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Euclidean Distances

A Euclidean distance considers a pixel-by-pixel difference.

For example, the L? distance:

di2(f, g) \//|f(x — g(x)]?dx.

27r
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Lagrangian Distances

A Lagrangian distance considers the distance moved.

W2
L2
. 2| - - - - - -~
For example, the Wasserstein 2mr ‘
distance: :
|
dy2(f, g) ~ size of translation. :
|
:
2r d
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The Wasserstein distance is great as a distance between
signals/images, because...

2]
o
o
o

Lagrangian modelling,

simple to understand compared to other Lagrangian methods
such as large deformation diffeomorphic metric mapping,
metric properties (in particular symmetry).

geodesics and Riemannian structure,

theoretical and characterising properties such as existence of
optimal transport maps and optimal transport plans (under
appropriate conditions).

4/44



The Wasserstein distance is great as a distance between
signals/images, because...
© Lagrangian modelling,
@ simple to understand compared to other Lagrangian methods
such as large deformation diffeomorphic metric mapping,
© metric properties (in particular symmetry).
@ geodesics and Riemannian structure,
© theoretical and characterising properties such as existence of
optimal transport maps and optimal transport plans (under
appropriate conditions).
But,...
© it places restrictive conditions on the input, in particular
signals have to be probability measures,
@ computationally expensive (despite recent advances),
© there is a lack of off-the-shelf data analysis tools.
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The Wasserstein distance is great as a distance between
signals/images, because...
© Lagrangian modelling,
@ simple to understand compared to other Lagrangian methods
such as large deformation diffeomorphic metric mapping,
© metric properties (in particular symmetry).
@ geodesics and Riemannian structure,
© theoretical and characterising properties such as existence of
optimal transport maps and optimal transport plans (under
appropriate conditions).
But,...
© it places restrictive conditions on the input, in particular
signals have to be probability measures,
@ computationally expensive (despite recent advances),
© there is a lack of off-the-shelf data analysis tools.
Solution: linearise an unbalanced/functional optimal transport

distances!
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@ Balanced Optimal Transport
@ The Wasserstein Distance
@ The Linear Wasserstein Distance
@ Examples

e Unbalanced Optimal Transport
@ The Hellinger—Kantorovich Distance
@ The Linear Hellinger—-Kantorovich Distance
@ Examples

© Functional Optimal Transport
@ The TLP Distance
@ The TLP Linear Distance
@ Examples
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@ Balanced Optimal Transport
@ The Wasserstein Distance
@ The Linear Wasserstein Distance
@ Examples
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Balanced Optimal Transport

Let u, v € P(Q2). The Wasserstein distance can be defined in one
of three ways.
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Balanced Optimal Transport

Let u, v € P(Q2). The Wasserstein distance can be defined in one
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@ Monge formulation:

A2 (p,v) == _ inf / |x — du(x);

T:Tyu=v
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Balanced Optimal Transport

Let u, v € P(Q2). The Wasserstein distance can be defined in one
of three ways.
@ Monge formulation:

A2 (p,v) == _ inf / |x — du(x);

T:Tyu=v
@ Kantorovich formulation:

d? ,V):= min / x — yl?dr(x, y);
w2 (1, v) i o X Y (x,y)
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Balanced Optimal Transport

Let u, v € P(Q2). The Wasserstein distance can be defined in one
of three ways.
@ Monge formulation:

Bpalpev) = inf [ x= TP du(o)

T:Tyu=v
@ Kantorovich formulation:
d? ,V):= min / x — yl?dr(x, y);
we (1, v) Lomin o X (x,5)

© Benamou—Brenier formulation:

A2 (e, v mf{ j(:t X dpt(x) dt : (p,w) € CE(u, 1/)}
t
where
dp
(p,w) € CE(u,v) & it + Viw =0,p0 = p, p1 = V.
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Balanced Optimal Transport

Let u, v € P(Q2). The Wasserstein distance can be defined in one
of three ways.
@ Monge formulation:

A2 (p,v) == _ inf / |x — du(x);

T:Tyu=v
@ Kantorovich formulation:
d? ,V):= min / x — yl?dr(x, y);
we (1, v) Lomin o X (x,5)

© Benamou—Brenier formulation:

= inf {
where

0
(p,w) € CE(u,v) & £+vxw =0,p0 = p,p1 = .

