Adversarial Training Through the Lens of Optimal Transport

Nicolás García Trillos University of Wisconsin-Madison

Kantorovich Initiative seminar series February 2023

Based on joint works with:

- Jakwang Kim (Wisc)
- Camilo García Trillos (UCL)
- Matt Jacobs (Purdue)

Based on joint works with:

- Jakwang Kim (joining Kantorovich initiative this Fall!)
- Camilo García Trillos (UCL)
- Matt Jacobs (Purdue)

Neural networks, although accurate on clean data, are sensitive to adversarial attacks:

Figure: Picture taken from Goodfellow et al. (2015)

[Szegedy et al. 2014], [Goodfellow et al. 2015]

Figure: An adversarial attack of a clean image in a safety-critical setting. Picture taken from Eykholt et al. (2018)

Formalization of adversarial training problem

How to train classifiers to be robust to (specific) adversarial attacks?:

$$\min_{\theta \in \Theta} \mathbb{E}_{(x,y) \sim \mu} \left[\sup_{\tilde{x} \in B_{\varepsilon}(x)} \ell(\theta, (\tilde{x}, y)) \right]. \tag{AT}$$

[Madry et al 2017]

Compare to unrobust problem:

$$\min_{\theta \in \Theta} \mathbb{E}_{(x,y) \sim \mu} \left[\ell(\theta, (x, y)) \right].$$

Formalization of adversarial training problem

How to train classifiers to be robust to (specific) adversarial attacks?:

$$\min_{\theta \in \Theta} \mathbb{E}_{(x,y) \sim \mu} \left[\sup_{ ilde{x} \in B_{\varepsilon}(x)} \ell(\theta, (ilde{x}, y)) \right],$$

or its distributionally robust optimization (DRO) version:

$$\inf_{\theta \in \Theta} \sup_{\tilde{\mu}: D(\mu, \tilde{\mu}) \leq \varepsilon} \mathbb{E}_{\tilde{\mathbf{z}} \sim \tilde{\mu}} \left[\ell(\tilde{\mathbf{z}}, \theta) \right].$$

Formalization of adversarial training problem

How to train classifiers to be robust to (specific) adversarial attacks?:

$$\min_{ heta \in \Theta} \mathbb{E}_{(x,y) \sim \mu} \left[\sup_{ ilde{x} \in B_{arepsilon}(x)} \ell(heta, (ilde{x}, y))
ight],$$

or its distributionally robust optimization (DRO) version:

$$\inf_{\theta \in \Theta} \sup_{\tilde{\mu}: D(\mu, \tilde{\mu}) \leq \varepsilon} \mathbb{E}_{\tilde{\mathbf{z}} \sim \tilde{\mu}} \left[\ell(\tilde{\mathbf{z}}, \theta) \right],$$

or its explicit penalization version:

$$\inf_{\theta \in \Theta} \sup_{\tilde{\mu}} \mathbb{E}_{\tilde{\mathbf{z}} \sim \tilde{\mu}} \left[\ell(\tilde{\mathbf{z}}, \theta) \right] - C(\mu, \tilde{\mu}).$$

$$\inf_{\theta \in \Theta} \sup_{\tilde{\mu}} \mathbb{E}_{\tilde{z} \sim \tilde{\mu}} \left[\ell(\tilde{z}, \theta) \right] - C(\mu, \tilde{\mu}). \tag{AT}$$

- How do we find a solution to this problem?
- Can we find meaningful upper and lower bounds?

$$\inf_{\theta \in \Theta} \sup_{\tilde{\mu}: D(\mu, \tilde{\mu}) \leq \varepsilon} \mathbb{E}_{\tilde{\mathbf{z}} \sim \tilde{\mu}} \left[\ell(\tilde{\mathbf{z}}, \theta) \right]. \tag{AT}$$

- How do we find a solution to this problem?
- Can we find meaningful upper and lower bounds?
- How is a problem like (AT) related to regularization methods?

$$\inf_{\theta \in \Theta} \sup_{\tilde{\mu}} \mathbb{E}_{\tilde{z} \sim \tilde{\mu}} \left[\ell(\tilde{z}, \theta) \right] - C(\mu, \tilde{\mu}). \tag{AT}$$

- How do we find a solution to this problem?
- Can we find meaningful lower and upper bounds?
- How is a problem like (AT) related to regularization methods?
 i.e. a problem like:

$$\inf_{\theta \in \Theta} R(\mu, \theta) + \lambda F(\theta), \tag{Reg}$$

$$\inf_{\theta \in \Theta} \sup_{\tilde{\mu}: D(\mu, \tilde{\mu}) \leq \varepsilon} \mathbb{E}_{\tilde{\mathbf{z}} \sim \tilde{\mu}} \left[\ell(\tilde{\mathbf{z}}, \theta) \right]. \tag{AT}$$

- How do we find a solution to this problem?
- Can we find meaningful lower and upper bounds?
- How is a problem like (AT) related to regularization methods?
 i.e. a problem like:

$$\inf_{\theta \in \Theta} R(\mu, \theta) + \lambda F(\theta), \tag{Reg}$$

$$\inf_{\theta \in \Theta} \sup_{\tilde{\mu}} \mathbb{E}_{\tilde{\mathbf{z}} \sim \tilde{\mu}} \left[\ell(\tilde{\mathbf{z}}, \theta) \right] - C(\mu, \tilde{\mu}). \tag{AT}$$

What is the **geometry** of:

- Optimal robust classifiers.
- Optimal adversarial attacks.

