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Copulas vs OT

Mathematical
Institute

Sklar's Theorem: d-dim df = marginals & copula.

How to compute E[¢(X, Y)]?

PARAMETRIC APPROACH NON-PARAMETRIC APPROACH
Fix a copula C.
Estimate the marginals of X and Y. Estimate the marginals of X and Y.
Compute Compute
p— f
Bl V)] = [[ clxy)dF it [ etxond
where F(x,y) = C(Fx(x), Fy(y)). where MN(Fx, Fy)...
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FIRST APPLICATION IN FINANCE OXFORD
Mathematical
Institute

DATA: MARKET PRICES OF OPTIONS

based on joint works with Stephan Eckstein, Gaoyue Guo, Tongseok Lim
see SIAM J. Financial Math. (2021), Ann. App. Probab. (2019).
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OXFORD

Mathematical
Institute

In the market | can expect to see prices of (many) European options.
What do | do with this information?
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In the market | can expect to see prices of (many) European options.
What do | do with this information?

> Model specific: we typically consider {Py : # € ©} and use option
prices to calibrate a particular Pg-.
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Mathematical
Institute

In the market | can expect to see prices of (many) European options.
What do | do with this information?
> Model specific: we typically consider {Py : # € ©} and use option
prices to calibrate a particular Pg-.

» Robust approach: add these as inputs/trading instruments to lower
the superhedging price
via duality ~» constraints on pricing measures
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An (idealised) case study: the MOT problem

» suppose you observe prices of call options:

Mathematical
Institute

Price((ST — K)*) = C(K), K€R.

see Hobson '98, Breeden & Litzenberger '78.
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An (idealised) case study: the MOT problem

» suppose you observe prices of call options:

Mathematical
Institute

Price((ST — K)*) = C(K), K€R.

see Hobson '98, Breeden & Litzenberger '78.

» feasible pricing model «~ probability measure Q s.t.
Sisa Q-martingale and Eg[(St— K)'] = C(K), K € R,
which is equivalent to

Sisa Q-martingale and St ~q v, for v(dK) = C"(dK).
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An (idealised) case study: the MOT problem

» suppose you observe prices of call options:

Mathematical
Institute

Price((ST — K)*) = C(K), K€R.

see Hobson '98, Breeden & Litzenberger '78.

» feasible pricing model «~ probability measure Q s.t.
Sisa Q-martingale and Eg[(St— K)'] = C(K), K € R,
which is equivalent to

Sisa Q-martingale and St ~q v, for v(dK) = C"(dK).

» Robust pricing of an exotic option with payoff £
~ supEq[€(S: : t < T)] over such Qs.
Robust hedging is its dual problem.
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The MOT problem s

Mathematical
Institute

Given marginal laws u,v € on RY, consider

P(p,v) ==  sup  Eq[é(51, %),
QeM(p,v)

where

M(p,v) = {Q € P(R?): Sy ~ pu, Sy ~ v and Eg [52|51] = 51}.
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MOT Numerics: take | (witH GAOYUE GUO) OXFORD

Mathematical
Institute

Given marginal laws u,v € on RY, consider

P(p,v) = sup Eq[¢(S1, %)),
QeM(p,v)
where
M(p,v) = {Q € P(R?): Sy ~ pu, Sy ~ v and Eg [52|51] = 51}.
s
Oxford
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MOT Numerics: take | (witH GAOYUE GUO) OXFORD

Mathematical
Institute

Given marginal laws y, v € on RY, consider

P(,v) = sup  Eq[&(S1, %)),
QeM(u,v)

where
M(p,v) :=={Q € P(R¥): 51 ~ i, S, ~ v and Eg[S|S1] = 51}

> If =", aidy(dx) and v = 2}1:1 Bjdy,;(dy), then P(y,v) is an
LP problem;

» Discretisation (j, ) ~ (u",v") typically does NOT preserve the
convex order, see Alfonsi et al. (2017).
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MOT Numerics: take | (wirs Gaoyue Guo)

Mathematical
Institute

Given marginal laws y, v € on RY, consider

P(,v) = sup  Eq[&(S1, %)),
QeM(u,v)

where
M(p,v) :=={Q € P(R¥): 51 ~ i, S, ~ v and Eg[S|S1] = 51}

> If =", aidy(dx) and v = 2}1:1 Bjdy,;(dy), then P(y,v) is an
LP problem;

» Discretisation (u,v) ~ (p",v") typically does NOT preserve the
convex order, see Alfonsi et al. (2017).

» Further, continuity of (u, ) — P(u,v) is a hard problem.
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MOT Numerics: take | (wirs Gaoyue Guo)

Mathematical
Institute

Given marginal laws y, v € on RY, consider

P(,v) = sup  Eq[&(S1, %)),
QeM(u,v)

where
M(p,v) :=={Q € P(R¥): 51 ~ i, S, ~ v and Eg[S|S1] = 51}

> If =", aidy(dx) and v = 2}1:1 Bjdy,;(dy), then P(y,v) is an
LP problem;

» Discretisation (u,v) ~ (p",v") typically does NOT preserve the
convex order, see Alfonsi et al. (2017).

