Unbalanced Optimal Transport: Convex Relaxation and Dynamic Perspectives

Giuseppe Savaré
Department of Decision Sciences, Bocconi University, Milan, Italy
In collaboration with Matthias Liero, Alexander Mielke (WIAS, Berlin), and Giacomo Sodini (Vienna)

Kantorovich Initiative Seminar
November 30, 2023

Outline

1 Unbalanced Optimal Transport: a relaxation viewpoint
2. The Hellinger-Kantorovich metric between positive measures of arbitrary mass

3 Geodesics and geodesic convexity

4 Regularity of solutions to the Conical Hopf-Lax semigroup

Unbalanced Optimal Transport starting from Dirac masses

X_{i} Polish topological spaces (the topology is induced by a separable and complete metric).
$\mathcal{M}(X)$ is the space of nonnegative Borel measures μ on X with finite mass $\mu(X)<\infty$.

Unbalanced Optimal Transport starting from Dirac masses

X_{i} Polish topological spaces (the topology is induced by a separable and complete metric).
$\mathcal{M}(X)$ is the space of nonnegative Borel measures μ on X with finite mass $\mu(X)<\infty$.
We introduce a function $\mathrm{h}:\left(\mathrm{X}_{0} \times \mathbb{R}_{+}\right) \times\left(\mathrm{X}_{1} \times \mathbb{R}_{+}\right) \rightarrow[0,+\infty]$ which characterizes the cost of connecting two Dirac measures with possibly different mass:

$$
\mathrm{h}\left(x_{0}, r_{0} ; x_{1}, r_{1}\right):=\operatorname{UOT}_{\text {Dirac }}\left(r_{0} \delta_{x_{0}}, r_{1} \delta_{x_{1}}\right) \quad x_{i} \in X_{i}, r_{i} \geqslant 0
$$

Unbalanced Optimal Transport starting from Dirac masses

X_{i} Polish topological spaces (the topology is induced by a separable and complete metric).
$\mathcal{M}(X)$ is the space of nonnegative Borel measures μ on X with finite mass $\mu(X)<\infty$.
We introduce a function $\mathrm{h}:\left(\mathrm{X}_{0} \times \mathbb{R}_{+}\right) \times\left(\mathrm{X}_{1} \times \mathbb{R}_{+}\right) \rightarrow[0,+\infty]$ which characterizes the cost of connecting two Dirac measures with possibly different mass:

$$
\mathrm{h}\left(\mathrm{x}_{0}, \mathrm{r}_{0} ; \mathrm{x}_{1}, \mathrm{r}_{1}\right):=\operatorname{UOT}_{\text {Dirac }}\left(\mathrm{r}_{0} \delta_{x_{0}}, \mathrm{r}_{1} \delta_{x_{1}}\right) \quad x_{i} \in X_{i}, \mathrm{r}_{\mathrm{i}} \geqslant 0
$$

Simplifying assumptions: for every $\mathrm{x}_{0}, \mathrm{x}_{1}$

$$
\left\{\begin{array}{l}
h\left(x_{0}, r_{0} ; x_{1}, 0\right) \text { is independent of } x_{1}, h\left(x_{0}, 0 ; x_{1}, r_{1}\right) \text { is independent of } x_{0} . \\
\left(r_{0}, r_{1}\right) \mapsto h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right) \quad \text { is positively 1-homogeneous and convex }
\end{array}\right.
$$

Unbalanced Optimal Transport starting from Dirac masses

X_{i} Polish topological spaces (the topology is induced by a separable and complete metric).
$\mathcal{M}(X)$ is the space of nonnegative Borel measures μ on X with finite mass $\mu(X)<\infty$.
We introduce a function $\mathrm{h}:\left(\mathrm{X}_{0} \times \mathbb{R}_{+}\right) \times\left(\mathrm{X}_{1} \times \mathbb{R}_{+}\right) \rightarrow[0,+\infty]$ which characterizes the cost of connecting two Dirac measures with possibly different mass:

$$
\mathrm{h}\left(\mathrm{x}_{0}, \mathrm{r}_{0} ; \mathrm{x}_{1}, \mathrm{r}_{1}\right):=\operatorname{UOT}_{\text {Dirac }}\left(\mathrm{r}_{0} \delta_{x_{0}}, \mathrm{r}_{1} \delta_{x_{1}}\right) \quad x_{i} \in X_{i}, r_{i} \geqslant 0
$$