Instead of the parametric problem

$$\inf_{\theta \in \Theta} \sup_{\tilde{\mu}} \mathbb{E}_{\tilde{\mathbf{z}} \sim \tilde{\mu}} \left[\ell(\tilde{\mathbf{z}}, \theta) \right] - C(\mu, \tilde{\mu}). \tag{1}$$

we'll consider non-parametric problems:

$$\inf_{\mathbf{f}\in\mathcal{F}}\sup_{\tilde{\mu}}\mathbb{E}_{\tilde{\mathbf{z}}\sim\tilde{\mu}}\left[\ell(\tilde{\mathbf{z}},f)\right]-C(\mu,\tilde{\mu}). \tag{2}$$

Outline

We'll consider two settings:

- A multilabel classification problem with an agnostic learner.
- ② A regression problem in a mean field regime.

Outline

We'll consider two settings:

- A multilabel classification problem with an agnostic learner.
 - Lower bounds for general AT problems.
 - Connections to MOT and (generalized) barycenter problems.
- ② A regression problem in a mean field regime.
 - How to find (approximate) Nash equilibria in mean-field learning settings.

Overarching goal: an invitation to look at (AT) from geometric and analytic perspectives.

1. A multilabel classification problem with an agnostic learner

A multilabel classification problem with an agnostic learner

- Type of data: $z = (x, y) \in \mathbb{R}^d \times \{1, \dots, k\}$, $k \geq 2$.
- Learner's actions: measurable $f = (f_1, ..., f_k)$ with: $f_l : \mathbb{R}^d \to [0, 1]$, and $\sum_{l=1}^K f_l = 1$ (Agnostic learner).
- Loss function: $\ell(z, f) = \ell((x, y), f) = 1 f_v(x)$, i.e. 0-1 loss.

A multilabel classification problem with an agnostic learner

$$\inf_{f} \sup_{\tilde{\mu} \in \mathcal{P}(\mathcal{Z})} \left\{ \mathbb{E}_{(\tilde{x}, \tilde{y}) \sim \tilde{\mu}} \left(\ell(\tilde{z}, f) \right) - C(\mu, \tilde{\mu}) \right\},$$

where

$$C(\mu, ilde{\mu}) := \min_{\pi \in \Gamma(\mu, ilde{\mu})} \int c_{\mathcal{Z}}(z, ilde{z}) d\pi(z, ilde{z})$$

for some cost function $c_{\mathcal{Z}}: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$ of the form:

$$c_{\mathcal{Z}}(z, \tilde{z}) = egin{cases} c(x, \tilde{x}) & \text{if } y = \tilde{y} \ \infty & \text{if } y \neq \tilde{y}, \end{cases} \quad c: \mathbb{R}^d imes \mathbb{R}^d o [0, \infty].$$

Lower bounds for more general AT problems:

$$\inf_{f \text{ measurable}} \sup_{\tilde{\mu} \in \mathcal{P}(\mathcal{Z})} \left\{ \mathbb{E}_{(\tilde{x}, \tilde{y}) \sim \tilde{\mu}} \left(\ell(\tilde{z}, f) \right) - C(\mu, \tilde{\mu}) \right\},$$

is smaller than

$$\inf_{f\in\mathcal{F}'}\sup_{\tilde{\mu}\in\mathcal{P}(\mathcal{Z})}\left\{\mathbb{E}_{(\tilde{x},\tilde{y})\sim\tilde{\mu}}\left(\ell(\tilde{z},f)\right)-C(\mu,\tilde{\mu})\right\}.$$

Example of cost function:

$$\inf_{f} \sup_{\tilde{\mu} \in \mathcal{P}(\mathcal{Z})} \left\{ \mathbb{E}_{(\tilde{x}, \tilde{y}) \sim \tilde{\mu}} \left(\ell(\tilde{z}, f) \right) - C(\mu, \tilde{\mu}) \right\},$$

where

$$C(\mu, ilde{\mu}) := \min_{\pi \in \Gamma(\mu, ilde{\mu})} \int c_{\mathcal{Z}}(z, ilde{z}) d\pi(z, ilde{z})$$

for some cost function $c_{\mathcal{Z}}: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$ of the form:

$$c_{\mathcal{Z}}(z,\tilde{z}) = \begin{cases} c(x,\tilde{x}) & \text{if } y = \tilde{y} \\ \infty & \text{if } y \neq \tilde{y}, \end{cases} \quad c(x,\tilde{x}) = \begin{cases} 0 & \text{if } d(x,\tilde{x}) \leq \varepsilon \\ \infty & \text{if } d(x,\tilde{x}) > \varepsilon \end{cases}$$