» Further, continuity of (u,v) — P(u,v) is a hard problem.
» -~ we propose to look at a suitable relaxation!
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MOT Numerics: take | T

Mathematical

Consider
Pe(p,v) = sup Eg[¢(51,%)],
QeMc(p,v)
Me(p,v) = {Q : S~ p, S3~ v and Eg [E@[Sstl} s ] < 5} .
Oxford
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MOT Numerics: take |

Mathematical
Institute

Consider
Pe(p,v) = sup Eg[¢(51,%)],
QeMc(p,v)
Me(p,v) = {Q : S~ p, S3~ v and Eg [E@[Sstl} s ] < 5} .
Theorem

Assume p X v are in convex order and & is L-Lipschitz.
Let (u",v")n>1 be a sequence converging to (u,v):
rn = W(u", 1) + W(",v) — 0. Then,

Mo, (1" ") #0 and  lim Py, (1", 0") = P(u, ).
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How do you actually discretise a measure p?

Mathematical
Institute

If you can integrate against u (or know the density)
» restrict to a ball of radius R,

» discretise on a lattice pulling mass on a cube to its corner,

0 d

» assuming 6 > 1 moment, gives r, < ;75 7.

» |n practice use point estimates of the density ~~ r, < constm.
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How do you actually discretise a measure p?

Mathematical
Institute

If you can integrate against u (or know the density)
> restrict to a ball of radius R,
» discretise on a lattice pulling mass on a cube to its corner,
> assuming 6 > 1 moment, gives r, < ;%5 9.
» |n practice use point estimates of the density ~~ r, < constm.
If you can simulate from p
> let jip, = %25)(,. be the empirical measure,
> take em N\ O with 37 -, E W (fings 1) + W(Dnp» V)] /€m < 00, then
liMm— oo Pep (fing, Onm) = P(u,v) a.s
> use cnv rate in the Glivenko-Cantelli (Fournier & Guillin '15) + compute
explicitly their constants.
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Figure: The first pane shows the convergence of P, (fin, Un) with respect to n
for m = 100. The second pane draws the heat map of the optimiser for
n = 200.
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Further results

Mathematical
Institute

> Results/methods extend to T-periods.
» For T=2d=1:
> bespoke discretisation
> convergence rates
> entropic regularisation + iterative Bregman projection method ~~
efficient numerics.

» BUT: quickly becomes infeasible: LP has n7? parameters!

» see also the works of Benjamin Jourdin and co-authors.
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MOT Numerics: take Il (Ecksrein & Kupper '17)

» Numerics on the dual (superhedging) problem

OXFORD

Mathematical
Institute
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MOT Numerics: take Il (ECKSTEIN & KUPPER '17) OXFORD

Mathematical
Institute

» Numerics on the dual (superhedging) problem

» ~- optimisation over functions
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MOT Numerics: take Il (Ecksrein & Kupper '17)

Mathematical
Institute

» Numerics on the dual (superhedging) problem
» ~- optimisation over functions
» ~~ Deep Neural Network implementation
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MOT Numerics: take Il (Ecksrein & Kupper '17)

Mathematical
Institute

» Numerics on the dual (superhedging) problem
» ~- optimisation over functions
» ~- Deep Neural Network implementation

» hedging strategies € H, (a deep NN)
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MOT Numerics: take Il (Ecksrein & Kupper '17)

Mathematical
Institute

» Numerics on the dual (superhedging) problem
» ~- optimisation over functions
» ~- Deep Neural Network implementation

> hedging strategies € H, (a deep NN)
» superhedging “<" replaced by a smooth penalisation w.r.t. a
reference measure allowing for gradient descent algorithms:

(Dgy) =, inf_(h) +/ (€ — h)do
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MOT Numerics: take Il (Ecksrein & Kupper '17)

Mathematical
Institute

» Numerics on the dual (superhedging) problem
» ~- optimisation over functions
» ~- Deep Neural Network implementation

> hedging strategies € H, (a deep NN)
» superhedging “<" replaced by a smooth penalisation w.r.t. a
reference measure allowing for gradient descent algorithms:

(D5,) = ,inf_o(h) +/ (€ — h)do

» Dual optimiser h allows to recover the primal one O via

aQo ..
@*ﬁ'y(ffh)

is an optimiser of (Pg,-).
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Market data: reality check

Mathematical
Institute

» For d > 1 we do NOT have full marginals.
Only marginals of marginals (the MMOT problem):

i i
S]_Nl'l/i7 52NV,'
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Mathematics Jan Obtdj 28 April 2022 OT and data driven methods 31



Market data: reality check

Mathematical
Institute

» For d > 1 we do NOT have full marginals.
Only marginals of marginals (the MMOT problem):

i i
S]_Nui7 52NV,'

» Some interesting cases:
> d=2,¢(S)=(5F — aS% — K)" spread options
~» both LP and NN methods work
> d =30,50,100,...,500 and £(S) = (27:1 AiSH — K)+,
i.e., calls/puts on an index
~~ LP fails, NN work for dT < 30 and then harder, sampling the
superhedging condition tricky!
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A case study: MMOT ford =2=T

Mathematical
Institute

Inputs:
» Two assets, two maturities.
» Option prices ~ 1, fi2 and vy, vp with p; < v;

> Payoff: £(S) = £(S3,53) is a function of what happens at time
T =2, e.g., a spread option £ = (53 — S5 — K)*.

