Hµ[µ̇]〉.Recall X compact,

Both “vertical” and “horizontal” are allowed!
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Reminder on Reproducing Kernel Hilbert Spaces (RKHS)
Fix k : X ×X → R positive definite.

Definition. Hk Hilbert space of functions X → R: start with
span {k(·, x) : x ∈ X}

with 〈k(·, x), k(·, y)〉Hk
= k(x, y). Then take completion.

Paulsen & Raghupathi (2016). An Introduction to the Theory of Reproducing Kernel Hilbert Spaces.

(k universal⇔ Hk dense in C(X) )

k positive definite if this
defines dot product



13/21

Reminder on Reproducing Kernel Hilbert Spaces (RKHS)
Fix k : X ×X → R positive definite.

Remark. Hk Hilbert space of functions on X such that ϕ 7→ ϕ(x) is
continuous for any x, and this characterizes a RKHS.

Definition. Hk Hilbert space of functions X → R: start with
span {k(·, x) : x ∈ X}

with 〈k(·, x), k(·, y)〉Hk
= k(x, y). Then take completion.

Paulsen & Raghupathi (2016). An Introduction to the Theory of Reproducing Kernel Hilbert Spaces.



13/21

Reminder on Reproducing Kernel Hilbert Spaces (RKHS)
Fix k : X ×X → R positive definite.

Remark. Hk Hilbert space of functions on X such that ϕ 7→ ϕ(x) is
continuous for any x, and this characterizes a RKHS.

Definition. Hk Hilbert space of functions X → R: start with

In our case:
• k = exp(−c/ε), space Hc.
• k = kµ = exp((fµ ⊕ fµ − c)/ε), space Hµ.

Typically smooth functions!

span {k(·, x) : x ∈ X}
with 〈k(·, x), k(·, y)〉Hk

= k(x, y). Then take completion.

Paulsen & Raghupathi (2016). An Introduction to the Theory of Reproducing Kernel Hilbert Spaces.
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P(X)

B

Unit sphere of Hc

A useful change of variable

b = B(µ) = exp
(
−fµ
ε

)
where fµ : X → R self
Schrödinger potential.

Theorem. The map B is an
homeomorphism between
P(X) and the intersection
of a convex cone and the
unit sphere of Hc.

Define:

(Change of variable suggested by Feydy et al,
Séjourné et al)
Feydy, Séjourné, Vialard, Amari, Trouvé & Peyré (2019). Interpolating between optimal transport and
MMD using Sinkhorn divergences.

B(P(X))

Séjourné, Feydy, Vialard, Trouvé & Peyré (2019). Sinkhorn divergences for unbalanced optimal transport.

Hc: Reproducing Kernel Hilbert Space built on
exp(−c/ε).
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P(X)

B

Unit sphere of Hc

µ̇

ḃ

A useful change of variable

b = B(µ) = exp
(
−fµ
ε

)
where fµ : X → R self
Schrödinger potential.

Theorem. The map B is an
homeomorphism between
P(X) and the intersection
of a convex cone and the
unit sphere of Hc.

Theorem. We have gµt(µ̇t, µ̇t) = g̃µt(ḃt, ḃt) and:
• (µ, ḃ) 7→ g̃µ(ḃ, ḃ) jointly continuous,
• g̃µ(ḃ, ḃ) � ‖ḃ‖2Hc

uniformly in µ (but not in ε).

Define:

B(P(X))
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P(X)

B

Unit sphere of Hc

µ̇

ḃ

A useful change of variable

b = B(µ) = exp
(
−fµ
ε

)
where fµ : X → R self
Schrödinger potential.

Theorem. The map B is an
homeomorphism between
P(X) and the intersection
of a convex cone and the
unit sphere of Hc.

Theorem. We have gµt(µ̇t, µ̇t) = g̃µt(ḃt, ḃt) and:
• (µ, ḃ) 7→ g̃µ(ḃ, ḃ) jointly continuous,
• g̃µ(ḃ, ḃ) � ‖ḃ‖2Hc

uniformly in µ (but not in ε).

Define:

Consequence. Admissible paths: (bt) H1 valued in Hc,

dS(µ0, µ1) � ‖b1 − b0‖Hc .

B(P(X))
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1 - Optimal transport: metric tensor, geometry,
gradient flows

2 - Building a Riemannian geometry out of
Sinkhorn divergences

3 - Gradient flows of potential energies for the
Sinkhorn geometry
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Notations, object of study

X compact metric, exp(−c/ε) p. d. and universal, and V : X → R continuous.

µτ
k+1 ∈ arg min

µ
E(µ) +

Sε(µ, µ
τ
k)

2τ
.

Sinkhorn JKO: with Sε Sinkhorn divergence and
E(µ) =

∫
V dµ potential energy.

x

V (x)
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pt pressure: pt ≤ 0, and pt = 0 on
supp(µt)

Evolution equation, Sinkhorn flow
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X compact metric, exp(−c/ε) p. d. and universal, and V : X → R continuous.

µτ
k+1 ∈ arg min

µ
E(µ) +

Sε(µ, µ
τ
k)

2τ
.

Sinkhorn JKO: with Sε Sinkhorn divergence and
E(µ) =

∫
V dµ potential energy.

Formal limit when τ → 0:

ε

2
(Id −K2

µt
)−1Hµt

[µ̇t] + V + pt = Cst.

Kµ(ϕ)(x) =

∫
X

kµ(x, y)ϕ(y) dµ(y),

Hµ[σ](x) =

∫
X

kµ(x, y) dσ(y).