Under appropriate conditions all three are equivalent.

dwt
dpt

.CL.

X

dpt(x) dt : (p,w) € CE(u, 1/)}
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The Riemannian Structure of Wasserstein Spaces

dwt
Q Let vy = dpe then

Buetpor) = [ [ IOl dpetya

8/44



The Riemannian Structure of Wasserstein Spaces

dwt
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Buetpor) = [ [ IOl dpetya

Q If T/ =tT*+ (1— t)Id is the optimal map then py = [T ]up
is the geodesic between p and v.
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The Riemannian Structure of Wasserstein Spaces

dwt
Q Let vy = dpe then

Buetpor) = [ [ IOl dpetya
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is the geodesic between p and v.
© Moreover vy o T} = T* —1d and
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The Riemannian Structure of Wasserstein Spaces

dwt
Q Let vy = dpe then

Buetpor) = [ [ IOl dpetya

Q If T/ =tT*+ (1— t)Id is the optimal map then py = [T ]up
is the geodesic between p and v.
© Moreover vy o T} = T* —1d and

LGOI deet) = [ vl dix)

for all ¢t € [0,1].
© Hence dya(si, 1) = Jo vl dyu(x).
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The Riemannian Structure of Wasserstein Spaces

dwt
Q Let vy = dpe then

Buetpor) = [ [ IOl dpetya

Q If T/ =tT*+ (1— t)Id is the optimal map then py = [T ]up
is the geodesic between p and v.
© Moreover vy o T} = T* —1d and

LGOI deet) = [ vl dix)

for all ¢t € [0,1].

© Hence Bya(i v) = Jg lvoll2 du(x).
Q Let gywe(u;u,v) = [qu-vdp, then

A2 (1, v) = gwe(1i vo, vo)-
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The Linear Wasserstein Distance

Q Let Logw2(u; v) = v, so

dy2(p, v) = [[Logwa (1 V)12 -

Ii=(ff — 1)V

o = &i| = || = Wa(u. ) , | = Ib| = Wa(w1, )}

Figure credit: Soheil Kolouri.
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The Linear Wasserstein Distance

Q Let Logw2(u; v) = v, so

dy2(p, v) = [[Logwa (1 V)12 -

@ Now (following Wang, Slepcev,
Basu, Ozolek and Rohde (2013))
we define

Ii=(ff — 1)V

o = &i| = || = Wa(u. ) , | = Ib| = Wa(w1, )}

dw2 . 1in (11, p2) = |[Logw2(p; 1) — Logwe (1; p2) |2y

Figure credit: Soheil Kolouri.
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The Linear Wasserstein Distance

Q Let Logw2(u; v) = v, so

dy2(p, v) = [[Logwa (1 V)12 -

@ Now (following Wang, Slepcev,
Basu, Ozolek and Rohde (2013))
we define

Ii=(ff — 1)V

o = &i| = || = Wa(u. ) , | = Ib| = Wa(w1, )}

dw2 . 1in (11, p2) = |[Logw2(p; 1) — Logwe (1; p2) |2y
© Linear embedding map:

P2,y 1in (127) = Logwe (14; i)

Figure credit: Soheil Kolouri.
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The Linear Wasserstein Distance

Q Let Logw2(u; v) = v, so

dy2(p, v) = [[Logwa (1 V)12 -

@ Now (following Wang, Slepcev,
Basu, Ozolek and Rohde (2013))
we define

I = (ff = 1d)\/To

i1 = Ii| = || = Wa(p, i) , | = Io| = Wa (1, 1)

dw2 . 1in (11, p2) = |[Logw2(p; 1) — Logwe (1; p2) |2y
© Linear embedding map:
PWZ,M,lin(,ui) = Logyye(; pi)-
@ Linear Optimal Transport Assumption:

dW2(:u17 F‘2) ~ dwz,p,,lin(:ulal@) = H'DW2,;1,,1in(:u1)_sz,p,lin(ﬁQ)||L2(;L)'

Figure credit: Soheil Kolouri.
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Approximate Numerical Method

@ Solve the Kantorovich formulation to find 7* (e.g. Sinkhorns
algorithm)

d? ,V):= min / x — y|?dn(x, y).
we(#,v) Lomin QXQ| y[=dm(x,y)

@ Extract T* the optimal Monge map from 7* = (Id x T*)xpu

A2 (p,v) == _ inf / |x — dp(x).