Oxford
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A case study: MMOT ford =2=T

Mathematical
Institute

Inputs:
» Two assets, two maturities.
» Option prices ~ 1, fi2 and vy, vp with p; < v;
> Payoff: £(S) = £(S3,53) is a function of what happens at time
T =2, e.g., a spread option £ = (53 — S5 — K)*.
Beliefs: minimal correlation between S' and S?
» PRIMAL: only consider Q s.t. corr(S},52) > p
» DUAL: allow to sell S1S2 at price S3S2 + poios.
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A case study: MMOT ford =2=T

Mathematical
Institute

Inputs:
» Two assets, two maturities.
» Option prices ~ 1, fi2 and vy, vp with p; < v;
> Payoff: £(S) = £(S3,53) is a function of what happens at time
T =2, e.g., a spread option £ = (53 — S5 — K)*.
Beliefs: minimal correlation between S* and S
» PRIMAL: only consider Q s.t. corr(S},52) > p
» DUAL: allow to sell S1S2 at price S3S2 + poios.
Benchmarks:
» 13 =11 and pp = vy = OT problem!

» Gaussian copula used to construct the join distribution

Oxford
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-8

Minimisation: MMOT Maximisation: MMOT

Problem: Maximise/Minimise ¢ = (S} — S2)*

L

1

St = AN(0.18) 1o — AN(Q 02} s — AN(Q 19) o — A(Q 13)
AY VAR 8 AY 77 Ay 7T AY 7
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A Toy Example

Mathematical
Institute

INpPUTS:
» Data recorded on 16/11/2018:

> Spot prices Fop = 140, Ag = 194 for Facebook and Apple
» Call/Puts prices for Facebook and Apple maturing T; = 18/04/2019
and T, = 21/06/2019

» Beliefs: bounds on correlation between Facebook and Apple

Oxford
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A Toy Example

Mathematical
Institute

INpPUTS:
» Data recorded on 16/11/2018:

> Spot prices Fop = 140, Ag = 194 for Facebook and Apple
» Call/Puts prices for Facebook and Apple maturing T; = 18/04/2019
and T, = 21/06/2019

» Beliefs: bounds on correlation between Facebook and Apple
OuTPUTS:

» Range of no-arbitrage prices for a spread option:

Fo *
§: FTz_iATz_K s K:O’ 357 70
Ao

» Distribution of (Fr,, Ar,) for the minimiser/maximiser
» Robust hedging strategies

Oxford
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Minimum FB/AAPL correlation 0.3

20.0
— - OTmax
17.5 4 —  MMOT nax
® Gauss Copula
1504 @® ° MMOT min
e  OTp;
12.5 4 mn
10.0 4
7.5 1 -
501 o
° —
2.5 1
[ )
[
0.0 4 [ ] ‘
0 35 70

Price bounds for a Facebook-Apple Spread option

Mathematical
Institute
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Minimum FB/AAPL correlation 0.6

20.0
- OTmax
17.5 4 —  MMOT nax
® Gauss Copula
15.01 ®  MMOTmi,
e  OTp;
12.5 4 mn
10.0 4
7.5
5.0 1 -
2.5 =
° -
[
0.0 A ° [ ]
3.5 7I0

Price bounds for a Facebook-Apple Spread option

Mathematical
Institute
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Minimum FB/AAPL correlation 0.9

20.0
- OTmax
17.5 4 —  MMOT nax
® Gauss Copula
15.01 ®  MMOTmi,
e  OTp;
12.5 4 mn
10.0 4
754 —
2
501 o
2.5
. —
0.0 1 s v
0 35 70

Price bounds for a Facebook-Apple Spread option

Mathematical
Institute
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Temporal evolution under Extreme models

Mathematical
Institute

Joint distribution of (A7, At,), for the Minimiser and Maximiser
T, =18/04/2019 and T, = 21/06/2019, K = 35 and p > 0.6 and

Fo *
&= FT2_A_0AT2_K
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Temporal evolution under Extreme models GXFoRD

Mathematical
30
o

Institute

Joint distribution of (Fr,, Fr,), for the Minimiser and Maximiser
T, = 18/04/2019 and T, =21/06/2019, K = 35 and p > 0.6 and

Fo *
&= FT2_A_0AT2_K
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Dependence Structure under Extreme models

OXFORD

Mathematical
Institute

Joint distribution of (Ar,, Fr,), T2 =21/06/2019, for the Minimiser and
Maximiser for K = 35 and p > 0.6 and

Fo +
€: FTz_A_OATQ_K
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DATA: HISTORICAL TIME SERIES

A MODEL’S NEIGHBOURHOOD

&
WASSERSTEIN DISTANCES
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Model neighbourhood

Mathematical

Measure p (or P) will denote a model, such as istiute

o =iy = % Z,N:l d,i is the empirical measure of the
observations/test set.

e ;1 comes from a mathematical modelling effort, e.g., an SDE;
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Model neighbourhood

Mathematical

Measure p (or P) will denote a model, such as istiute

o =iy = % Z,N:l d,i is the empirical measure of the
observations/test set.