Example of cost function:

When

$$c(x, \tilde{x}) = \begin{cases} 0 & \text{if } d(x, \tilde{x}) \leq \varepsilon \\ \infty & \text{if } d(x, \tilde{x}) > \varepsilon \end{cases}$$

problem

$$\inf_{f} \sup_{\tilde{\mu} \in \mathcal{P}(\mathcal{Z})} \left\{ \mathbb{E}_{(\tilde{x}, \tilde{y}) \sim \tilde{\mu}} \left(\ell(\tilde{z}, f) \right) - C(\mu, \tilde{\mu}) \right\}$$

becomes:

$$\inf_f \mathbb{E}_{(x,y)\sim \mu} \left(\sup_{ ilde{x} \in B_{arepsilon}(x)} \ell((ilde{x},y),f) \right).$$

$$\inf_{f} \sup_{\tilde{\mu} \in \mathcal{P}(\mathcal{Z})} \left\{ \mathbb{E}_{(\tilde{x}, \tilde{y}) \sim \tilde{\mu}} \left(\ell(\tilde{z}, f) \right) - C(\mu, \tilde{\mu}) \right\},$$

where

$$C(\mu, ilde{\mu}) := \min_{\pi \in \Gamma(\mu, ilde{\mu})} \int c_{\mathcal{Z}}(z, ilde{z}) d\pi(z, ilde{z})$$

for some cost function $c_{\mathcal{Z}}: \mathcal{Z} \times \mathcal{Z} \to \mathbb{R}$ of the form:

$$c_{\mathcal{Z}}(z, \tilde{z}) = egin{cases} c(x, \tilde{x}) & \text{if } y = \tilde{y} \ \infty & \text{if } y \neq \tilde{y}, \end{cases} \quad c: \mathbb{R}^d imes \mathbb{R}^d o [0, \infty].$$

MNIST

We computed the above using off-the-shelf MOT solvers...

Multimarginal Optimal Transport (MOT)

$$\inf_{\Gamma(\rho_1,\ldots,\rho_K)} \int \mathbf{c}(\xi_1,\ldots,\xi_K) d\pi(\xi_1,\ldots,\xi_K)$$
 (MOT)

- Applications in Physics.
- Applications in Economics.
- Machine learning.

Density functional theory

$$\inf_{\Gamma(\rho_1,\ldots,\rho_K)} \int \mathbf{c}(\xi_1,\ldots,\xi_K) d\pi(\xi_1,\ldots,\xi_K)$$

where

$$\mathbf{c}(\xi_1,\ldots,\xi_K) := \sum_{1 \leq i < j \leq K} f(d(x_i,x_j)).$$

[Seidl 1999], [Gori-Giorgi et al. 2009].

Barycenter problems

$$\inf_{\Gamma(\rho_1,\ldots,\rho_K)} \int \mathbf{c}(\xi_1,\ldots,\xi_K) d\pi(\xi_1,\ldots,\xi_K)$$

where

$$\mathbf{c}(\xi_1,\ldots,\xi_K) := \inf_{\xi' \in \mathcal{X}} \sum_{i=1}^K c(\xi',\xi_i).$$

Barycenter problems

$$\inf_{\Gamma(\rho_1,\ldots,\rho_K)}\int c(\xi_1,\ldots,\xi_K)d\pi(\xi_1,\ldots,\xi_K)$$

where

$$c(\xi_1,\ldots,\xi_K):=\inf_{\xi'\in\mathcal{X}}\sum_{i=1}^Kc(\xi',\xi_i).$$

Equivalent to:

$$\inf_{\rho} \sum_{i=1}^{K} C(\rho_i, \rho),$$

where

$$C(
ho_i,
ho):=\inf_{\pi\in\Gamma(
ho_i,
ho)}\int c(x,x')d\pi(x,x').$$

[Agueh and Carlier 2011].

What is the connection between (AT) and (MOT)?

What is the connection between (AT) and (MOT)?

• How to find a saddle $(\tilde{\mu}^*, f^*)$ for the (AT) problem?

What is the connection between (AT) and (MOT)?

• How to find a saddle $(\tilde{\mu}^*, f^*)$ for the (AT) problem? Answer: Solve a certain MOT problem and its dual.

Theorem [NGT, Jacobs, Kim 22']: For arbitrary $k \geq 2$

$$(\mathsf{AT})(\mu) = 1 - \frac{1}{2} \inf_{\pi \in \Pi_k(\mu)} \int_{\mathcal{Z}_*^K} \mathbf{c}(z_1, \dots, z_K) d\pi(z_1, \dots, z_K),$$

for some cost function c.

