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Neural networks, although accurate on clean data, are sensitive to
adversarial attacks:

+.007 x

. T +
x sign(V,J(0,x,y)) esign(VaJ (6, 2, 1))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure: Picture taken from Goodfellow et al. (2015)

[Szegedy et al. 2014] , [Goodfellow et al. 2015]
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Figure: An adversarial attack of a clean image in a safety-critical setting.
Picture taken from Eykholt et al. (2018)
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Formalization of adversarial training problem

How to train classifiers to be robust to (specific) adversarial
attacks?:

inlk (0, (x : AT
gnel(g (x,y)~pu |:>"<€ngx) ( 7(X7y)):| ( )

[Madry et al 2017]

Compare to unrobust problem:

min B y)n 108, (x,y))] -
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Formalization of adversarial training problem

How to train classifiers to be robust to (specific) adversarial
attacks?:

inlk 0(0, (X
gnelg (x,y )~ [iesgjzx) ( ,(X,)/)):| 3

or its distributionally robust optimization (DRQ) version:

inf  sup [Esz;[l(z,0)].
9€0 ji:D(p,i)<e #12,0)
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Formalization of adversarial training problem

How to train classifiers to be robust to (specific) adversarial
attacks?:

inlk 0(0, (%
gnel(g (x,y)~pu |:)~<€SE£X) ( 7(X7y)):| 9

or its distributionally robust optimization (DRO) version:
inf sup EEN,& [6(2, (9)] ,
€0 fi:D(p,fi)<e

or its explicit penalization version:

nggs;p Espi [€(Z,0)] — C(u, 2).
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inf supEsj [4(2,0)] — C(u, ii). (AT)
0ce g

@ How do we find a solution to this problem?

@ Can we find meaningful upper and lower bounds?
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inf  sup  Esz;[l(Z,0)]. (AT)
00 iD(up)<e
@ How do we find a solution to this problem?

@ Can we find meaningful upper and lower bounds?

@ How is a problem like (AT) related to regularization methods?
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inf sup Ez.z [0(2,0)] — C(u, fi)- (AT)
0c© fi

@ How do we find a solution to this problem?
@ Can we find meaningful lower and upper bounds?

@ How is a problem like (AT) related to regularization methods?
i.e. a problem like:

inf R(u,0) + AF(9), (Reg)
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inf  sup Ez;-;|[l(z,0)]. AT
L i [6(Z,0)] (AT)

@ How do we find a solution to this problem?
@ Can we find meaningful lower and upper bounds?

@ How is a problem like (AT) related to regularization methods?
i.e. a problem like:

inf R(u,0) + AF(9), (Reg)
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inf sup Ez-.z [£(2.6)] — C(11, ). (AT)
0cO fi

What is the geometry of:
@ Optimal robust classifiers.

@ Optimal adversarial attacks.
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Instead of the parametric problem

nggs;p]Ezwﬁ [4(2,0)] — C(, ). (1)

we'll consider non-parametric problems:

;gjfszpﬁ z~ii [0(2, F)] — Cp, ). (2)
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We'll consider two settings:
© A multilabel classification problem with an agnostic learner.

@ A regression problem in a mean field regime.
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We'll consider two settings:

© A multilabel classification problem with an agnostic learner.

e Lower bounds for general AT problems.
o Connections to MOT and (generalized) barycenter problems.

@ A regression problem in a mean field regime.

e How to find (approximate) Nash equilibria in mean-field
learning settings.

Overarching goal: an invitation to look at (AT) from geometric
and analytic perspectives.
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1. A multilabel classification problem
with an agnostic learner
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A multilabel classification problem with an agnostic learner

o Type of data: z = (x,y) € RY x {1,...,k}, k> 2.

