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Wasserstein gradient flows

E: P(R?) — [0,+oc] and o € P(R?) generate  cyne (1)) Level sets
a curve (u:)r>o of steepest descent with
respect to Wasserstein geometry.

Examples

e E(u) = [ Vdu gives the transport equation

d
O p = div(uVV). Space P(RY)

e E(u) = [ plog i gives the heat equation

Jordan, Kinderlehrer, Otto (1998). The variational formulation of the Fokker-Planck equation. 3/21
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Wasserstein gradient flows

a curve (u:)r>o of steepest descent with
respect to Wasserstein geometry.

Recall
OT(p,v)

— min
mell(p,v)

[, le=yliray)

Subset of P(R? x R%), coupling between x and v

0, +00] and pp € P(R?) generate  cypve : Level sets F

fit)

24y

Space P(RY)

Hiy1 € argmin F(pu) +

OT(u, ;)
2T

JKO/minimizing movement scheme. For 7 > 0, define, for £ > 0,

Then ul ~ pgr as  — 0.

Jordan, Kinderlehrer, Otto (1998). The variational formulation of the Fokker-Planck equation.
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With entropic optimal transport?
(X, d) compact metric space with symmetric cost function ¢, and = > 0.

Definition

OT.(p,v) = min // c(x,y)dnr(x,y)
mwell(w,v) XxX

+eKL(7|p ® v)

Why?

1. easier to compute (Sinkhorn algorithm),
2. better statistical complexity,
3. smoother dependence in (u,v).

Peyré & Cuturi (2018). Computational Optimal Transport.

m(dz, dy) <

X

L4

Kullback-Leibler
divergence, a.k.a relative
entropy

4[21



With entropic optimal transport?
(X, d) compact metric space with symmetric cost function ¢, and = > 0.

Definition
OT.(p,v) = min // c(x,y)dm(x,y)
mwell(w,v) XxX
+eKL(7|p ® v)

f ¢ quadratic cost on R<, Entropic JKO scheme:

OT. (e, uy,)
= in F |
Hiy1 € argmin E(u) o

Peyré (2015). Entropic approximation of Wasserstein gradient flows. 4/21



With entropic optimal transport?
(X, d) compact metric space with symmetric cost function ¢, and = > 0.

Deﬁmtlon Recall
OT.(u,v) = min // c(x,y)dm(x _ :
(ks v el | o x y) dm(z,y) OT. =0T+ C. + ¢[Bias] + ...
+eKL(7|p @ v)
f ¢ quadratic cost on R<, Entropic JKO scheme:
. OT. (u, puy,)

a1 € E |
Hiy1 € argmin E(u) o

. . OT (p, pi;) :
It Eargmﬁn E(u) A o LEA 27_BIaS+...

Conforti & Tamanini (2021). A formula for the time derivative of the entropic cost and applications.

4[21



With entropic optimal transport?
(X, d) compact metric space with symmetric cost function ¢, and = > 0.

Recall
OT. =0T + C. +¢[Bias] + . ..

Definition

OT.(p4,v) = min // c(x,y)dn(z,y)
WEH(,LL,I/) XxX

+eKL(7|p ® v)

f ¢ quadratic cost on R<, Entropic JKO scheme:
. OT.(p, pi)

a1 € E |

Hiy1 € argmin E(u) o

OT e T

Py € argmin E(p) A o 1) + iBIaS%—-

M 2T 2T

~ L 4
......
- mm=

Conforti & Tamanini (2021). A formula for the time derivative of the entropic cost and applications.

e ¢ K T: Cconvergence to

the Wasserstein GF of E.
e ¢ ~ T: convergence to a

new flow.
e ¢ > 7: the bias
dominates, no evolution.

Carlier, Duval, Peyré, Schmitzer (2017). Convergence of entropic schemes for optimal transport and gradient flows.

Baradat, Hraivoronska, Santambrogio (2024+). Using Sinkhorn in JKO adds diffusion in the limiting PDE.
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With entropic optimal transport?

(X, d) compact metric space with symmetric cost function ¢, and = > 0.