- From π^* can construct $\tilde{\mu}^*$.
- $\tilde{\mu}^*$ concentrates on barycenters (w.r.t. cost c) of groups of k or less points in the support of μ_{\times} .
- From dual of (MOT) can construct f^* .

Theorem [NGT, Jacobs, Kim 22']: For arbitrary $k \geq 2$

$$(\mathsf{AT})(\mu) = 1 - \frac{1}{2} \inf_{\pi \in \Pi_k(\mu)} \int_{\mathcal{Z}_*^K} \mathbf{c}(z_1, \dots, z_K) d\pi(z_1, \dots, z_K),$$

for some cost function **c**. A given $c: \mathcal{X} \times \mathcal{X} \to [0, \infty]$ induces a **c**.

- From π^* can construct $\tilde{\mu}^*$.
- $\tilde{\mu}^*$ concentrates on barycenters (w.r.t. cost c) of groups of k or less points in the support of μ_{\times} .
- From dual of (MOT) can construct f^* .

Precise MOT problem

Set $\mathcal{Z}_* := \mathcal{Z} \cup \{ \widehat{\mathbb{Q}} \}$.

$$\inf_{\pi \in \Pi_k(\mu)} \int_{\mathcal{Z}_*^K} \mathbf{c}(z_1, \dots, z_K) d\pi(z_1, \dots, z_K).$$

Couplings:

$$\Pi_{\mathcal{K}}(\mu) := \left\{ \pi \in \mathcal{P}(\mathcal{Z}_{*}^{\mathcal{K}}) : P_{i\sharp}\pi = \frac{1}{2\mu(\mathcal{Z})}\mu(\cdot \cap \mathcal{Z}) + \frac{1}{2}\delta_{\mathfrak{Q}}, \quad \forall i \right\}.$$

Cost:

$$\mathbf{c}(z_1,\ldots,z_K):=\widehat{\mu}_{\vec{z}}(\mathcal{Z})-\mathsf{AT}(\widehat{\mu}_{\vec{z}}),$$

where $\widehat{\mu}_{\vec{z}}$ is the positive measure defined as:

$$\widehat{\mu}_{\vec{z}} := \frac{1}{K} \sum_{l \text{ s.t. } z_l \neq \widehat{\square}}^{K} \delta_{z_l}.$$

Toy example

Let
$$c(x, \tilde{x}) = c_{\varepsilon}(x, \tilde{x}) = \begin{cases} 0 & \text{if } d(x, \tilde{x}) \leq \varepsilon \\ +\infty & \text{otherwise} \end{cases}$$

$$\mu = \omega_1 \delta_{(x_1, 1)} + \omega_2 \delta_{(x_2, 2)} + \omega_3 \delta_{(x_3, 3)}$$

Case 1:

Case 2:

Case 3:

Case 4 i:

Case 4 ii:

$$(\mathsf{AT})(\mu) = 1 - \frac{1}{2} \inf_{\pi \in \Pi_k(\mu)} \int_{\mathcal{Z}_*^K} \mathbf{c}(z_1, \dots, z_K) d\pi(z_1, \dots, z_K),$$

for cost function **c**:

$$\mathbf{c}(z_1,\ldots,z_K) := \widehat{\mu}_{\vec{z}}(\mathcal{Z}) - \mathsf{AT}(\widehat{\mu}_{\vec{z}}),$$

where $\hat{\mu}_{\vec{z}}$ is the positive measure defined as:

$$\widehat{\mu}_{\vec{z}} := rac{1}{K} \sum_{l ext{ s.t. } z_l
eq \widehat{\mathbb{Q}}}^{K} \delta_{z_l}.$$

Theorem (NGT, Jacobs, Kim, 2022)

Suppose that (π^*, ϕ^*) is a solution pair for the MOT problem and its dual. Define f^* and $\widetilde{\mu}^*$ according to:

$$f_i^* := \left(\max\left\{\sum_{j=1}^K \phi_j^*(\cdot, i) + \sum_{j=1}^K \phi_j^*(\underline{\bigcirc}), 0\right\}\right)^{\overline{c}}$$

and for any test function h on \mathcal{X} ,

$$\int_{\mathcal{X}} h(\widetilde{x}) d\widetilde{\mu}_{i}^{*}(\widetilde{x}) := \int_{\mathcal{Z}_{*}^{K}} \left\{ \int_{\mathcal{X}} h(\widetilde{x}) d\widetilde{\mu}_{\vec{z},i}^{*}(\widetilde{x}) \right\} d\pi^{*}(\vec{z}),$$

where $\widetilde{\mu}_{\vec{z},i}^*$ is the i-th marginal of $\widetilde{\mu}_{\vec{z}}^*$, an optimal adversarial attack which achieves $\mathbf{c}(z_1,\ldots,z_K)$ given $\vec{z}=(z_1,\ldots,z_K)$. Then $(f^*,\widetilde{\mu}^*)$ is a saddle for problem (AT).