T:Tyu=v

© Compute the velocity map at time t =0, i.e. vop = T*—1d

Bga(pe) = [ 0] du(x)

Road map:
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Transport Based Morphometry

Example Data: Principle Component Analysis on Linear

Embedding:

—4a -30

=20 —7 0 [ 2a 30 4o

Source: Wang, Slepéev, Basu, Ozolek and Rohde, A Linear Optimal Transportation
Framework for Quantifying and Visualizing Variations in Sets of Images, International
Journal of Computer Vision 101(2):254-269, 2013.
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Data Generating

@ Aim: Generate new data points from the Wasserstein
manifold of images.

Inverse
e OT map
— — = X

== R
k=

det(D(v+Id))ci(v+ld) = x

-
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Data Generating

@ Aim: Generate new data points from the Wasserstein
manifold of images.
@ Idea: Approximate the manifold at K-points.

‘ Inverse
S OT map
gy ——— >
g
w
SN

oF gAY
k=r

det(D(v+Id))ci(v+ld) = x

P}v]z;z)
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Data Generating

@ Aim: Generate new data points from the Wasserstein
manifold of images.

@ Idea: Approximate the manifold at K-points.
© Strategy:

Pz=1 Inverse
) @ o
2 E . > v — x
- g
_—

QSN I
- | 4
Pviz=2) .

det(D(v+Id))ci(v+ld) = x
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Data Generating

@ Aim: Generate new data points from the Wasserstein
manifold of images.

@ Idea: Approximate the manifold at K-points.
© Strategy:

® Cluster the data {u;}7_; into K groups.

By ——— X
s’

V - “’-V ‘O/\ B l
~ y
Pviz=2)

Pz=1 Inverse
) m @ u
5 - Z
4
_—

det(D(v+Id))ci(v+ld) = x
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Data Generating

@ Aim: Generate new data points from the Wasserstein
manifold of images.
@ Idea: Approximate the manifold at K-points.
© Strategy:
® Cluster the data {u;}7_; into K groups.
@ For each cluster find the centre v, which will define the K
points we approximate the manifold by.

By ——— X
s’

V - “’-V ‘O/\ B l
~ y
Pviz=2)

P(z=1 Inverse
) @ &
5 - Z
4
_—

det(D(v+Id))ci(v+ld) = x
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Data Generating

@ Aim: Generate new data points from the Wasserstein
manifold of images.
@ Idea: Approximate the manifold at K-points.
© Strategy:
® Cluster the data {u;}7_; into K groups.
@ For each cluster find the centre v, which will define the K
points we approximate the manifold by.
@ At each of the K centres model the tangent space by a
Gaussian with mean my and covariance W,.

Inverse
e OT map
— — = X

2 —
—
—y

V ‘V: “’-V ‘O/ ;\ - A I
-~ J
Pviz=2)

det(D(v+Id))ci(v+ld) = x
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Data Generating

@ Aim: Generate new data points from the Wasserstein
manifold of images.
@ Idea: Approximate the manifold at K-points.
© Strategy:
® Cluster the data {u;}7_; into K groups.
@ For each cluster find the centre v, which will define the K
points we approximate the manifold by.
@ At each of the K centres model the tangent space by a
Gaussian with mean my and covariance W,.
@ To generate a new data point (i) sample a cluster centre
k € {1,...,K}, then (ii) sample a tangent vector
v ~ N(mg, W), finally (iii) create a new image by pushing
forward the cluster centre v, by the transport map T = v +1Id.

Pz=1 E Inverse
5 ‘~ o S OT map
pree—" S ) -

& —
-

b=

va]éz) :
der(D(v+Id))c:(v+Id) p's
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Are we Learning New Images?

© Top row, all 19 original images.

@ Second and third rows, generated images.