Deﬁmtlon
OT.(u,v

min
mell(p,v)

f ¢ quadratic cost on R<, Entropic JKO scheme:

i € argmin E(j)

Hpq1 € arg mjn E(p)

Recall
// c(z,y)dm(z,y)l | OT. = OT + C. + e[Bias] + ...
XXX
+eKL(7m|p ® v)
- OTe(p, pz,) e ¢ < 7: Convergence to
| o the Wasserstein GF of E.

_________ e ¢ ~ T: CONnvergence to a
- OT(p, puy) 7€ o new flow.

| o YiEB'aSj?' -+ | e > 1: the bias
""""" dominates, no evolution.

Today: | will keep < fixed.

4[21



Using Sinkhorn divergences

As OT.(u, ) > 0, debias by defining Sinkhorn divergence
1 1
Se(p,v) =0T (p, ) — §OT€(,u,,u) — iOTg(V, V).

Genevay, Peyré, & Cuturi (2018). Learning generative models with Sinkhorn divergences.
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Using Sinkhorn divergences

As OT.(u, ) > 0, debias by defining Sinkhorn divergence
1 1
S&“(:u? V) — OT&“(:“’? V) o §OT€(N7 :LL) o §OT€(V7 V)‘

Theorem Assume exp(—c/e) positive definite universal kernel.

1. Se(u,v) > 0 with equality iIff » = v, and S. “metrizes” weak convergence.
2. S, convex in each of its inputs.

Genevay, Peyré, & Cuturi (2018). Learning generative models with Sinkhorn divergences.
Feydy, Séjourné, Vialard, Amari, Trouvé & Peyré (2019). Interpolating between optimal transport and MMD using Sinkhorn divergences. 5/21
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Theorem Assume exp(—c/e) positive definite universal kernel.

1. Se(u,v) > 0 with equality iIff » = v, and S. “metrizes” weak convergence.
2. S, convex in each of its inputs.

Sinkhorn JKO:

S, 17,
ifer € argmin B + 22

2T
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Using Sinkhorn divergences

As OT.(u, ) > 0, debias by defining Sinkhorn divergence
1 1
S&“(:u? V) — OT&“(N? V) o §OT€(N7 :LL) o §OT€(V7 V)‘

Theorem Assume exp(—c/e) positive definite universal kernel.

1. Se(u,v) > 0 with equality iIff » = v, and S. “metrizes” weak convergence.
2. S, convex in each of its inputs.

Sinkhorn JKO: T

s € argmin B + 2N e g 0 2 G ),
we expect the equation when 7 — 0:
jiu € argmin DE(u)[o] - Bus (g’ 7).
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Using Sinkhorn divergences

As OT.(u, ) > 0, debias by defining Sinkhorn divergence
1 1
56(:“7 V) — OT&“(N? V) o §OT€(N7 :LL) o §OT€(V7 V)'

Theorem Assume exp(—c/e) positive definite universal kernel.

1. Se(p,v) >0

2. S. convex in| Metrictensor g, (/i, /1), defining the

geometry of Sinkhorn divergences

onvergence.

Sinkhorn JKO:
Hri1 € arg muin E(p) us\g;_%} It Se (e, oot r)

(i € argmin DE(u)|o]

we expect the equation when = — 0:

| g:ut (0-7 O-)

2 5/21



1 - Optimal transport: metric tensor, geometry,
J gradient flows

2 - Building a Riemannian geometry out of
Sinkhorn divergences

3 - Gradient flows of potential energies for the
Sinkhorn geometry

6/21



1 - Optimal transport: metric tensor, geometry,
J gradient flows

2 - Building a Riemannian geometry out of
Sinkhorn divergences

3 - Gradient flows of potential energies for the
Sinkhorn geometry

6/21



The linearization of optimal transport

On RY, what happens to OT(u,v) if u ~ v? .

~ (pt)¢ curve in P(R%), we look at OT (pg, it).