Generalized barycenter problems

$$\inf_{\lambda,\widetilde{\mu}_1,...,\widetilde{\mu}_K} \lambda(\mathcal{X}) + \sum_{i=1}^K C(\mu_i,\widetilde{\mu}_i) \quad \text{s.t. } \lambda \geq \widetilde{\mu}_i \ \forall i = 1,\ldots,K.$$

Generalized barycenter problems

$$\inf_{\lambda,\widetilde{\mu}_1,\ldots,\widetilde{\mu}_K} \lambda(\mathcal{X}) + \sum_{i=1}^K C(\mu_i,\widetilde{\mu}_i) \quad \text{s.t. } \lambda \geq \widetilde{\mu}_i \ \forall i = 1,\ldots,K.$$

 $(AT)(\mu)$

Generalized barycenter problems

$$\inf_{\lambda,\widetilde{\mu}_1,...,\widetilde{\mu}_K} \lambda(\mathcal{X}) + \sum_{i=1}^K C(\mu_i,\widetilde{\mu}_i) \quad \text{s.t. } \lambda \geq \widetilde{\mu}_i \ \forall i=1,\ldots,K.$$

(MOT)

[NGT, Jacobs, Kim 22']

$$\inf_{\rho} \sum_{i=1}^{K} C(\rho_i, \rho)$$

(MOT)

[Agueh and Carlier 2011].

$$(\mathsf{AT})(\mu) = 1 - \frac{1}{2} \inf_{\pi \in \Pi_k(\mu)} \int_{\mathcal{Z}_*^K} \mathbf{c}(z_1, \dots, z_K) d\pi(z_1, \dots, z_K),$$

- Equivalence between (AT) and computational OT!
- Geometric description of optimal adversarial attacks!
- Specific OT algorithms for this problem?
- Generalizations to other loss functions?
- In binary case (i.e., k=2): [Baghoji, Cullina, Mittal 19'], [Pydi, Jog 20'], [NGT and Murray 20'].

2. A regression problem in a mean field regime

A mean field model of NNs

- z = (x, y), $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$.
- $f(x) = f_{\nu}(x) := \int_{\Theta} ah(b \cdot x) d\nu(a, b)$, where: $\theta = (a, b) \in \Theta$, $\nu \in \mathcal{P}(\Theta)$; h is non-linearity.
- $\bullet \ \ell(\tilde{z},f_{\nu}):=(f_{\nu}(\tilde{x})-\tilde{y})^2.$

- z = (x, y), $x \in \mathbb{R}^d$ and $y \in \mathbb{R}$.
- $f(x) = f_{\nu}(x) := \int_{\Theta} ah(b \cdot x) d\nu(a, b)$, where: $\theta = (a, b) \in \Theta$, $\nu \in \mathcal{P}(\Theta)$; h is non-linearity.
- $\bullet \ \ell(\tilde{z},f_{\nu}):=(f_{\nu}(\tilde{x})-\tilde{y})^2.$
- (AT) problem:

$$\inf_{\nu \in \mathcal{P}(\Theta)} \sup_{\tilde{\mu} \in \mathcal{P}(\mathcal{Z})} \left\{ \mathbb{E}_{(\tilde{x}, \tilde{y}) \sim \tilde{\mu}} \left(\ell(\tilde{z}, f_{\nu}) \right) - c_{a} W_{2}^{2}(\mu, \tilde{\mu}) \right\}.$$

Now, problem:

$$\inf_{\nu \in \mathcal{P}(\Theta)} \sup_{\tilde{\mu} \in \mathcal{P}(\mathcal{Z})} \left\{ \mathbb{E}_{(\tilde{x}, \tilde{y}) \sim \tilde{\mu}} \left(\ell(\tilde{z}, f_{\nu}) \right) - c_{a} W_{2}^{2}(\mu, \tilde{\mu}) \right\}$$

is equivalent to

$$\min_{\nu \in \mathcal{P}(\Theta)} \max_{\pi \in \mathcal{P}(\mathcal{Z} \times \mathcal{Z}) \text{ s.t. } \pi_z = \mu} \mathcal{U}(\pi, \nu),$$

where

$$\mathcal{U}(\pi,\nu) := \int_{\mathcal{Z}} \int_{\mathcal{Z}} (f_{\nu}(\tilde{x}) - \tilde{y})^2 d\pi(z,\tilde{z}) - c_a \int_{\mathcal{Z} \times \mathcal{Z}} |z - \tilde{z}|^2 d\pi(z,\tilde{z}).$$

Target:

$$\min_{\nu \in \mathcal{P}(\Theta)} \max_{\pi \in \mathcal{P}(\mathcal{Z} \times \mathcal{Z}) \text{ s.t. } \pi_z = \mu} \mathcal{U}(\pi, \nu),$$