@ Learner’s actions: measurable f = (f1, ..., fi) with:
fi : R —[0,1], and .1, f; = 1 (Agnostic learner).

e Loss function: {(z,f) =¥4((x,y),f) =1—f,(x), i.e. 0-1 loss.
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A multilabel classification problem with an agnostic learner

inf sup <K oyon(U(z,f))— C(p, o),
o sup (B ((2.F)) = Clu )]

where

Clu, i) == min / c2(z,3)dr(z, )
el (i)

for some cost function cz : Z x Z — R of the form:

3 PR
cz(z,2) = {C(X’X) I Y ): c:RYxRY— [0, x].
00 ity #Y,
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Lower bounds for more general AT problems:

inf sup Ez iy~ (6(27 f))_ C(U)ﬂ) y
f measurable ﬂGP(Z){ (% 9)~i }

is smaller than

inf  sup <K oyon(l(Z,f))— Cp,it) .
fef,ﬁep(z){ )i (02 F) = Clps ) }
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Example of cost function:

inf sup <Eioyon(U(z,f))— Clp, o),
o sup (B ((2.F)) = Clu )]

where

C(u, i) == min / c2(z,3)dr(z, )
el (i)

for some cost function cz : Z x Z — R of the form:

X ify =19 0 ifd(x,X)<
ey {9 =T [0 <
o' if y £V, oo ifd(x,X)>¢
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Example of cost function:

When
c(x, %) = {ZO :1{ Zgi;; i i
problem
ir}f ﬁgS;E)Z) {E(g,y)wﬁ (2, 1)) — C(p, /1)}
becomes:

ir}ﬂE(X,y),\J,u ( sup f(()?,y), f)) .

x€eB:(x)
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inf sup K XV~ (6(27 f)) — C(:un&) 9
‘ ﬁeP(Z){ (%,5)~i }

where

C(u, i) == min / c2(z.3)dr(z, %)
el (p,i)

for some cost function cz : Z x Z — R of the form:

3 PR
cz(z,2) = {C(X’X) I Y )N/ c:RYxRY — [0, x].
00 ity #¥,
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Adversarial risk

MNIST classes 1, 4, 6 and 9 (£2 norm)
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We computed the above using off-the-shelf MOT solvers...
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Multimarginal Optimal Transport (MOT)
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inf /c(gl,...,gK)dw(fl, &) (MOT)

[(p1,-..,PK)

@ Applications in Physics.
@ Applications in Economics.

@ Machine learning.
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Density functional theory

inf /C(Sl,---,SK)dW(fl,.-.,SK)

[(p1,-..,PK)

where

(&, k)= D f(d(xi, %))

1<i<j<K

[Seidl 1999], [Gori-Giorgi et al. 2009].
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Barycenter problems

inf /C(&,---,fx)dﬂ(&,.-.,ﬁx)

C(p1se-5PK)

where
K

C(fl,...,gK) = inf C(fl,g,’).

/
§'ex i
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Barycenter problems

inf /C(gla"-ng)dﬂ-(gla"'agK)

M(p1;--50k)

where
K

Clérs- 16 = Jnf 30 (€6,

i=1
Equivalent to:

K
inf > C(pi p),
i=1

where

C(pi,p) := inf /c(x,x’)dw(x,x’).
7-‘-er(piap)

[Agueh and Carlier 2011].
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What is the connection between (AT) and
(MOT)?
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What is the connection between (AT) and
(MOT)?

@ How to find a saddle (ii*, f*) for the (AT) problem?
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What is the connection between (AT) and
(MOT)?

@ How to find a saddle (ii*, f*) for the (AT) problem?
Answer: Solve a certain MOT problem and its dual.
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Theorem [NGT, Jacobs, Kim 22’]: For arbitrary k > 2

1
(AT)(/L) =1——= inf / C(Zl,...,ZK)dT('(Zl,...,ZK),
2 meMi (1) J zK
for some cost function c.

@ From 7™ can construct ji*.
@ [i* concentrates on barycenters (w.r.t. cost c¢) of groups of k
or less points in the support of L.

@ From dual of (MOT) can construct f*.
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Theorem [NGT, Jacobs, Kim 22’]: For arbitrary k > 2

1
(AT)(n) =1— = inf / c(z,...,zx)dn(z1, ..., 2k),
2 meNy(p) J zK

for some cost function c. A given ¢ : X x X — [0, o] induces a c.