Source: Park and T., Representing and Learning High Dimensional Data with the
Optimal Transport Map from a Probabilistic Viewpoint, CVPR, 2018.
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e Unbalanced Optimal Transport
@ The Hellinger—Kantorovich Distance
@ The Linear Hellinger—-Kantorovich Distance
@ Examples
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Unbalanced Optimal Transport via Benamou—Brenier

© Recall the continuity equation:

ap

(p,w) € CE(u,v) &

+ Vxw =0, p0 = p, p1 = 1.
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Unbalanced Optimal Transport via Benamou—Brenier

© Recall the continuity equation:

ap
ot

© We now consider the continuity equation with source:

(p,w) € CE(u,v) & ==+ Vyw =0,po = p, p1 = 1.

0
(P»C%C) 6(3(‘;"9(,u7’/)<:> 8*[;+wa:§,00:%01 = .
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Unbalanced Optimal Transport via Benamou—Brenier

© Recall the continuity equation:

0
(paw) GCE(/.L,V)@ £+wa:07po =M, p1 ="V

© We now consider the continuity equation with source:

0
(P»Wyo 6(3(‘:‘9(,u7’/)<:> 87€+vxwzgap0:,uapl = .

© The Kondratyev, Monsaingeon and Vorotnikov (2016), Chizat,
Peyré, Schmitzer and Vialard (2018, 2018a), and Liero,
Mielke and Savaré (2018) model:

[ L) s
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Unbalanced Optimal Transport via Benamou—Brenier

© Recall the continuity equation:

0
(paw) GCE(/.L,V)@ £+wa:07po =M, p1 ="V

© We now consider the continuity equation with source:

0
(P»Wyo 6(3(‘:‘9(,u7’/)<:> 87€+vxwzgap0:,uapl = .

© The Kondratyev, Monsaingeon and Vorotnikov (2016), Chizat,
Peyré, Schmitzer and Vialard (2018, 2018a), and Liero,
Mielke and Savaré (2018) model:

[ L) s

@ The Hellinger—Kantorovich distance:

1 dw ||? d¢
dZ i (p, v) = inf // t ( t) dp, dt.
fucie ) (pw,C)ECES (1) Jo Q( dp: Pt

dpe
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Soft Marginal Kantorovich Form

@ Let KL be the Kullback—Leibler divergence

KLu) = [ ¢ (5 av

if © < v and where ¢(s) = slog(s) — s+ 1.
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Soft Marginal Kantorovich Form

@ Let KL be the Kullback—Leibler divergence

KLu) = [ ¢ (5 av

if © < v and where ¢(s) = slog(s) — s+ 1.
Q Let

(xy) = —2log(cos[[x —y[|) if [[x =yl <73
’ +00 else.

© Then, (Liero, Mielke and Saveré (2018))

P, v) = inf {/ dr + KL(P + KL(P, }
fik (1, V) rer o) Uz €97 (Prgem|pe) (Poy|v)

16 /44



Soft Marginal Kantorovich Form

@ Let KL be the Kullback—Leibler divergence

KLu) = [ ¢ (5 av

if © < v and where ¢(s) = slog(s) — s+ 1.
Q Let

(xy) = —2log(cos[[x —y[|) if [[x =yl <73
’ +00 else.

© Then, (Liero, Mielke and Saveré (2018))

P, v) = inf {/ dr + KL(P + KL(P, }
fik (1, V) rer o) Uz €97 (Prgem|pe) (Poy|v)

@ Furthermore, there exists 7*, T* and i such that
m = (Id x T*)xfi is optimal.
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Warning: Long (and uninformative) equations are present on the
next slide.



Hellinger—Kantorovich Geodesics via Optimal Plans

Let p, v € M4 (Q), 7™ optimal and T™* be the Monge map 7™ = (Id X T™)yfi. Let i = Prym™,
U = Pyym™ and write

,u,:u[l+,uj‘ u:wi?JruJ‘.
Then a geodesic is given by
pe=X (600, T wo T70)) M (60), T wo TV0)) ]

- 2 1L, 2 1
pt=pc+(1—t)n" +tv

wr =X (t; Su(-), T*(:),wo T*(»))# [M (t; Su(-), T*(),wo T*(-)) % (t: Su(), TH(),wo T*(-)) ﬁ}
Go=x (600000, T Cwo TC) [f;“:' (67000, T w0 7)) ﬁ}