Ascent-Descent in spaces of measures:

$$\begin{cases} \partial_{t} \pi_{t} &= -\eta_{t} \operatorname{div}_{z,\tilde{z}}(\pi_{t}(0, \nabla_{\tilde{z}} \mathcal{U}_{\pi})) \\ &+ \kappa_{t} \pi_{t} \left(\mathcal{U}_{\pi}(z, \tilde{z}) - \int \mathcal{U}_{\pi}(z, \tilde{z}') d\pi_{t}(\tilde{z}'|z) \right) \\ \partial_{t} \nu_{t} &= \eta_{t} \operatorname{div}_{\theta}(\nu_{t} \nabla_{\theta} \mathcal{U}_{\nu}(\theta)) - \kappa_{t} \nu_{t} \left(\mathcal{U}_{\nu}(\theta) - \int \mathcal{U}_{\nu}(\theta') d\nu_{t}(\theta') \right), \end{cases}$$

where $\mathcal{U}_{\pi}, \mathcal{U}_{\nu}$ first variations of \mathcal{U} w.r.t. π, ν , respectively.

Target:

$$\min_{\nu \in \mathcal{P}(\Theta)} \max_{\pi \in \mathcal{P}(\mathcal{Z} \times \mathcal{Z}) \text{ s.t. } \pi_z = \mu} \mathcal{U}(\pi, \nu),$$

Ascent-Descent in spaces of measures (precisely, projected ascent-descent w.r.t. Wasserstein-Fisher-Rao metric):

$$\begin{cases} \partial_{t} \pi_{t} &= -\eta_{t} \operatorname{div}_{z,\tilde{z}}(\pi_{t}(0, \nabla_{\tilde{z}} \mathcal{U}_{\pi})) \\ &+ \kappa_{t} \pi_{t} \left(\mathcal{U}_{\pi}(z, \tilde{z}) - \int \mathcal{U}_{\pi}(z, \tilde{z}') d\pi_{t}(\tilde{z}'|z) \right) \\ \partial_{t} \nu_{t} &= \eta_{t} \operatorname{div}_{\theta}(\nu_{t} \nabla_{\theta} \mathcal{U}_{\nu}(\theta)) - \kappa_{t} \nu_{t} \left(\mathcal{U}_{\nu}(\theta) - \int \mathcal{U}_{\nu}(\theta') d\nu_{t}(\theta') \right), \end{cases}$$

where $\mathcal{U}_{\pi}, \mathcal{U}_{\nu}$ first variations of \mathcal{U} w.r.t. π, ν , respectively.

Particle system approximation:

$$\pi_t^{N} = \frac{1}{N} \sum_{i=1}^{N} \omega_t^i \delta_{(Z_t^i, \tilde{Z}_t^i)}, \quad \nu_t^{N} = \frac{1}{N} \sum_{i=1}^{N} \alpha_t^i \delta_{\theta_t^i},$$

where:

$$d_t(Z_t^i, \tilde{Z}_t^i) = (0, \eta_t \nabla_{\tilde{z}} \mathcal{U}_{\pi}(\pi_t^N, \nu_t^N; Z_t^i, \tilde{Z}_t^i))$$

$$\begin{split} d_t \omega_t^i &= \kappa_t \omega_t^i \left(\mathcal{U}_{\pi}(\pi_t^N, \nu_t^N; Z_t^i, \tilde{Z}_t^i) - \int \mathcal{U}_{\pi}(\pi_t^N, \nu_t^N; Z_t^i, \tilde{z}') d\pi_t^N(\tilde{z}' | Z_t^i) \right) \\ d_t \theta_t^i &= -\eta_t \nabla_{\theta} \mathcal{U}_{\nu}(\pi_t^N, \nu_t^N; \theta_t^i) \\ d_t \alpha_t^i &= -\kappa_t \alpha_t^i \left(\mathcal{U}_{\nu}(\pi_N^N, \nu_t^N; \theta_t^i) - \int \mathcal{U}_{\nu}(\pi_t^N, \nu_t^N; \theta') d\nu_t^N(\theta') \right); \end{split}$$

and given initial condition $(Z_0^i, \tilde{Z}_0^i, \omega_0^i, \vartheta_0^i, \alpha_0^i)$ (possibly random).

Part 1: Mean field limit of particle system

Theorem (C.A. García Trillos, NGT 23')

Suppose that:

- ullet Θ, \mathcal{Z} are bounded subsets of Euclidean space.
- $\nabla U_{\pi}, \nabla U_{\nu}$ are Lipschitz.
- Initial conditions $(Z_0^i, \tilde{Z}_0^i, \omega_0^i, \theta_0^i, \alpha_0^i)$ are well prepared.

Then, for every fixed T > 0, we have:

$$\sup_{t \in [0,T]} W_1(\pi_t^N, \pi_t) \to 0; \quad \sup_{t \in [0,T]} W_1(\nu_t^N, \nu_t) \to 0,$$

as $N \to \infty$, where (π_t, ν_t) solve Ascent-Descent dynamics PDE.