@ From 7™ can construct ji*.
@ [i* concentrates on barycenters (w.r.t. cost c¢) of groups of k
or less points in the support of L.

@ From dual of (MOT) can construct f*.
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Precise MOT problem

Set Z, := ZU{A}.

inf / C(Zl,...,ZK)dﬂ'(Zl,...,ZK).
e (p) J zK

@ Couplings:

1
M (p) = {W e P(Zf) : Pyr = w(-NZ)+ 55@, Vi}.

2p(Z)

@ Cost:
C(217 I 7ZK) = ﬁZ(Z) o AT(ﬁf)a

where (i is the positive measure defined as:
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Toy example

0 if d(x,x) <
Let c(x, %) = c.(x, §) = { fdlx %)< e
+o00  otherwise

W= W15(x1,1) —+ w25(X2’2) + <'L):))(S~(X3,3)
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Case 1:
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Case 2:
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Case 4 i:

X2
O
w2 — Az
X12
A2
A1
= X
X23 1
® O
w1 — A1
X13
w3 — A3 o
A3
X3
@
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Case 4 ii:

X2
O
W>
32
W»
W3
X13
W3
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X5 Case 2 Case 3

‘*
X1 —
X12

w3

X3
@ w3

X5 Case 4 - (i) X5 Case 4 - (ii)
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1

(AT)(,LL) =1—— inf / C(Zl,...,ZK)dT('(Zl,...,ZK),
2 meMi(p) J zK

for cost function c:

C(Zl, ce ,ZK) L= ﬁz(Z) — AT(ﬁg),
where 11z is the positive measure defined as:

1
'LLE'_R Z
[ s.t

K
Oz,
. 217
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Theorem (NGT, Jacobs, Kim, 2022)

Suppose that (7*, ¢*) is a solution pair for the MOT problem and
its dual. Define f* and pu* according to:

K K
1= ((max { >0 (21)+ 265 (), 0})

and for any test function h on X,

[ m@di = [ [ adiz () de (@),

k

where i . is the i-th marginal of u%, an optimal adversarial attack
which achieves ¢(z1,...,zx) given Z = (z1,...,2K). Then (f*, 1*)
is a saddle for problem (AT).

v
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Generalized barycenter problems

_inf
Anu*la'“a.u’K
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Generalized barycenter problems
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Generalized barycenter problems

K
Jnf  MX) 4+ ) Cpiy i) st A>jVi=1,... K

Q——) (MOT)

[NGT, Jacobs, Kim 22’]
K
inf > Cpi:p)
=1

L_> (MOT)

[Agueh and Carlier 2011].
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1

(AT)(,LL) =1—— inf / C(Zl,...,ZK)dT('(Zl,...,ZK),
2 weMy(p) J zK

Equivalence between (AT) and computational OT!
Geometric description of optimal adversarial attacks!
Specific OT algorithms for this problem?
Generalizations to other loss functions?

In binary case (i.e., k = 2): [Baghoji, Cullina, Mittal 19'],
[Pydi, Jog 20'], [NGT and Murray 20'].
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2. A regression problem in a mean
field regime
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A mean field model of NNs

o z=(x,y), x €R% and y € R.

o f(x)="f,(x):= Jgah(b-x)dv(a,b), where:
0 = (a,b) € ©, v € P(©); his non-linearity.

o U(z.£) = (%) — 9
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© z=(x,y), x €R9 and y € R.

o f(x)="f,(x):= Jgah(b-x)dv(a,b), where:
0 =(a,b) € ©, v € P(O); his non-linearity.