e ;1 comes from a mathematical modelling effort, e.g., an SDE;
There are MANY ways to build a neighbourhood Bs(p) of p:
» data perturbation
» support estimates
» moments contraints
density constraints
Prokhorov distance
Hellinger distance

Kullback—-Leibler divergence/entropy bounds

vvyyVYyvy

and more...
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Wasserstein distance i
Mathematical
Institute

For p> 1, p,v € P(S) with p™ moments, set

W, (11, v) = inf {/SXS d(x, y)P m(dx, dy): 7 € Cpl(u, y)}l/p,

where Cpl(u,v) ={m:7(- x S) = p and 7(S x -) = v}.

metricdon S = metric W on P(S)
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OXFORD

i i Mathematical
Observe historical returns r!, ..., rV assumed to follow a i

Institute

time-homogeneous ergodic Markov chain on RY with an invariant
distribution p. Should we work with

the data points (r')¥., or the empirical measure fiy =
AVERAGING OF IMAGES

Source: J. % - \ag

Spokoiny, A.

Suvorikova EUCLIDEAN MEAN 2-WASSERSTEIN MEAN

arXiv:1703.03658 N
e 'ﬂ\,ﬁ.’

7N »

r\(;‘ /)
' b

Ly

Oxford
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Wasserstein vs Euclidean mean (MNIST data) SidRn

Mathematical
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Wasserstein vs Euclidean mean (MNIST data) SidRn

Mathematical
Institute

J W

Wasserstein vs Euclidean

W
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Small uncertainty limit

Mathematical
Institute

AW ,
Key property: [iy -2 [+ cnv rates, see FOURNIER & GUILLIN '14

EsFaHANI & KUHN '18 argue that using Wasserstein balls gives
» finite sample guarantees,
» asymptotic consistency,

> tractability (see also ECKSTEIN & KUPPER ’19)
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Large uncertainty limit

Mathematical
Institute

PrLUG, PICHLER & Wo0ZABAL 12 use Wasserstein balls for robust
portfolio selection:

su inf (E,[{a, R)] — yVar,[(a, R
a:(a,lF;zl vEBs () ( [< >] Y [< >]>

a*(5) =3 (/i//i/)

which may not be true for weaker or stronger metrics.

and show that
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OT & DATA-DRIVEN APPROACH: RISK ESTIMATION EXAMPLE

N
o 1
(r,...,y) e RN vs. ]PN:N;(S,,.EP(R")

based on O. and Wiesel, Ann. Stat. 49(1): 508-530, 2021.
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Superhedging with respect to risk measures

Mathematical
Institute

Returns r ~ P. We want to build an estimator for

7€) = inf {xeR|3HEe RY st. x+ H(r—1)>&(r) P-a.s.}

Oxford
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Superhedging with respect to risk measures

Mathematical
Institute

Returns r ~ P. We want to build an estimator for

() =inf{x eR|IH e R st. x+ H(r—1)>¢(r) P-as.}
(€)= inf {x e R | IH € R? s.t. pp(¢ — x — H(r — 1)) < 0},

where pp is a law-invariant coherent risk measure:

pe(€) = inf{x € R | pp(§ — x) < 0}.
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Superhedging with respect to risk measures

Mathematical
Institute

Returns r ~ P. We want to build an estimator for
() =inf{x eR|IH e R st. x+ H(r—1)>¢(r) P-as.}
(&) =inf{x e R | 3H € R s.t. pp(& — x — H(r — 1)) <0},
where pp is a law-invariant coherent risk measure:
pe(§) = inf{x € R | pp(§ — x) < 0}.

Under mild assumptions, the plug-in estimators are consistent:

a(E) — 7€) and 7w (E) = 7F(€) P —as.,

but are otherwise very poor and non-robust estimators!
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Superhedging with respect to risk measures

Mathematical
Institute

Instead, we consider robust estimators. Consider By N\, 0 and ey \, O s.t.

PY(W,(P,Py) > en) < Bv, N> 1.

Define
7TBP ) (5) = lnf{XeRd ‘ JHeR st.  sup p(E—x—H(r—1)< 0}.
veBl, (By)
Oxford
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Superhedging with respect to risk measures

Mathematical
Institute

Instead, we consider robust estimators. Consider By N\, 0 and ey \, O s.t.

PY(W,(P,Py) > en) < Bv, N> 1.

Define

7TBP ) (5) = lnf{XeRd ‘ JHeR st.  sup p(E—x—H(r—1)< 0}.
veBl, (By)

Theorem

Assume g satisfies |£(r) — &(F)| < L |r — F| for some v < 1, L, € R and that
SUP.ep fol Oéfv/pmp(da) < 00. Then

lim 77, (?N)(f) =77 (&) P> -a.s.

n—oo
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Robust Superhedging Price estimator

Mathematical
Institute

Take ky — oo and kyen(Bn) — 0. Let

T, (&) = sup sup Eql¢]

PeBE, (By) QEM:[dQ/dP||oo <ky
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Robust Superhedging Price estimator

Mathematical
Institute

Take ky — oo and kyen(Bn) — 0. Let

me(O) = se sup  Eole]
PeBE, (By) QEM:[|dQ/dP||oc <k

= sup sup inf EQ[& H(r o 1)]
PeBE, (Py) 1dQ/dPlloo <k HERY

= inf  sup sup Eol¢ — H(r —1)]