Ce=C—20 —pt + 2t

where

M(t) = (1 — t)%mg + t2my + 2¢(1 — t)\/mgmy cos ||xg — x|

o(t) = cos™* <(1 — t)y/Mo + t/m1 cos(lx0 — X1|)>

A/ M(t)

X1 — X

X(t) = .
Ixo — x|
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Time Independent Benamou—Brenier Form

Thm: Let p,v € M (Q) and 7* = (Id x T*)4fi be optimal. Let
(p,w,C) be the geodesics constructed on the previous slide. Set for
te0,1):

dwt dCt J‘

=——-2(1—-t
e dPt o dpy ( )dt
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Time Independent Benamou—Brenier Form

Thm: Let p,v € M (Q) and 7* = (Id x T*)4fi be optimal. Let
(p,w,C) be the geodesics constructed on the previous slide. Set for

t €[0,1):
dwt dCt L
=S5t o1
Vi = d,Ot ar = dp: ( t) d P
Then
o) — 4 TGS 22 sn(I T ()~ xl) - Frae.
0 ut-ae.,
o ([T ol 170 — Xl — 1) .
ag(x) = ( w - cos(IT0x) — 1) ji-ae.,
—2 put-ae.
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Time Independent Benamou—Brenier Form

Thm: Let p,v € M (Q) and 7* = (Id x T*)4fi be optimal. Let
(p,w,C) be the geodesics constructed on the previous slide. Set for

t €[0,1):
dwt dCt L
— =t 91—
Vi = d,Ot ar = dp: ( t) d t
Then
o) — 4 TGS 22 sn(I T ()~ xl) - Frae.
0 ut-ae.,
2 W(T*(X)) T* - . 1) Fae.
ao(x) = ( wGo - cos(lI T7(x) — 1) ji-ae.,
—2 put-ae.
and

1
Auc(per) = [ (10l + G(a0)?) diet .

19/ 44



Linear Hellinger—Kantorovich Distance

@ One can show that i, ut L v+, so pu L vt
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Linear Hellinger—Kantorovich Distance

@ One can show that i, ut L v+, so pu L vt
@ In particular, if spt(u) = Q then vt =0, and

Bhuc(.r) = [ (10l + 3 (00)?)
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Linear Hellinger—Kantorovich Distance

@ One can show that i, ut L v+, so pu L vt
@ In particular, if spt(u) = Q then vt =0, and

1
uctin) = [ (Ihol? + F(a0)?) dn
@ Let Logyk (1 v) = (w, ap), so
(1) = [Logrnc (1 ) 2
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Linear Hellinger—Kantorovich Distance

@ One can show that i, ut L v+, so pu L vt
@ In particular, if spt(u) = Q then vt =0, and

Bhuc(.r) = [ (10l + 3 (00)?)
@ Let Logyk (1 v) = (w, ap), so
duk (1, v) = [[Lognxk (1 ¥) [12(u)-
© Now we define

dux go,tin (11, 2) = [[Logpx (14 p1) — Loguk (14 p2)[l12()-
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Linear Hellinger—Kantorovich Distance

@ One can show that i, ut L v+, so pu L vt
@ In particular, if spt(u) = Q then vt =0, and

Bhuc(.r) = [ (10l + 3 (00)?)
@ Let Logyk (1 v) = (w, ap), so
dak (1, v) = [[Logmxk (1 V)[lL2(u)-
@ Now we define
dux go,tin (11, 2) = [[Logpx (14 p1) — Loguk (14 p2)[l12()-
© Linear embedding map:
Pk putin(10) = Logk (1 pi).-
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Linear Hellinger—Kantorovich Distance

@ One can show that i, ut L v+, so pu L vt
@ In particular, if spt(u) = Q then vt =0, and

Bhuc(.r) = [ (10l + 3 (00)?)
@ Let Logyk (1 v) = (w, ap), so
dak (1, v) = [[Logmxk (1 V)[lL2(u)-
@ Now we define
dux go,tin (11, 2) = [[Logpx (14 p1) — Loguk (14 p2)[l12()-
© Linear embedding map:
Pk putin(10) = Logk (1 pi).-

O Linear Hellinger-Kantorovich Assumption:
duk (p1, p2) & duk ptin(p1, #2) = [|PaK p1in (#1) = PaK oin (#2) ([ 2()-
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Approximate Numerical Method

@ Solve the Kantorovich formulation to find 7* (e.g. Sinkhorns
algorithm)

B (p,v) = weAi/lnf(m) {/92 cdm + KL(Pygm|p) + KL(P2#7T|V)} .