Ambrosio, Gigli & Savaré (2008). Gradient flows: in metric spaces and in the space of probability measures. 7/21



The linearization of optimal transport

On RY, what happens to OT(u,v) if u ~ v?

i
~ (pt)¢ curve in P(R%), we look at OT (pg, it). \ /ﬁ\
<0 o—>
v(z2)

v(x)

Theorem. OT (ug, p1¢) ~ £ (min/ ]v(m)\ZdM0($)> ;
Rd

v

0
where v : R — R? such that a—/; = —div(uov).
t=0

Ambrosio, Gigli & Savaré (2008). Gradient flows: in metric spaces and in the space of probability measures. 7/21



The linearization of optimal transport

On R¢, what happens to OT (i, v) if u ~ v?
~ (pt)¢ curve in P(R%), we look at OT (pg, it).

Theorem. OT (ug, p1¢) ~ £ (min/ ]v(m)\ZdM0($)> ;
Rd

v

o
where v : R — R? such that 2%

BT, = —div(uov). elliptic equation in ¢

t=0

Optimal v is V4, obtained by solving —div(ugV) =

Ambrosio, Gigli & Savaré (2008). Gradient flows: in metric spaces and in the space of probability measures. 7/21



The metric tensor and the geometry of optimal transport

“direction” 1 = —div(uV)) Metric tensor:

£O (i, i / V[ dp

“Point” i P(RY)

Quadratic form in [, depending on L.

Otto (2001). The geometry of dissipative evolution equations: the porous medium equation. 8/21



The metric tensor and the geometry of optimal transport

H1

Metric tensor:

)= [ 196

Theorem (Benamou and Brenier, 2000):

1
OT(uo,ul)Z{ni)n/ g, (fue, fur) dt
Mt )t

with 1o, 1 fixed.

Minimizers are geodesics.

g (L fo
o 1
’ &

+ Jf' ‘f‘ . @

Benamou and Brenier (2000). A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem.

Example geodesic

8/21



The metric tensor and the geometry of optimal transport

Metric tensor:

g (L, [ / V|? dp.

Theorem (Benamou and Brenier, 2000):

1
OT(uo,ul)Z{Ei)n/ g, (fue, fur) dt

with 1o, 1 fixed.

Minimizers are geodesics.

Gradient flows: JKO scheme

OT (p, piz,)
2T ’

s € argmin B(p) -

becomes with 7 — 0

g, (0,0)

[l € arg main DE(u)|o]+ ;

8/21



1 - Optimal transport: metric tensor, geometry,
gradient flows

2 - Building a Riemannian geometry out of
Sinkhorn divergences

1. Define g, (4, i) by Ss(:an,Lit) ~ 128y, (e fir).
2. Define dg(po, 11)? = inf [ gu, (fu, fu) dt.

See also Park & Slepcev (2023). Geometry and analytic properties of the sliced Wasserstein space.

3 - Gradient flows of potential energies for the
Sinkhorn geometry
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Understanding OT. (u, 1)

With f, : X — R Schrodinger potential, 7. entropic optimal
plan between p and p is:

dﬂ'g(ib,y) — exp <f,u(33) - f,uiy) — C(ﬂj,y)> d,u(:z:)d,u(y)

(Defines a reversible Markov chain with equilibirum measure (.)

Definition:
k,u(ajay) — eXp (

E

ful@) + fuly) —c(z, y)) |

10/21



The Hessian of the Sinkhorn divergence

uy = o+ ti, with 1 signed measure with zero mass.
Mt

A N

11/21



The Hessian of the Sinkhorn divergence

uy = o+ ti, with 1 signed measure with zero mass.

Theorem. H
g . ~ .
Se(:u()mut) Nt2§<:u7 (Id_Ki) 1H,Lb[lu]>°

A N

Where k, (z,y) = exp((f(2) + fu(y) — c(z,))/<) and:

K, (¢)(x) = /X ku(z,y)o(y) du(y), (Id — K2)/e ~ Laplacian
(@) = | kulay)dotw)

11/21



The Hessian of the Sinkhorn divergence

uy = o+ ti, with 1 signed measure with zero mass.

K, (¢)(x) = /X ku(z,y)o(y) du(y), (Id — K2)/e ~ Laplacian
(@) = | kulay)dotw)

11/21



The Hessian of the Sinkhorn divergence

uy = o+ ti, with 1 signed measure with zero mass.