HERY pepp (By) 1190/ dPllco <ky

= inf  sup AV@R%(g—H(r—n)
N

HeRd ]P’GBP (Bn)

— inf {x ER|IHER st.  sup AVORL, . (6— H(r—1)—x) < o}
Tkyo

PeBl, (By)
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W,-approach: Consistency & Robustness Kb

Mathematical

T h eore m Institute
Let g be Lipschitz continuous and bounded from below or continuous
and bounded and p > 1. Then

lim sup Eq[¢] =7"(¢) P>~ —as,
oo QeQn

if NA(P) holds.
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W,-approach: Consistency & Robustness SRR

Mathematical

T h eore m Institute
Let g be Lipschitz continuous and bounded from below or continuous
and bounded and p > 1. Then

lim sup Eq[¢] =7"(¢) P>~ —as,
oo QeQn

if NA(P) holds. Further,

sup | sup Eg[¢] — sup Eg[¢]
€€L1|Qe g}, QeQ?
<max| sup inf Wp(Ql,Qz), sup inf WP(QZ,QI) .
Qledl @eQf Qed? VeQy
where Q) are defined corresponding to some P’ € P(RY), i =1,2.
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Mathematical
Institute

Oxford
Mathematics (©Jan Obtdj 31 March 2022  DRO Sensitivity



Mathematical
Institute

OT & DISTRIBUTIONALLY ROBUST OPTIMIZATION

T = sensitivity w.r.t. the MODEL

based on Bartl, Drapeau, O. and Wiesel, Proc. R. Soc. A 477: 20210176, 2021
O. and Wiesel, Math. Finance 31(4): 1454-1493, 2021.
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Consider the following optimisation problem

Mathematical

V = inf f(a, d.
inf, [ Flax)u(e),

where A is the set of controls, S is the state space and p is the model.
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Consider the following optimisation problem

Mathematical
Institute

V= in;/é; f(a, x)u(dx),

ac

where A is the set of controls, S is the state space and p is the model.
Examples:

» risk neutral pricing: Eq[f(S7)],

> optimal investment: inf,c 4 Ep[—U(x + (a, ST — So))],

> optimised certainty equivalents: inf,cg Ep[a — U(X + a)]
>

marginal utility pricing (Davis' price)...
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Consider the following optimisation problem

Mathematical
Institute

acA

V = inf /Sf(a,x)u(dx),

where A is the set of controls, S is the state space and p is the model.
Examples:

>

>
>
>
>
>

risk neutral pricing: Eq[f(S7)],

optimal investment: inf,c 4 Ep[—U(x + (a, ST — So))],
optimised certainty equivalents: inf,cg Ep[a — U(X + a)]
marginal utility pricing (Davis' price)...

OLS regression: inf,cpa 1 le.vzl(yi —(a,x"))?,

ML/NN: inf 3 370 |y — ((A2() + b2) 0 0 0 (As(") + b)) (x')]P
over a = (Al,Az, by, by) € A = Rk¥d x RI¥k x RF x RY,
where (x', y")N_| is the training set.
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Given our optimisation problem

Mathematical
Institute

V= in;./é; f(a, x)u(dx),

ac
we want to understand its dependence on the “model” pu.
We are interested in computing

oV
o

— the uncertainty sensitivity of the problem

» parametric programming and statistical inference
see ARMACOST & F1acco 76 ... BONNANS & SHAPIRO ’13;

> qualitative/quantitative stability in p
see DUPACOVA ’90, ROMISCH 03

» robust optimisation
see BERTSIMAS, GUPTA & KALLUS '18
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Distributionally Robust Optimisation (DRO) considers

Mathematical
Institute

V(9) = inf sup /f(a,x)y(dx),
a€A LeBs(p) /S

see SCARF ’58, ... ,RAHIMIAN & MEHROTRA '19, where

Bs(i) is a d—neighbourhood of the model f.
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Distributionally Robust Optimisation (DRO) considers

Mathematical
Institute

V(9) = inf sup /f(a,x)y(dx),
a€A LeBs(p) /S

see SCARF ’58, ... ,RAHIMIAN & MEHROTRA '19, where
Bs(i) is a d—neighbourhood of the model f.

We propose to compute

T:= V’(O):g@ow and = ATOM’

with Bs(u) being Wasserstein balls around .
T the sensitivity of the value w.r.t. Tmodeyua, the Model.