@ Extract T* the optimal Monge map from 7* = (Id x T*)4fi
and the densities u, w.

© Compute the velocity and growth maps at time t =0, i.e.
Vo, g using the previous theorem

huc(.r) = [ (10l + (00)?)

*

v o= 7 = (T u,w) = (v,).

21/44



A Toy Example: Data and Barycentres

(a) samples for different elongations p; (sizes p, fixed) ) HK barycenter

(b) samples for different sizes py (clongations p; fixed) (d) W barycenter
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A Toy Example: 2D PCA Projection

Wa

HK
too W *ﬁ& ***IX—X\H_X
,& &‘ oy o XRTHTH— N
x—H——HK K —% s %
N (3]
g 0 2 H—H— KR —H—K—H—X
g E O % % s %
B h XX e e %X
—0o2 02 | R—H—p—H— K —K—X
... 3 XX—x— x %% X
T T T T T T
—o 0 +o —o 0 +o
mode 1 mode 1
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A Toy Example: Dominant Eigenmodes

W; - mode 1 HK - mode 1

e
— —a/2 0 +0/2 +o -

Ws - mode 2 HK - mode 2

For each mode, the quiver plot on the left shows the initial velocity field vy, for HK
the color of the arrows encodes o (blue means decrease, red increase of mass). The
five images on the right visualize the exponential map evaluated between —o and o
where o denotes the standard deviation along the considered mode.

==
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Q]
i)
]
)

Collider Events

can we label W boson jets and

. In particular,
quark or gluon) jets from a simulated dataset of part

ing

Jet taggi

Aim

icle

QCD (

Q C R?).

(S

(

th plan

azimu

ity-

id

collider events observed in the rap

Reference Jet
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0000000000000 0%
0000000000000 0™
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F866/360b 6600
66600000000

W2 (k'= + =): 1.320 Gev
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Collider Events: LDA and PCA

.| HK (x=100) ‘ ' Hm:m‘ HK (k=0.1) 2500{  HK (x=0.01)

2tol

W

0 L3 L ot E%
e
1 .
1 0 +1 1 0 +1
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Collider Events: Labelling

Table: Results for the W vs. QCD jet tagging task using LDA, kNN and
SVM on the (unbalanced) linearized OT embeddings for various length
scale parameters k (k = 400 denotes balanced the Wasserstein distance).

[ lengthscaler [ +o0o [ 100 [ 10 [ 5 [ 1 [ 07 [ 05 [ 03 | 01 [ 0.05] 001 |
AUC 0.694 | 0.733 | 0.746 | 0.747 | 0.752 | 0.751 | 0.748 | 0.760 | 0.765 | 0.763 | 0.642
LDA TPR 0.684 | 0.684 | 0.703 | 0.721 | 0.724 | 0.740 | 0.736 | 0.692 | 0.704 | 0.731 | 0.770
FPR 0.296 | 0.218 | 0.211 | 0.226 | 0.220 | 0.239 | 0.239 | 0.171 | 0.174 | 0.205 | 0.486
run time several seconds
AUC 0.821 | 0.818 | 0.819 | 0.818 | 0.829 | 0.841 | 0.849 | 0.847 | 0.821 | 0.772 | 0.671
TPR 0.771 | 0.763 | 0.768 | 0.763 | 0.760 | 0.791 | 0.798 | 0.809 | 0.821 | 0.783 | 0.733
kNN FPR 0.128 | 0.127 | 0.130 | 0.126 | 0.102 | 0.110 | 0.100 | 0.114 | 0.181 | 0.238 | 0.390
hyperpar. k 30 20 30 20 10 20 10 20 10 10 30
run time 1.5 hours
AUC 0.842 | 0.842 | 0.842 | 0.841 | 0.849 | 0.851 | 0.856 | 0.853 | 0.845 | 0.806 | 0.694
TPR 0.817 | 0.819 | 0.817 | 0.819 | 0.823 | 0.829 | 0.832 | 0.829 | 0.788 | 0.741 | 0.787
SVM FPR 0.133 | 0.134 | 0.134 | 0.137 | 0.126 | 0.127 | 0.120 | 0.124 | 0.099 | 0.128 | 0.401
hyperpar. C 1 1 1 1 1 1 1 1 1 10 10
hyperpar. v | 100 100 100 100 100 100 100 100 1000 | 1000 | 100000
run time 5 hours
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© Functional Optimal Transport
@ The TLP Distance
@ The TLP Linear Distance
@ Examples
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TL? Definition