Simplifying assumptions: for every $\mathrm{x}_{0}, \mathrm{x}_{1}$

$$
\left\{\begin{array}{l}
h\left(x_{0}, r_{0} ; x_{1}, 0\right) \quad \text { is independent of } x_{1}, \quad h\left(x_{0}, 0 ; x_{1}, r_{1}\right) \text { is independent of } x_{0} . \\
\left(r_{0}, r_{1}\right) \mapsto h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right) \quad \text { is positively 1-homogeneous and convex }
\end{array}\right.
$$

Cone space: identify all the points $(x, 0)$ with the vertex \mathfrak{o} (they correspond to the null measure $0 \delta_{x}=0$)

$$
\mathfrak{C}[X]:=(X \times[0, \infty)) / \sim, \quad\left(x^{\prime}, r^{\prime}\right) \sim\left(x^{\prime \prime}, r^{\prime \prime}\right) \quad \Leftrightarrow \quad\left\{\begin{array}{l}
x^{\prime}=x^{\prime \prime}, r^{\prime}=r^{\prime \prime} \neq 0 \\
r^{\prime}=r^{\prime \prime}=0
\end{array}\right.
$$

Examples

The Balanced OT case: $c: X_{0} \times X_{1} \rightarrow \mathbb{R}$ is a cost function,

$$
h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right)= \begin{cases}r c\left(x_{0}, x_{1}\right) & \text { if } r_{0}=r_{1}=r \\ +\infty & \text { if } r_{0} \neq r_{1}\end{cases}
$$

Examples

The Balanced OT case: c : $\mathrm{X}_{0} \times \mathrm{X}_{1} \rightarrow \mathbb{R}$ is a cost function,

$$
h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right)= \begin{cases}r c\left(x_{0}, x_{1}\right) & \text { if } r_{0}=r_{1}=r \\ +\infty & \text { if } r_{0} \neq r_{1}\end{cases}
$$

The Hellinger-Kakutani case:

$$
h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right)= \begin{cases}\left(\sqrt{r_{0}}-\sqrt{r_{1}}\right)^{2}=r_{0}+r_{1}-2 \sqrt{r_{0} r_{1}} & \text { if } x_{0}=x_{1} \\ +\infty & \text { if } x_{0} \neq x_{1}\end{cases}
$$

Examples

The Balanced OT case: c : $X_{0} \times X_{1} \rightarrow \mathbb{R}$ is a cost function,

$$
h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right)= \begin{cases}r c\left(x_{0}, x_{1}\right) & \text { if } r_{0}=r_{1}=r \\ +\infty & \text { if } r_{0} \neq r_{1}\end{cases}
$$

The Hellinger-Kakutani case:

$$
h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right)= \begin{cases}\left(\sqrt{r_{0}}-\sqrt{r_{1}}\right)^{2}=r_{0}+r_{1}-2 \sqrt{r_{0} r_{1}} & \text { if } x_{0}=x_{1} \\ +\infty & \text { if } x_{0} \neq x_{1}\end{cases}
$$

The Entropic Unbalanced Cost

$$
\begin{aligned}
h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right) & =r_{0}+r_{1}-2 \sqrt{r_{0} r_{1}} e^{-c\left(x_{0}, x_{1}\right)} \\
& =\left(\sqrt{r_{0}}-\sqrt{r_{1}}\right)^{2}+2 \sqrt{r_{0} r_{1}}\left(1-e^{-c\left(x_{0}, x_{1}\right)}\right)
\end{aligned}
$$

Unbalanced Optimal Transport as convex envelope

What is the most natural way (from the convex analysis viewpoint) to extend UOT $_{\text {Dirac }}$

$$
\mathrm{h}\left(x_{0}, r_{0} ; x_{1}, r_{1}\right):=\operatorname{UOT}_{\text {Dirac }}\left(r_{0} \delta_{x_{0}}, r_{1} \delta_{x_{1}}\right) \quad x_{i} \in X_{i}, r_{i} \geqslant 0
$$

to a function in $\mathcal{M}\left(\mathrm{X}_{0}\right) \times \mathcal{N}\left(\mathrm{X}_{1}\right)$?