K, (¢)(x) = /X ku(z,y)o(y) du(y), (Id — K2)/e ~ Laplacian
Hylol(z) = /Xku(%y) do(y). Same formula

Definition. g, (1, /1) = %O% (Id — K2)~"H,,[i]).

11/21




Definition of the Riemannian distance and main results

— ~ (i1, (Id — K2) "V H,[j1])-

Recall X compact, g, (g, ft) >

Definition. Given pg, 10
dS(:uOnul)Q — lnf/ YT (latnat) d?
0

where infimum over (u;) on a class of path to be 1
specified in the next slides.

Both “vertical” and “horizontal” are allowed!
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Theorem. ds is a distance over P(X) metrizing weak convergence of
measures, and the infimum in the definition is reached (geodesics exist).
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Definition of the Riemannian distance and main results

— ~ (i1, (Id — K2) "V H,[j1])-

Recall X compact, g, (1) >

Definition. Given pg, 10
dS(:uOnul)Q — lﬂf/ YT (latnat) d?
0

where infimum over (u;) on a class of path to be 1
specified in the next slides.

Both “vertical” and “horizontal” are allowed!

Theorem. ds is a distance over P(X) metrizing weak convergence of
measures, and the infimum in the definition is reached (geodesics exist).

Elements of the proof: next slides. 12 /21




Reminder on Reproducing Kernel Hilbert Spaces (RKHS)
Fix £ : X x X — R positive definite.

Definition. 7, Hilbert space of functions X — R: start with
span{k(-,z) : z € X}
with (k(-,z),k(-,y))x, = k(x,y). Then take completion.

k positive definite if this
defines dot product

(k universal < H, dense in C(X))

Paulsen & Raghupathi (2016). An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. 13 /21
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Reminder on Reproducing Kernel Hilbert Spaces (RKHS)
Fix £ : X x X — R positive definite.

Definition. 7, Hilbert space of functions X — R: start with
span{k(-,z) : z € X}
with (k(-,z),k(-,y))x, = k(x,y). Then take completion.

Remark. 7, Hilbert space of functions on X such that ¢ — ¢(z) Is
continuous for any z, and this characterizes a RKHS.

n our case:
« k= exp(—c/e), space H..
* k=k, =exp((fu ® f. —c)/e), space H,.

Paulsen & Raghupathi (2016). An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. 13 /21

Typically smooth functions!



A useful change of variable

Define: Theorem. The map B is an
b= B(u) = exp (_Q> homeomorphism between
= P(X) and the intersection P(X)
where f, : X — R self of a convex cone and the
Schrodinger potential. unit sphere of A.. ~

H.: Reproducing Kernel Hilbert Space built on )
exp(—c/e).

Feydy, Séjourng, Vialard, Amari, Trouvé & Peyré (2019). Interpolating between optimal transport and

MMD using Sinkhorn divergences. Unit Sphere of H.
1

Séjourné, Feydy, Vialard, Trouvé & Peyré (2019). Sinkhorn divergences for unbalanced optimal transport.
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A useful change of variable

(4
Define: Theorem. The map B is an
b= B(u) = exp (_Q> homeomorphism between
= P(X) and the intersection P(X)
where f, : X — R self of a convex cone and the
Schrodinger potential. unit sphere of ..

Theorem. We have g, (i, fi:) = &,, (bs, bs) and:

* (u,b) — g, (b, b) jointly continuous,

+ 8,(b,b) < ||b]|2, uniformly in z (but not in e).

Unit sphere of #.
14./21



A useful change of variable

(4
Define: Theorem. The map B is an
b= B(u) = exp (_Q> homeomorphism between
= P(X) and the intersection P(X)
where f, : X — R self of a convex cone and the
Schrodinger potential. unit sphere of #..

Theorem. We have g, (i, fi:) = &,, (bs, bs) and:

* (u,b) — g, (b, b) jointly continuous,

+ 8,(b,b) < ||b]|2, uniformly in z (but not in e).