° Uz,f,) = (f(X)—7)*

o (AT) problem:

inf sSup E;(NNN gzafl/ _CaW2 ) ¢
veP(O) ﬁep(z){ (%.3) M( ( ) 5 (1 M)}
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Now, problem:
inf  sup <{Ezoven (U2, 1)) — caW2(u, fi
oty sup {Egxgyn (U2 6)) — caW (/)]

Is equivalent to

min max U(r,v),
vEP(O®) meEP(ZXZ) s.t. m=p

where

U(r,v) ::/Z/Z(f,,(;)—y)zdw(z,z)—caLXZ\z—zy2d7r(z,2).
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Target:

min max U(m, ),
veEP(®) meEP(ZXZ) s.t. m=p

Ascent-Descent in spaces of measures:

Oy = —nedivy s (me(0, Vsldy))
+reme (Un(2,2) — [ Ur(z, 2’)d7rt( '|2))
\8tyt = nedivg(v: Voldy, (0)) — kvt (Z/{,/ — fZ/{,,(H’)th(H’)) :

_/\

where U, ,U,, first variations of U w.r.t. m, v, respectively.
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Target:
min max U(m,v),
vEP(O)meP(ZXZ) s.t. m=p
Ascent-Descent in spaces of measures (precisely, projected
ascent-descent w.r.t. Wasserstein-Fisher-Rao metric):

f(?tm = —ndivy, 2(7Tt(0 Vsly))
< ke (Un(2,2) — [ Un(2 d7rt( '|2))
\atVt — UtdiVH(VtVHUV(‘g)) — Rtlt (U,, - f?/l,,(@’)dyt(ﬁ’)) ;

where U, U, first variations of U w.r.t. m, v, respectively.
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Particle system approximation:

1 Y 1 Y
- ] L N _ i<
=Ny vy 2y

where:

dt(ZleZ ) — (O ntv U (7Tt » Vi ,Zé,Z))

dt = o, (Un(el 1% 2L Z0) [ Un( ol 20,2 l(21 20
di; = —1:Volhy (7Tt » Vi ’Hi)

dtai — —/{tozi (Z/{V(WN,V,{LV;@Q) — /Z/{ (7Tt , Uy N. g/ )dv, (9')) ;

and given initial condition (Z§, Z§, w§, 9}, al)) (possibly random).
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Part 1: Mean field limit of particle system

Theorem (C.A. Garcia Trillos, NGT 23')
Suppose that:

@ O, Z are bounded subsets of Euclidean space.
o VU,,VU, are Lipschitz.
o Initial conditions (Z{, 26, wh, 05, o) are well prepared.

Then, for every fixed T > 0, we have:

sup W1(7T£V,7Tt) — 0: sup Wl(ut{v, ve) — 0,
te[0,T] te[0,T]

as N — oo, where (¢, v+) solve Ascent-Descent dynamics PDE.

v
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Both (7N, vN) and (¢, v;) solve the same equation:

{3t7rt — —ntdivz,g(wt(o, VEuﬂ-))
ke (Un(2,2) — [Un(z,2")dTe(Z]2))
\81_—Vt = ntdiVQ(VtVQZ/{V((g)) — RVt (Z/[y(e) — fZ/l,,(Q’)dut(Q’)) ,

/N

but they differ in their initial conditions (7}, »{) and (o, v0).
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Mean field limit of particle system

Theorem (C.A. Garcia Trillos, NGT 23')
Suppose that:

@ O, Z are bounded subsets of Euclidean space.
o VU,,VU, are Lipschitz.
o Initial conditions (Z{, Zﬁ, wh, 05, o) are well prepared.

Then, for every fixed T > 0, we have:

sup W1(7T£V,7Tt) — 0: sup Wl(ut{v, ve) — 0,
tG[O,T] tE[OaT]

as N — oo, where (¢, v+) solve Ascent-Descent dynamics PDE.

v
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An example of well prepared initial conditions

Set wé = 046 1 and suppose that, as N — oo, we have:
N
Wl(Vo ,Vo) — O,

as well as

inf / Wl(w(’)v(-]z(’)),wo(-]z()))dv(z(’),zo) — 0

(S rOpt(ﬂ'(l)\{z 7770,2)

(Knothe transport and reminescent to TLp metric).
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An example of well prepared initial conditions

To satisfy:

inf / W1(7T(/)V(°|26),7To('|Zo))dU(26,Zo) — 0,

(S rOpt (71-(/)\{2 7770,2)

set, for example,
Y 1
To = —— Y O/ 5ij
0 nm Z (Z{,23)

ij
where
o Z(-’).NT('O,ZZ/L, i:1,...,n,

o 70 ~mo(-|Zy),j=1,....,m i=1,....n
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An example of well prepared initial conditions

Lemma (C.A. Garcia Trillos, NGT 23")

Let A, B be two bounded Borel subsets of RY and R,
respectively. Let u € P(A), and let u € A py(-) € P(B) be a
measurable map.