Unbalanced Optimal Transport as convex envelope

What is the most natural way (from the convex analysis viewpoint) to extend UOT $_{\text {Dirac }}$

$$
\mathrm{h}\left(\mathrm{x}_{0}, \mathrm{r}_{0} ; \mathrm{x}_{1}, \mathrm{r}_{1}\right):=\text { UOT }_{\text {Dirac }}\left(\mathrm{r}_{0} \delta_{x_{0}}, \mathrm{r}_{1} \delta_{x_{1}}\right) \quad x_{i} \in X_{i}, r_{i} \geqslant 0
$$

to a function in $\mathcal{M}\left(X_{0}\right) \times \mathcal{M}\left(X_{1}\right)$?
Γ-relaxation of UOT ${ }_{\text {Dirac }}$: the largest convex and I.s.c. functional Γ-UOT Dirac $: \mathcal{N}\left(X_{0}\right) \times \mathcal{M}\left(X_{1}\right) \rightarrow[0,+\infty]$ dominated by UOT Dirac :

$$
\left\{\begin{array}{l}
\Gamma-\text { UOT }_{\text {Dirac }}\left(r_{0} \delta_{x_{0}}, r_{1} \delta_{x_{1}}\right) \leqslant \text { UOT }_{\text {Dirac }}\left(r_{0} \delta_{x_{0}}, r_{1} \delta_{x_{1}}\right) \text { for every } r_{i} \geqslant 0, x_{i} \in X_{i} \\
\text { UÔTconvex, I.s.c., UÔT } \leqslant \text { UOT }_{\text {Dirac }} \Rightarrow \text { UÔT } \leqslant \Gamma \text {-UOT }{ }_{\text {Dirac }} .
\end{array}\right.
$$

Two equivalent constructions

If $\mathscr{F}: \mathrm{V} \rightarrow(-\infty,+\infty]$ is a given function, defined in a vector space V in duality with V^{\prime}, its Γ-regularization can be characterized in two equivalent ways:

- Using the Legendre transform thanks to Fenchel-Moreau Theorem:

$$
\begin{aligned}
\mathscr{F}^{*}(\phi) & :=\sup _{v \in \mathrm{~V}}\langle\phi, v\rangle-\mathscr{F}(v), \quad \phi \in \mathrm{V}^{\prime} \\
\Gamma-\mathscr{F}(v) & =\mathscr{F}^{* *}(v):=\sup _{\phi \in \mathrm{V}^{\prime}}\langle\phi, v\rangle-\mathscr{F}^{*}(\phi)
\end{aligned}
$$

Two equivalent constructions

If $\mathscr{F}: \mathrm{V} \rightarrow(-\infty,+\infty]$ is a given function, defined in a vector space V in duality with V^{\prime}, its Γ-regularization can be characterized in two equivalent ways:

- Using the Legendre transform thanks to Fenchel-Moreau Theorem:

$$
\begin{aligned}
\mathscr{F}^{*}(\phi) & :=\sup _{v \in \mathrm{~V}}\langle\phi, v\rangle-\mathscr{F}(v), \quad \phi \in \mathrm{V}^{\prime} \\
\Gamma-\mathscr{F}(v) & =\mathscr{F}^{* *}(v):=\sup _{\phi \in \mathrm{V}^{\prime}}\langle\phi, v\rangle-\mathscr{F}^{*}(\phi)
\end{aligned}
$$