@ Aim: define a Lagrangian distance for functions.
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TL? Definition

@ Aim: define a Lagrangian distance for functions.
@ The idea is to treat signals as a pair (f, ) where f € LP(u).

© Mostly we consider when i is the uniform measure (either
continuous or discrete), but one could also trivially adapt in
order to weight features of the signal, for example.

@ Note that we can compare signals on different domains.

@ TL” definition (Monge formulation):

Ao (1), (g v)) = _inf /IX* CAIP +1F(x) — g(T ()P dp(x).

T:Typ=v
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A Simple Example

For example consider the functions f(x) = cos (27x) and
g(y) = sin (2my) defined on [0, 1] with the uniform measure. The
optimal plan using the TL? distance is given below.

1 1
0.5 =
0.8 7 < o i
—0.5| =
. _ | |
0.6 "o 02 04 06 08 1

0.4 \ 1 \ - T T
0.2 . o2
0

g(y)

! ! ! .
0 0.2 04 06 0.8 1 "0 0.2 04 06 08 1
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Relationship Between TL? and OT: via the Cost Function

@ Optimal transport problems:
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Relationship Between TL? and OT: via the Cost Function

@ Optimal transport problems:

M) = inf / (. T() du(x).

dwp wv) = |nf /|X_ (1P dp(x),

Ao ((F, 1), (g5 v)) = /IX— TP+ 1) — g(TE))IP dpa(x).
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Relationship Between TL? and OT: via the Cost Function

@ Optimal transport problems:

M(pv) = T::L V/ c(x; T(x)) dp(x),
dbye(p,v) = |nf /|x— (x)IP du(x),
o ((F, 1), (g5v)) = /|X— TP+ 1£(x) — g(T ()P dp(x).

@ So TL” is a special case of OT with cost function
c(x,yif,g) =[x —yl[P +[f(x) — f(y)IP.
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Relationship Between TL? and OT: via the Cost Function

@ Optimal transport problems:

M) = _inf / e(x, T(x)) du(x),

T:Typ=v
dbye(p,v) = |nf /|x— (x)IP du(x),
drep((F 1), (gv)) = _ inf _ / Ix = TP+ 1F(x) — (T (x))IP du(x)-
Tup=v |y

@ So TL” is a special case of OT with cost function
c(x,y;if,g) =|x—ylP+[f(x) = f(y)lP.
© This is useful for numerics: Any numerical method for OT

that can deal with arbitrary cost function can be used to
compute TL".

© This includes Cuturi’s entropy regularised approach (Sinkhorn
algorithm).
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Relationship Between TLP and OT: via Graph Projections

@ The cost function ¢(x,y; f, g) is not necessarily continuous,
therefore the previous relationship with OT is not useful for
transferring theoretical properties.
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Relationship Between TLP and OT: via Graph Projections

@ The cost function ¢(x,y; f, g) is not necessarily continuous,
therefore the previous relationship with OT is not useful for
transferring theoretical properties.

@ Define ji = (Id x f)up, 7 = (Id x g)xv as the measures 1
and v raised onto the graphs of f and g.

© In which case we have

Bp(Fo). () = min [ 15~ TR 4j(s)
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TLP Translations

TL? transport between f(x) = AX(o,11 and g(x) = f(x — £) with
the uniform measure.

_‘Q‘—\ —4}‘— gl
T L l
! ol ;o I
I )l ;o I
! ! P I
_E‘/—\L: . ‘/:_ﬁ‘\ :
L<\/3-2A2 -2 V3+2AT -2 < U< AV2+1
W2
‘ / TL?
: : : \/EA -7 T
| | | I
1 ! ! |
l ! ! |
: : L I ! :
0> AV2+1 1 V35242 -2 AV2+41 ¢
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TLP Properties: Summary

006 o

Signals can be negative and not all of the same size (i.e. not
integrate to the same value).