Recall

pt pressure: pt ≤ 0, and pt = 0 on
supp(µt)

Evolution equation, Sinkhorn flow

So µ̇t = H−1
µt

[. . .] with Hµt “convolution”.
Non local equation of infinite order.
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Sinkhorn flow in the Hilbert spaceHc

Hc

Recall bt = exp(−fµt
/ε) ∈ Hc and V : X → R.

Sinkhorn flow in the b-variable.
ḃt +

2

ε
(V − V ∗) bt + pt = 0.

multiplication by V
in Hc

V ∗ Adjoint of multiplication
by V for 〈·, ·〉Hc

pt ≤ 0, and pt = 0
on supp(µt)

B(P(X))
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Sinkhorn flow in the Hilbert spaceHc

Hc

Recall bt = exp(−fµt
/ε) ∈ Hc and V : X → R.

Sinkhorn flow in the b-variable.
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Hc

Recall bt = exp(−fµt
/ε) ∈ Hc and V : X → R.

Sinkhorn flow in the b-variable.
ḃt +
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ε
(V − V ∗) bt + pt = 0.

multiplication by V
in Hc

V ∗ Adjoint of multiplication
by V for 〈·, ·〉Hc

pt ≤ 0, and pt = 0
on supp(µt)

2
ε (V − V ∗) skew-symmetric: generates
group of unitary operators, but unbounded.

“Rotation” generated by 2
ε (V − V ∗)

Pressure: in the polar cone of
B(M+(X)) for 〈·, ·〉Hc

, maintains µt ≥ 0.

B(P(X))
X = {x1, x2, x3}
V (x3) ≤ V (x2) ≤ V (x1)

Obtained by solving the SJKO scheme.

B(δx3
)

B(δx2
) B(δx1

)
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Main theoretical results

Theorem (on the Sinkhorn flow).
1. Existence: for any b0 = B(µ0), there exists a solution, with
(bt) ∈ H1([0,+∞),Hc).

Proof idea: approximate X by a finite space
XN = {x1, . . . , xN}. For measures supported on XN , the
Sinkhorn flow is a maximal monotone evolution.

Xx1

xN

…
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1. Existence: for any b0 = B(µ0), there exists a solution, with
(bt) ∈ H1([0,+∞),Hc).
2. The flow is non-expansive in Hc: for two flows (b1t ) and (b2t ), we have
‖b2t − b1t‖Hc

≤ ‖b20 − b10‖Hc
for all t ≥ 0. It implies uniqueness.

Proof idea: Maximal monotone operators are non-expansive.

(b1t )

(b2t )
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Main theoretical results

Theorem (on the Sinkhorn flow).
1. Existence: for any b0 = B(µ0), there exists a solution, with
(bt) ∈ H1([0,+∞),Hc).
2. The flow is non-expansive in Hc: for two flows (b1t ) and (b2t ), we have
‖b2t − b1t‖Hc

≤ ‖b20 − b10‖Hc
for all t ≥ 0. It implies uniqueness.

3. Convergence to global minimum: E(µt) → minE as t→ +∞.

x

V (x)
Recall. The flow of the Wasserstein GF
∂µt = div(µt∇V ) gets trapped in local minima.

Proof idea. The only critical points of E are global minima
because vertical perturbations (teleportation) is allowed in
the Sinkhorn geometry (no convexity of V needed).
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Examples

Proposition. If X = Rd, V convex, c quadratic
cost and µ0 = δx0 then µt = δxt with

ẋt ∈ −∂V (xt).

x

V (x)

(Same as Wasserstein GF).
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Examples

Proposition. If X = Rd, V convex, c quadratic
cost and µ0 = δx0 then µt = δxt with

ẋt ∈ −∂V (xt).

x

V (x)

(Same as Wasserstein GF).

But if V not convex there can be teleportation!

Here a Lagrangian
discretization won’t
work.
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Link with the Sinkhorn JKO scheme

µτ
k+1 ∈ arg min

µ
E(µ) +

Sε(µ, µ
τ
k)

2τ
.

Sinkhorn JKO: with Sε Sinkhorn divergence and
E(µ) =

∫
V dµ potential energy.

Sinkhorn flow in the b-variable:
ḃt +

2

ε
(V − V ∗) bt + pt = 0.

with bt = exp(−fµt/ε).



20/21

Link with the Sinkhorn JKO scheme

µτ
k+1 ∈ arg min

µ
E(µ) +

Sε(µ, µ
τ
k)

2τ
.

Sinkhorn JKO: with Sε Sinkhorn divergence and
E(µ) =

∫
V dµ potential energy.

Sinkhorn flow in the b-variable:
ḃt +

2

ε
(V − V ∗) bt + pt = 0.

with bt = exp(−fµt/ε).

Proposition. If X is a finite set, the solutions
of the Sinkhorn JKO scheme, properly
interpolated in time, converge to the Sinkhorn
flow as τ → 0 in C([0, T ],P(X)).

S flow

SJKO
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Future works
What I have not presented:
• Explicit computations for Gaussians, two points space,
• Proof that Sinkhorn divergence is not jointly convex,
• Proof that Sinkhorn divergence is not a metric.

Some topics we are working on:
• Extend the convergence SJKO→ Sinkhorn flow,
• Numerical approximation of geodesics,
• Limit ε→ 0 towards optimal transport,
• Homogeneization when space is refined.
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Thank you for your attention