Consequence. Admissible paths: (b;) H! valued in #H,,

ds(uo, 1) < ||b1 — bo|. - Unit sphere of A,
1421




1 - Optimal transport: metric tensor, geometry,
gradient flows

2 - Building a Riemannian geometry out of
Sinkhorn divergences

3 - Gradient flows of potential energies for the
Sinkhorn geometry
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Notations, object of study

X compact metric, exp(—c/e) p. d. and universal, and V : X — R continuous.

Sinkhorn JKO: S (o i7) with S. Sinkhorn divergence and
L1 € argmjn E(p) + — g’T“’f , E(n) = [V du potential energy.
Vi) }
xr
.

16 /21



Notations, object of study

X compact metric, exp(—c/e) p. d. and universal, and V : X — R continuous.

Sinkhorn JKO: S, (i, ) with S. Sinkhorn divergence and
Mg € argmgn E(p) + — g ’T” k. E(n) = [V du potential energy.
Formal limit wh 0: Recal
ormat timit when — — 0U: KM(¢)(.CI?) :/Xk,u(xay)¢(y) d,u(y),
Evo@llutlonzeq_ulatlont Sinkhorn ﬂg\né H o] (x) = /X k() do(y).
o Ud = Ky,) " Hy, lfu) +V + pr = Cst.

p: pressure: p; < 0,and p; =0 on
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Notations, object of study

X compact metric, exp(—c/e) p. d. and universal, and V : X — R continuous.

Sinkhorn JKO: S, (i, ) with S. Sinkhorn divergence and
Mg € argmgn E(p) + — g ’T” k. E(n) = [V du potential energy.
Formal limit wh 0: Recal
ormat timit when — — 0U: KM(¢)(.CI?) :/Xk,u(xay)¢(y) d,u(y),
Evo@llutlonzeq_ulatlont Sinkhorn ﬂg\né H o] (x) = /X k() do(y).
o Ud = Ky,) " Hy, lfu) +V + pr = Cst.

pe <0,and pp =0 on

So jiy = H, '[...] with H,, “convolution”. ‘

Non local equation of infinite order. /
16/21



Sinkhorn flow in the Hilbert space 7.
Recall b, = exp(—f,,/e) € Hcand V : X — R.

Sinkhorn flow in the b-variable. | »: <0,and p; =0
, 9 ) on supp( )
bt—I—g(V—V )bt—|—pt:O

multiplication by V

in . V* Adjoint of multiplication

by V for <'7 °>7-[c
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Sinkhorn flow in the Hilbert space 7.
Recall b, = exp(—f,,/e) € Hcand V : X — R.

Smkhorn flow-in the b-variable. | »+ <0,and p; =0
2 N on supp(ft)

.
g e®
g

u

L 4
...

multiplication by V

in . V* Adjoint of multiplication

by V for <'7 °>7-[c

He
2(V — V*) skew-symmetric: generates

group of unitary operators, but unbounded. Q
“Rotation” generated by 2(V — V*)
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Sinkhorn flow in the Hilbert space 7.
Recall b, = exp(—f,,/e) € Hcand V : X — R.

Smkhorn flow-in the b- varlable pr <0,and p; =0
2 . * ..‘ “ on Supp(,ut)
b —I- (V = V*)bit pr = 0.

L 4

*

.
8 L
.....

Pressure
active on
OB(P(X))

multiplication by V

in . V* Adjoint of multiplication

by V for <'7 '>7-[c
. He
2(V — V*) skew-symmetric: generates

group of unitary operators, but unbounded. Q

: “Rotation” generated by 2(V — V*
Pressure: In the polar cone of = )

B(M (X)) for (-, -)3., maintains p; > 0.
17/21



Sinkhorn flow in the Hilbert space 7.

Recall bt — eXp(_f,LLt/g) S HC and V X = {51}175132,5173}

Sinkhorp.flow-in.the b-variable. Vi(zz) < V(xg) < V(xy)
2 . ..‘ “
be £ = (V = V) by py = 0.

......