Can discriminate between fast oscillating signals (true for L?,
false for WP).

Can track translations for further than LP (but not as far as
WP).

Existing numerical methods for OT are available.

The distance defines a metric.

We have the existence of plans.

Maps1 exirs7t in the discrete case when p = %27:1 0y, and

v =330 0y

Disadvantages: no geodesics, not complete.
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Linear TL? Distance

o Fix a reference point (f, 1) € TL? and let T* is the

TL2-optimal transport map between (f, ) and (g, v). le.
Typ=vand

d%Lz((fvu),(g,V))=/IX*T*(X)|2+\f(X)*g(T*(X))\Zdu(X)-
X
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Linear TL? Distance

o Fix a reference point (f, 1) € TL? and let T* is the

TL2-optimal transport map between (f, ) and (g, v). le.
Typ=vand

d%Lz((fvu),(g,V))=/IX*T*(X)|2+\f(X)*g(T*(X))\Zdu(X)-
X

o Assume p = 4 SN, 3, then we define

PTL27(f’.LL)’hn(g’ V) = (Pl(g7 V)z ’D2(g, 7/)) € RZN
[Pl(g7 V)]k - T*(Zk) — Zy
[Pa(g, )k = g(T*(2K)) — f(z)-

@ The linear TL? distance

drr2 (f,0),1in (85 V) (hw)) = 1Prr2 (£, 10,100 (85 ¥) — Prr2 () 1in (B W)l g2
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Properties of Linear TL?

o Ifv=1LN 10, then Pz (g,v) € 2.
® Priz ¢, im(fin) =0.
° dTL2,(f,u),lin((f7 M): (ga V)) = dTLQ((fa M)a (g, V))

de (0,0, 1)) |,

mp)¢mnqmym
(leuz)

Q do ((F, 1), (£, 1))

f,u),lin

P, =P(h,0)
P =P(f, k)
P,= P(F, M)
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Spatially Correlated Histogram Specification

Histogram Specification: The problem of matching one histogram

o(y) == feu(y) = §{x : f(x) = y} with another 1,
i.e. findamap T : X — Y such that ¥ = Ty,
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Spatially Correlated Histogram Specification

Histogram Specification: The problem of matching one histogram
o(y) == feu(y) = §{x : f(x) = y} with another 1,
i.e. findamap T : X — Y such that ¥ = Ty,

Colour Transfer: Colour one image with the palette of an exemplar
image.

W2 Solution: (For greyscale images) define histograms ¢, 1 from
the images and let T be the optimal Monge map
between them. The recoloured imageis f = go T.

TL? Solution: Let T be the TL? optimal map between (f, 11) and
(g,v) (f,g may be RGB images).
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Histogram Specification: Synthetic

(a) Exemplar image.  (b) Original image to be  (c) The TL? solution.
shaded.
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Histogram Specification: Real World

———
) Exemplar (b Orlglnal image
|mage to be coloured.

(d) W2 solution. (e) Reinhard,
Ashikhmin, Gooch
and Shirley's
method.

(c) TL? solution.

(f) Pitié and

Kokaram's method.
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AUSLAN

© The AUSLAN data set is a set of 95 words ‘spoken’ by a
native AUSLAN (Australian sign language) using 22 sensors
on a cyberglove.

@ 27 signals in each class, so a total of 2565 signals.

0'06 i k
0.04 —— 72 ~\
— N\ SN
0.02 -
0 — —
N L
-0.02r KF—\_’————\_/
-0.04
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AUSLAN Results

Accuracy:
Assessing performance of transportation methods on Auslan Data

0.8 =i=
—_—

Adjusted Rand Index
2

P Linear
Method

Computation time:

l Method [ Linear W2 [ Linear TL2 [ Linear TWX:P [ TLP ]
[ CPU times (seconds) [ 121 | 13.0 | 13.5 [ 91200 |
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Thank you for listening!

People worry that computers will get too smart and take
over the world, but the real problem is that they're too
stupid and they've already taken over the world.

— Pedro Domingos
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