Then, for every sequence { T n}pen C I'(u, ) satisfying

lim / lu— ' |dT y(u,u") =0,
AXA

n—oo

we have
lim Wi (g, pro )T n(u, u') = 0.
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Part 2: Long time behavior mean field system

Theorem (C.A. Garcia Trillos, NGT 23’)

Fix 0 > 0. Let w, v the solution to descent-ascent dynamics for
Ne, kKt appropriately tuned. Define:

1 [t 1 [t
vt B _/ Vst, ﬁt — — / ﬂ-sds.
t Jo t Jo

Then, for all large enough t,

sup U(7,D(t)) — irgfbl(fr(t), v) < 0.

7‘:‘,- s.t. 7,:(’-2:/1/
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Long time behavior mean field system

Theorem (C.A. Garcia Trillos, NGT 23")

Fix 0 > 0. Let m,v the solution to descent-ascent dynamics for
N, ke appropriately tuned. Define:

1 [t 1 [t
Vi = —/ vsds, T = —/ msds.
t Jo t Jo

Then, for all large enough t,

sup  U(F, 5(t)) — infU(R(t), 7) < 6.

T S.t. T=L

However, this is under very stringent conditions on initializations
(both g, 9). On 1, these conditions are not so different to those

in Chizat and Bach 17’, for example.
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The “strongly concave" case

However, roles of m and v are quite different. In the setting:

U(r,v) :/ /(f(x) V2dr(z,3) — /ZXZ 1z — 2[2dn(z, 3),

Nicolas Garcia Trillos UW-Madison Analysis of adversarial robustness



The “strongly concave" case

However, roles of m and v are quite different. In the setting:

U, v) //(f(x) VRdr(z,7) — /sz|z—z|2dw(z,z),

if c; sufficiently large, then there exists A > 0 such that
Vv € P(©), Vi € P(Z?) with 7, = pu:

/]ngfw(ﬂ, vz, 2)|?dn(z,2) > M(m: —U(x,v)), (PL)

~

* .
where my, := sup; v 5,—, U(T, V).
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Theorem (C.A. Garcia Trillos, NGT 23’)

Fix 0 > 0. Suppose PL assumption holds Let 7, v the solution to
(slightly modified) descent-ascent dynamics for n:, Kt appropriately
tuned, and with vy appropriately initialized and mq arbitrary .

Define:
1 [t 1 [t
Pt p— _/ Vsds’ ﬁt p— _/ 7T5d5.
t Jo t Jo

Then, for all large enough t,

sup  U(F, 5(t)) — infU(R(t), 7) < 0.

7‘:‘,- s.t. ﬁzzllz

Related work: “Certifying Some Distributional Robustness with

Principled Adversarial Training" Sinha, Namkoong, and Duchi
18’
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min max U(m, V),
veEP(O®) TeEP(ZXZ) s.t. m=p

Ascent-descent algorithms.

Some convergence results.

Less stringent assumptions.

Other geometries modeling adversarial costs?

Other related work:

© “A mean-field analysis of two-player zero-sum games"
Domingo-Enrich et al 20’.
@ "An Exponentially Converging Particle Method for the Mixed

Nash Equilibrium of Continuous Games" Chizat and Wang
22’
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An analyst's perspective on adversarial training:

NGT and R. Murray “Adversarial classification: necessary
conditions and geometric flows" Journal of Machine Learning
research (JMLR) 22'.

C. Garcia Trillos, NGT “On the regularized risk of
distributionally robust learning over deep neural networks"
Research in the Mathematical Sciences (RMS) 22'.

L. Bungert, NGT, R. Murray “The Geometry of Adversarial
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