.
.. e®
......

multiplication by V

in A, V* Adjoint of multi Boundary of B

— Theoretical rotation

by V fo r < . 7 . > ’]_[C mm Embedded flow trajectory

2(V — V*) skew-symmetric: genera
group of unitary operators, but unb

Pressure: in the polar cone of
B(M, (X)) for {-,-)4., maintains ., Obtained by solving the SJKO scheme.




Main theoretical results

Theorem (on the Sinkhorn flow).

1. Existence: for any by = B(jug), there exists a solution, with
(bt) & Hl([O, +OO), Hc)

Proof idea: approximate X by a finite space
Xy ={z1,...,zN}. FOor measures supported on Xy, the
Sinkhorn flow is a maximal monotone evolution.

18/21



Main theoretical results

Theorem (on the Sinkhorn flow).

1. Existence: for any by = B(jug), there exists a solution, with
(bt) & Hl([O, +OO), Hc)

167 — by |7, < ||b3 — b}l forall ¢ > 0. It implies uniqueness.

2. The flow is non-expansive in H_.: for two flows (b}) and (b?), we have

\'\‘(b%\)>
Proof idea: Maximal monotone operators are non-expansive.



Main theoretical results

Theorem (on the Sinkhorn flow).

1. Existence: for any by = B(jug), there exists a solution, with
(bt) & Hl([O, +OO), Hc)

2. The flow is non-expansive in H_.: for two flows (b}) and (b?), we have
167 — by |7, < ||b3 — b}l forall ¢ > 0. It implies uniqueness.

3. Convergence to global minimum: E(u;) — min F as t — +oo.

>
Recall. The flow of the Wasserstein GF N
Ou, = div(u; VV) gets trapped in local minima.

Proof idea. The only critical points of E are global minima
because vertical perturbations (teleportation) is allowed in
the Sinkhorn geometry (no convexity of V needed). .

18/21



Examples

Proposition. If X = R¢, V convex, ¢ quadratic
cost and pg = 0., then u; = §,, with

th - —8‘/(.’1375)
(Same as Wasserstein GF).
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Examples

Proposition. If X = R¢, V convex, ¢ quadratic
cost and pg = 0., then u; = §,, with

jjt - —8‘/((1375)
(Same as Wasserstein GF). .

But if V' not convex there can be teleportation!

Here a Lagrangian

discretization won't
work.

t = 0.00 t=0.25 t = 0.50 Vv
19/21



Link with the Sinkhorn JKO scheme

Sinkhorn JKO:
Se(p, py;)

pa1 € in & |
Hiy1 € argmin E(p) =

Sinkhorn flow in the b-variable:
: 2
bt—l— g(V—V*)bt + D¢ = 0.

with S, Sinkhorn divergence and
E(u) = [ V du potential energy.

with b, = exp(—f,,/€)-

20/21



Link with the Sinkhorn JKO scheme

Sinkhorn JKO: with S. Sinkhorn divergence and

U1 € aTrg mljn E(p) S&f(g;ﬂkz). E(u) = [ V du potential energy.

Sinkhorn flow in the b-variable:

: 2 ' — — .
by + g (V — V*) by +p: = 0. with b eXp( f'ut /8)

SJKO Proposition. If X is a finite set, the solutions
of the Sinkhorn JKO scheme, properly
Interpolated in time, converge to the Sinkhorn
< ow flowas 7 — 01in C([0,T], P(X)).

20/21



Future works
What | have not presented:
 Explicit computations for Gaussians, two points space,
 Proof that Sinkhorn divergence is not jointly convex,

 Proof that Sinkhorn divergence is not a metric.

O Some topics we are working on:
T

 Extend the convergence SJKO — Sinkhorn flow,
« Numerical approximation of geodesics,

« Limit ¢ — 0 towards optimal transport,

- Homogeneization when space Is refined.
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Future works

What | have not presented:

 Explicit computations for Gaussians, two points space,
 Proof that Sinkhorn divergence is not jointly convex,

 Proof that Sinkhorn divergence is not a metric.

O Some topics we are working on:
T

Extend the convergence SJKO — Sinkhorn flow,
Numerical approximation of geodesics,

Limit ¢ — 0 towards optimal transport,
Homogeneization when space is refined.

Thank you for your attention
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