Both (π_t^N, ν_t^N) and (π_t, ν_t) solve the same equation:

$$\begin{cases} \partial_{t} \pi_{t} &= -\eta_{t} \operatorname{div}_{z,\tilde{z}}(\pi_{t}(0, \nabla_{\tilde{z}} \mathcal{U}_{\pi})) \\ &+ \kappa_{t} \pi_{t} \left(\mathcal{U}_{\pi}(z, \tilde{z}) - \int \mathcal{U}_{\pi}(z, \tilde{z}') d\pi_{t}(\tilde{z}'|z) \right) \\ \partial_{t} \nu_{t} &= \eta_{t} \operatorname{div}_{\theta}(\nu_{t} \nabla_{\theta} \mathcal{U}_{\nu}(\theta)) - \kappa_{t} \nu_{t} \left(\mathcal{U}_{\nu}(\theta) - \int \mathcal{U}_{\nu}(\theta') d\nu_{t}(\theta') \right), \end{cases}$$

but they differ in their initial conditions (π_0^N, ν_0^N) and (π_0, ν_0) .

Mean field limit of particle system

Theorem (C.A. García Trillos, NGT 23')

Suppose that:

- ullet Θ, \mathcal{Z} are bounded subsets of Euclidean space.
- $\nabla U_{\pi}, \nabla U_{\nu}$ are Lipschitz.
- Initial conditions $(Z_0^i, \tilde{Z}_0^i, \omega_0^i, \theta_0^i, \alpha_0^i)$ are well prepared.

Then, for every fixed T > 0, we have:

$$\sup_{t \in [0,T]} W_1(\pi_t^N, \pi_t) \to 0; \quad \sup_{t \in [0,T]} W_1(\nu_t^N, \nu_t) \to 0,$$

as $N \to \infty$, where (π_t, ν_t) solve Ascent-Descent dynamics PDE.

An example of well prepared initial conditions

Set $\omega_0^i = \alpha_0^i = 1$ and suppose that, as $N \to \infty$, we have:

$$W_1(\nu_0^N, \nu_0) \to 0,$$

as well as

$$\inf_{v \in \Gamma_{\mathrm{Opt}}(\pi_{0,z}^N,\pi_{0,z})} \int W_1(\pi_0^N(\cdot|z_0'),\pi_0(\cdot|z_0)) dv(z_0',z_0) \to 0$$

(Knothe transport and reminescent to TLp metric).

An example of well prepared initial conditions

To satisfy:

$$\inf_{\upsilon \in \Gamma_{\mathrm{Opt}}(\pi_{0,z}^N,\pi_{0,z})} \int W_1(\pi_0^N(\cdot|z_0'),\pi_0(\cdot|z_0)) d\upsilon(z_0',z_0) \to 0,$$

set, for example,

$$\pi_0^N = \frac{1}{nm} \sum_{ij} \delta_{(Z_0^i, \tilde{Z}_0^{ij})},$$

where

•
$$Z_0^i \sim \pi_{0,z} = \mu$$
, $i = 1, \ldots, n$,

•
$$\tilde{Z}_0^{ij} \sim \pi_0(\cdot|Z_0^i)$$
, $j = 1, \ldots, m$, $i = 1, \ldots, n$.

An example of well prepared initial conditions

Lemma (C.A. García Trillos, NGT 23')

Let A, B be two bounded Borel subsets of \mathbb{R}^d and $\mathbb{R}^{d'}$, respectively. Let $\mu \in \mathcal{P}(A)$, and let $u \in A \mapsto \mu_u(\cdot) \in \mathcal{P}(B)$ be a measurable map.

Then, for every sequence $\{\Upsilon_n\}_{n\in\mathbb{N}}\subseteq\Gamma(\mu,\mu)$ satisfying

$$\lim_{n\to\infty}\int_{A\times A}|u-u'|d\Upsilon_n(u,u')=0,$$

we have

$$\lim_{n\to\infty}\int_{A\times A}W_1(\mu_u,\mu_{u'})d\Upsilon_n(u,u')=0.$$

Part 2: Long time behavior mean field system

Theorem (C.A. García Trillos, NGT 23')

Fix $\delta > 0$. Let π, ν the solution to descent-ascent dynamics for η_t, κ_t appropriately tuned. Define:

$$\overline{
u}_t = rac{1}{t} \int_0^t
u_s ds, \quad \overline{\pi}_t = rac{1}{t} \int_0^t \pi_s ds.$$

Then, for all large enough t,

$$\sup_{\tilde{\pi} \text{ s.t. } \tilde{\pi}_z = \mu} \mathcal{U}(\tilde{\pi}, \bar{\nu}(t)) - \inf_{\tilde{\nu}} \mathcal{U}(\bar{\pi}(t), \tilde{\nu}) \leq \delta.$$

Long time behavior mean field system

Theorem (C.A. García Trillos, NGT 23')

Fix $\delta > 0$. Let π, ν the solution to descent-ascent dynamics for η_t, κ_t appropriately tuned. Define:

$$\overline{
u}_t = rac{1}{t} \int_0^t
u_s ds, \quad \overline{\pi}_t = rac{1}{t} \int_0^t \pi_s ds.$$

Then, for all large enough t,

$$\sup_{\tilde{\pi} \text{ s.t. } \tilde{\pi}_z = \mu} \mathcal{U}(\tilde{\pi}, \bar{\nu}(t)) - \inf_{\tilde{\nu}} \mathcal{U}(\bar{\pi}(t), \tilde{\nu}) \leq \delta.$$

However, this is under very stringent conditions on initializations (both π_0, ν_0). On ν_0 , these conditions are not so different to those in **Chizat and Bach 17'**, for example.