2 the sensitivity of 19p3, the control, w.r.t. the Model.
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Uncertainty Sensitivity of DRO problems

Mathematical
Institute

Recall our DRO problem (for simplicity A = R¥, S = RY)

V(§) = inf sup / f (x,a) v(dx).
a€R  yeB; () JRY
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Uncertainty Sensitivity of DRO problems

Mathematical
Institute

Recall our DRO problem (for simplicity A = R¥, S = RY)

V(§) = inf sup /]Rd f(x,a) v(dx).

a€R* LeBs ()

Theorem
For p > 1, % + % =1, and under suitable assumptions, we have

— V(o) — [ V() =V(O) “\|a 1/a
T:=V'(0) = ;TO 5 = a*eIR‘I’[(O) ( y [Vif(x,a") ,u(dx)) :

where A°P'(§) denotes the set of optimisers for V/(0).
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T: uncertainty sensitivity of the value function 58

Mathematical
Institute

We can restate the result as

inf  sup /Rd f(x,a) v(dx) = inf /Rd f(x,a) p(dx)+ T+ o(9)

a€R* e B (1) acRk

where

T= inf ([ Vef(xa) 1(dX)>1/q
_a*GA"P‘(O) JRd x ' K ’
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T: uncertainty sensitivity of the value function

Mathematical
Institute

We can restate the result as

inf  sup /Rd f(x,a) v(dx) = inf /Rd f(x,a) p(dx)+ T+ o(9)

a€R* e B (1) acRk
where
. . 1/q
T= inf ( \fo(x,a‘)\"/x,(dx)> .
a*€ AP (0) \ Jprd

» extends to general semi-norms;
> extends to sensitivity at a fixed 6 > 0: V/(5+);
» extends to DRO problems with linear constraints, e.g., martingale;
» no first order loss from using a*(0) instead of a*(d).
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Sketch of the proof (1)

Mathematical
Institute

Sensitivity of the value function: “<”

V(5)— V(0) < sup / Fy, a") — F(x, a*) n(dx, dy)
TECs(p)

1
£y / / (Vo + tly — x),2°), (y — x)) de a(dx, dy)

1 1/q
<4d sup / (/|fo(x+t(yfx),a*)|q7r(dx, dy)) dt.
m€Cs(p) J0

+ growth conditions + DCT.
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Sketch of the proof (2)

Mathematical

Sensitivity of the value function: “>" Institute
Vi f(x,a* 1/q-1
. q
T00 = e |2q ([ 192,207 ()

=[x (x,x +IT(x))]xp € Cs(p)

We can use 7 to get a lower bound:
M > (15/ F(x +0T(x),3°) — F(x, a*) u(dx)
// (Vif(x + t6T(x),a%), T(x)) dt p(dx)

60 1/q

(FF(x,27), T0) () = ([ 19F(x )7 ()
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Ex 1: Call Price Sensitivity, classical vs robust

Mathematical
Institute

Take r=q¢=0, T =1, S =1 and u =BS(0) log-normal.

BS(0) = /S(s —KY* p(ds).
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Ex 1: Call Price Sensitivity, classical vs robust

Mathematical
Institute

Take r=q¢=0, T =1, S =1 and u =BS(0) log-normal.

RBS(5) = sup /S (s — K)*u(ds).

vEBs (1)
PARAMETRIC APPROACH NON-PARAMETRIC APPROACH
Bs(1) = {BS(3) : |5 — 0| < 6} Bs(n) = {v : Wa(,v) < 8}
Then Then
RBS'(0) =V = Sp¢(dy). RBS'(0) = T = Sp\/®(d_)(1 — d(d_))
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BS Call: Vega(V) vs Upsilon(T)

Mathematical

Consider the simple example of a call option pricing. ekt
Take r=¢g=0, T=1, So=1and u =BS(c) model.

Call Price Sensitivity: Vega vs Upsilon, sigma= 0.2

0.5 —— BS Vega
—— BS Upsilon

0.4

0.3

Price

0.2

0.1

Strike
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Ex 2: Decision making & prefs representation

Mathematical
Institute

Let X be agent’s wealth/consumption. Savage '51, von Neuman &
Morgenstern '53 give

PP < Ep[u(X)] > Es[u(X)].
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Ex 2: Decision making & prefs representation

Mathematical
Institute

Let X be agent's wealth/consumption. Savage '51, von Neuman &
Morgenstern '53 give

PP < Ep[u(X)] > Es[u(X)].

An ambiguity averse agent of Gilboa & Schmeidler '89, might instead
consider

P-,P <  min Eglu(X)] > min Ez[u(X)].
PeBs (P) PeBs(P)

for Bs(P) a d-ball around PP in some metric p,

(also called constraint preferences by Hansen & Sargent '01).
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Variational prefs: relative entropy vs Wasserstein

Mathematical
Institute

The variational /constraint preferences with p-ball Bs(IP)

UX) = min Eg[u(X)]

PeBs(P)
up to o(d) are equivalent to:
p =REL. ENTROPY p = Wo WASSERSTEIN
UX) ~ Ep[u(X))] — 6v/2Varp(u(X))  U(X) ~ Ep[u(X))] = 6v/Ep [|u'(X)[?]
(cf. Lam '16) (cf. our T-sensitivity)
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Example 3: NN & adversarial data

ost works focus on explaining the effects and creating Wathematcsl
Institute
algorithms to build adversarial examples. o
Consider data (x,y) from p and a 1-layer NN: (A}

¥, A3, b}, b3) solve

inf/ ly = ((Aao(-) + o) 0 0 0 (Au() + b1)) (x)|P p(dx, dy),

=:f(x,y;A,b)

where the inf is taken over (Ar, Az, by, by) € RF*Xd x RIXK x Rk x R,

+.007 x
" sign(VJ (0, 2,1)) mg,,(v Je.e)
“panda” “nematode” “gibbon™
57.7% confidence 8.2% confidence 99.3 % confidence

Source: Goodfellow, Shlens & Szegedy ICLR 2015
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Example 3: NN & adversarial data

Mathematical
Institute

Most works focus on explaining the effects and creating
algorithms to build adversarial examples.
Consider data (x,y) from p and a 1-layer NN: (A}, A3, b}, b3) solve

inf/ y = ((Aao(-) + o) 0 00 (Au() + b1)) (x)|P p(dx, dy),

=:f(x,y;A,b)

where the inf is taken over (Ap, Az, by, by) € RFX9 x RIXK x Rk x R,

Then, sensitivity to adversarial data examples from fi € Bs(1) given by:

1/q
(/IV(x,y)f(X,y;A*,b*)l"u(dx dy)) :
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Sensitivity of optimisers

Mathematical
Institute

Theorem
For p = q = 2, under suitable regularity and growth assumptions,
*(9) — a* 1
im 20 =" L g2y, a*))*l/vxvaf(x, ")V (x, a*) u(dx),
6—0 1) T

where a* := a*(0).

The results extends to general p > 1 and semi-norms.

Oxford
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Example 1: Square-root LASSO

Consider [|(x,y)[l« = |x|r1{y—oy + 001ty 20y, r > 1, (X, ) € RK x Ryetercica
Then (see BLANCHET, KANG & MURTHY '19)

2
inf  sup /(y—(x, a))>dv = inf <\//(y —{a,x))?dfin +5a|5> )
a€R* L eB; () acRk

where 1/r+1/s=1. iy = & Z,N:l d(xi,yi) encodes the observations.
System is overdetermined so that D = [ xxT u(dx) is invertible.
0 = 0 case is the ordinary least squares regression: a* = ﬁD‘l [ yxdp.
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Example 1: Square-root LASSO

Consider [|(x,y)[l« = |x|r1{y—oy + 001ty 20y, r > 1, (X, ) € RK x Ryetercica
Then (see BLANCHET, KANG & MURTHY '19)

2
inf  sup /(y—(x, a))>dv = inf <\//(y —{a,x))?dfin +5a|5> )
a€R* L eB; () acRk

where 1/r+1/s=1. fiy = %Z,N:l d(xi,yi) encodes the observations.
System is overdetermined so that D = [ xxT u(dx) is invertible.

= 0 case is the ordinary least squares regression: a* = ﬁD‘l [ yxdp.
0 >0, s =1~ RHS = square-root LASSO regression BELLONI ET AL. '11
§ >0, s =2~ RHS ~ Ridge regression
Then a*(0) is approximately, for s = 1 and s = 2 (cf. TIBSHIRANI "96):

a* —/V(0)D *sgn(a*)d and a* (1 RAC) D_16>

|a* |2
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Sguare—root LASSO: numerics

omparison of exact (o) and first-order (x) approximation of square-root LASSQuathematical
coefficients for 2000 data generated from: (with all Xj,e i.i.d. N'(0,1)) etute

Y =1.5X; —3X2 —2X340.3X3 —0.5X5 —0.7Xs +0.2X7 +0.5Xg + 1.2X9 + 0.8 X109 + €.

N g
=}
¥ 2
B
. Q R . {
S - = s ] 8
Q 2 = 2 ] L]
% 1 ] 1 ® ® ®
x <
c o
E ] = ] =
@
5 B = 1
“
2 2 >< Q ]
B —— delta=0.01
® 2 = —— delta=0.03
—— delta=0.05
~ —— delta=0.07
pag delta = 0.09
! T T T T T
2 4 6 8 10

covariate's index
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Example 2: a CLT of BLANCHET, MURPHY AND SI ’19

Consider the empirical measure fiy of N i.i.d. samples from p and vl
=3 s [ Fxa)u(e. o = [ e (), @ =8 [ Fxa) (e,
vEBs(An)
Regularity and strict convexity of f gives asN_ o g*,

1/vVN

Oxford
Mathematics Jan Obtdj 28 April 2022 OT and data driven methods 91



Example 2: a CLT of BLANCHET, MURPHY AND SI ’19

Consider the empirical measure fiy of N i.i.d. samples from p and il
=3 s [ Fxa)u(e. o = [ e (), @ =8 [ Fxa) (e,
veEBs(fin)
. . . - *, N *
Regularity and strict convexity of f gives a e

Let 0® := [ V.f(x,a")  Vaf(x,a") u(dx). Classical results give

VN <a*’N - a*) — (V2V(0,a")) 'H, where H= N(0,0°).
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Exam Ie 2: 2 CLT Of BLANCHET, MURPHY AND S1 ’19

Consnder the empirical measure jiy of N i.i.d. samples from 1 and Mathematical
Institute
=3 sup [ flea)ua, @ =28 [ fxa) (e, o = 35 [ Fxa) ().
veEBs(fin)
Regularity and strict convexity of f gives a1/f — a"

Let 0® := [ V.f(x,a")  Vaf(x,a") u(dx). Classical results give
VN <a*’N - a*) — (V2V(0,a")) 'H, where H= N(0,0°).

Our results show that

m( I/Nf a*’N) ~ (ViV(O,a*))l-Va\//fo(x, a*N)|2 iy (dx).