The "strongly concave" case

However, roles of π and ν are quite different. In the setting:

$$\mathcal{U}(\pi,\nu) = \int_{\mathcal{Z}} \int_{\mathcal{Z}} (f_{\nu}(\tilde{x}) - \tilde{y})^2 d\pi(z,\tilde{z}) - c_a \int_{\mathcal{Z}\times\mathcal{Z}} |z - \tilde{z}|^2 d\pi(z,\tilde{z}),$$

The "strongly concave" case

However, roles of π and ν are quite different. In the setting:

$$\mathcal{U}(\pi,\nu) = \int_{\mathcal{Z}} \int_{\mathcal{Z}} (f_{\nu}(\tilde{x}) - \tilde{y})^2 d\pi(z,\tilde{z}) - c_{\mathsf{a}} \int_{\mathcal{Z} \times \mathcal{Z}} |z - \tilde{z}|^2 d\pi(z,\tilde{z}),$$

if c_a sufficiently large, then there exists $\lambda > 0$ such that $\forall \nu \in \mathcal{P}(\Theta), \ \forall \pi \in \mathcal{P}(\mathcal{Z}^2)$ with $\pi_z = \mu$:

$$\int |\nabla_{\tilde{z}} \mathcal{U}_{\pi}(\pi, \nu; z, \tilde{z})|^2 d\pi(z, \tilde{z}) \ge \lambda(m_{\nu}^* - \mathcal{U}(\pi, \nu)), \tag{PL}$$

where $m_{\nu}^* := \sup_{\tilde{\pi} \text{ s.t. } \tilde{\pi}_{\tau} = \mu} \mathcal{U}(\tilde{\pi}, \nu)$.

Theorem (C.A. García Trillos, NGT 23')

Fix $\delta > 0$. Suppose PL assumption holds Let π, ν the solution to (slightly modified) descent-ascent dynamics for η_t, κ_t appropriately tuned, and with ν_0 appropriately initialized and π_0 arbitrary . Define:

$$\overline{\nu}_t = rac{1}{t} \int_0^t
u_s ds, \quad \overline{\pi}_t = rac{1}{t} \int_0^t \pi_s ds.$$

Then, for all large enough t,

$$\sup_{\tilde{\pi} \text{ s.t. } \tilde{\pi}_z = \mu} \mathcal{U}(\tilde{\pi}, \bar{\nu}(t)) - \inf_{\tilde{\nu}} \mathcal{U}(\bar{\pi}(t), \tilde{\nu}) \leq \delta.$$

Related work: "Certifying Some Distributional Robustness with Principled Adversarial Training" **Sinha, Namkoong, and Duchi 18'.**

$$\min_{\nu \in \mathcal{P}(\Theta)} \max_{\pi \in \mathcal{P}(\mathcal{Z} \times \mathcal{Z}) \text{ s.t. } \pi_z = \mu} \mathcal{U}(\pi, \nu),$$

- Ascent-descent algorithms.
- Some convergence results.
- Less stringent assumptions.
- Other geometries modeling adversarial costs?
- Other related work:
 - "A mean-field analysis of two-player zero-sum games" Domingo-Enrich et al 20'.
 - "An Exponentially Converging Particle Method for the Mixed Nash Equilibrium of Continuous Games" Chizat and Wang 22'.

An analyst's perspective on adversarial training:

- NGT and R. Murray "Adversarial classification: necessary conditions and geometric flows" *Journal of Machine Learning research (JMLR)* 22'.
- C. García Trillos, NGT "On the regularized risk of distributionally robust learning over deep neural networks" Research in the Mathematical Sciences (RMS) 22'.
- L. Bungert, NGT, R. Murray "The Geometry of Adversarial Training in Binary Classification" *To appear in Information and Inference: A Journal of the IMA*.
- NGT, M. Jacobs, J. Kim "The multimarginal optimal transport formulation of adversarial multiclass classification" To appear in JMLR.
- C. García Trillos, NGT "On adversarial robustness and the use of Wasserstein ascent-descent dynamics to enforce it" https://arxiv.org/abs/2301.03662 23'.

Thank you for your attention!

Special thanks to:

- -NSF Grants: DMS-2005797 and DMS-2236447
- -All my collaborators.