Putting the two together yields the CLT of BLANCHET, MURPHY AND SI ’19
VN (a:/\lm — a*) — (V2V(0,a")) " (H - va\// |Vf(x,a%)|2 u(dx)) :

~~ out-of-sample error estimates.
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Mathematics Jan Obtdj 28 April 2022 OT and data driven methods 93



Example 3: EUM & Optimal investment

Mathematical

Institute

X = St — Sy ~ 11 vector of returns in S C R? and A C R? admissible
strategies; wlog r = 0, initial capital x = 0.

u: R — R strictly concave, continuously differentiable, bounded from
above. Consider

V() = aSélE‘ uel.‘ggf(u)E v [u({X, a))]

Then, under mild technical assumptions,
-1 a*
|a*

(X, a)u"((X, %) + u’(<x,a*>)D |

2 (0) =l (X, 3l - (V2V(0))
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Binomial model with a log utility GRiRD

hematical

1.0 tute
-15
-2.0
=25
-3.0
-35
-4.0

—— Wasserstein sensitivity p=2
_a5 — Wasserstein sensitivity p=5

—— Wasserstein sensitivity p=10

—— Wasserstein sensitivity p=100

0.0 0.5 1.0 15 2.0

. e ’ . . .
Figure: Wasserstein sensitivity a* (0) in a Binomial-model
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Ex 4. Marginal utility (Davis') price

Mathematical
Institute

Recall the EUM setup. For a continuous payoff g > 0 consider

Viewpa) = s fu (e + (X.a) + = ¢(x)) |

Definition
Suppose that for each py > 0, the function £ — V/(g, py) is differentiable
at ¢ = 0 and By is a solution to

O V(O, pd) =0.

Then py is called a marginal utility price of the option g.
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Characterisation of the marginal utility price

Mathematical
Institute

Theorem (Davis (1997))

Under mild technical assumptions py is unique and satisfies

by — [v'({X, a))g(X)]
By [v'((X;a%))]

In this way py is the price under a subjective martingale measure:

X=5r-5 and E,[u((X,a*))X]=0.
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Robust marginal utility price

Mathematical
Institute

Definition
Let us define

V(d,e,pq) =sup inf E, [u (—E + (X, a) + Eg(X))] .
ac AVEBs(n) Pd

Suppose that for each py > 0 the function ¢ — V/(4, ¢, pg) is
differentiable. A number p4(8), which satisfies

9:V(5,0, p4(6)) = 0.

is called a robust marginal utility price of g at the uncertainty level 6.

Oxford
Mathematics Jan Obtdj 28 April 2022 OT and data driven methods 98



Characterisation of DR marginal utility price

Mathematical
Institute

Theorem
Fix § > 0, pg > 0. Under mild technical assumptions the robust marginal
utility price p4(d) is given by

E.x [u'((X = Xo,a5)) g(X)]
Eus [0 ((X — X0, a}))]

pa(0) =

for any pair of optimisers a5 € A and p* € Bs(p).

As before, py(4) is the price under a subjective martingale measure but
which also depends on §.
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Characterisation of DR marginal utility price

Mathematical
Institute

Theorem
Fix § > 0, pg > 0. Under mild technical assumptions the robust marginal

utility price p4(d) is given by

B (X = X0 a2)) €(X)]
PO = =F (X — Xor )]

for any pair of optimisers a5 € A and p* € Bs(p).

As before, py(4) is the price under a subjective martingale measure but
which also depends on §.

Special cases: py = py(d) for all § > 0, e.g., for u = N (m, 0?), p = 0
and an agent with an exponential utility.
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Sensitivity of the marginal utility price

Mathematical

Th eorem Institute

Under mild technical assumptions the following holds:
(i) If a* =0, then the Davis price py4(d) satisfies

By(0) = — (E,. [[Vg(x)|D)M9.
(ii) If a* # 0 then

A4(0) :m (E [0"((X.a9) - ((T(X),3%) = (X, 2(0)))

(B [g(X)] - (X)) }) ~ Ex [(Ve(X), TOO),

where Z—l; x u'({X,a*)) and T(x) x ‘z—:‘|u’(<x,a*>)|q*1.
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Conclusion & Outlook

Mathematical
Institute

Constrained (martingale, covariance) variants of OT appear
naturally in applications

Numerics pose interesting new challenges.

OT allows to conceptualise and quantify the impact of model
uncertainty

Useful in data-driven and classical modelling approaches alike

Wasserstein balls capture model uncertainty well, small and large
uncertainty alike

First-order approximations for DRO available analytically

Applications in finance, statistics, UQ, ML and more!
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THANK YOU

papers available at www.maths.ox.ac.uk/people/jan.obloj

Mathematical
Institute
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The robust optimisation problem rewritten

Mathematical

Consider the simplified problem institute

sup f(x) v(dx).
VEBgl/p(M)

Theorem (Bartl, Drapeau & Tangpi '19; Blanchet, Kang & Murthy '19)
For f : R — R bounded below

sup /f(x (dx) = inf </ FA1 (x) p(dx) +5>\)
VEB 1/)

where

FAI(x) = sup {F(y) = Alx —y[P : y € R s.t. f(y) < o0}
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