- Computing the convex envelope:

$$
\operatorname{co} \mathscr{F}(v):=\inf \left\{\sum_{i} \alpha_{i} \mathscr{F}\left(v_{i}\right): \alpha_{i} \geqslant 0, \sum_{i} \alpha_{i}=1, \sum_{i} \alpha_{i} v_{i}=v\right\}
$$

and then taking the I.s.c. relaxation of $\operatorname{co} \mathscr{F}(v)$. If \mathscr{F} is coercive we have the integral description

$$
\Gamma-\mathscr{F}(v)=\min \left\{\int_{V} \mathscr{F}(w) \mathrm{d} \alpha(w): \alpha \in \mathcal{P}(\mathrm{V}), \int_{V} w \mathrm{~d} \alpha(w)=v\right\} .
$$

Convex duality

Γ-UOT ${ }_{\text {Dirac }}$ can be computed by Legendre transform thanks to Fenchel-Moreau Theorem, using the duality between $\mathcal{M}(X)$ and $\mathrm{C}_{\mathrm{b}}(\mathrm{X})$.

$$
\begin{aligned}
\operatorname{UOT}_{\text {Dirac }}^{*}\left(\phi_{0}, \phi_{1}\right) & =\sup \left\{r_{0} \phi_{0}\left(x_{0}\right)+r_{1} \phi_{1}\left(x_{1}\right)-h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right): r_{i} \geqslant 0, x_{i} \in X_{i}\right\} \\
& = \begin{cases}0 & \text { if } r_{0} \phi_{0}\left(x_{0}\right)+r_{1} \phi_{1}\left(x_{1}\right) \leqslant h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right) \\
+\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

Convex duality

Γ-UOT ${ }_{\text {Dirac }}$ can be computed by Legendre transform thanks to Fenchel-Moreau Theorem, using the duality between $\mathcal{M}(X)$ and $\mathrm{C}_{\mathrm{b}}(\mathrm{X})$.

$$
\begin{aligned}
\operatorname{UOT}_{\text {Dirac }}^{*}\left(\phi_{0}, \phi_{1}\right) & =\sup \left\{r_{0} \phi_{0}\left(x_{0}\right)+r_{1} \phi_{1}\left(x_{1}\right)-h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right): r_{i} \geqslant 0, x_{i} \in X_{i}\right\} \\
& = \begin{cases}0 & \text { if } r_{0} \phi_{0}\left(x_{0}\right)+r_{1} \phi_{1}\left(x_{1}\right) \leqslant h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right) \\
+\infty & \text { otherwise }\end{cases}
\end{aligned}
$$

UOT $_{\text {Dirac }}^{*}$ is just the indicator function of a convex set $K[h]$ of admissible Kantorovich potentials $\left(\phi_{0}, \phi_{1}\right) \in \mathrm{C}_{\mathrm{b}}\left(\mathrm{X}_{0}\right) \times \mathrm{C}_{\mathrm{b}}\left(\mathrm{X}_{1}\right)$.

The dual Kantorovich formulation of Unbalanced Optimal Transport

$$
\begin{aligned}
\Gamma-\text { UOT }_{\text {Dirac }}\left(\mu_{0}, \mu_{1}\right) & =\operatorname{UOT}_{\text {Dirac }}^{* *}\left(\mu_{0}, \mu_{1}\right)= \\
& =\sup \left\{\int \phi_{0} \mathrm{~d} \mu_{0}+\int \phi_{1} \mathrm{~d} \mu_{1}:\left(\phi_{0}, \phi_{1}\right) \in \mathrm{K}[\mathrm{~h}]\right\} .
\end{aligned}
$$

Primal formulation

How to represent convex combinations of pair of Dirac masses?

Given $\alpha_{k} \geqslant 0, \sum_{k} \alpha_{k}=1$, we may consider

$$
\begin{aligned}
\left(\mu_{0}, \mu_{1}\right) & =\sum_{k} \alpha_{k}\left(r_{0, k} \delta_{x_{0, k}}, r_{1, k} \delta_{x_{1, k}}\right) \\
& \rightsquigarrow \Gamma-\text { UOT }_{\text {Dirac }}\left(\mu_{0}, \mu_{1}\right) \leqslant \sum_{k} \alpha_{k} h\left(x_{0, k}, r_{0, k} ; x_{1, k}, r_{1, k}\right)=\int h d \alpha \\
& \rightsquigarrow \alpha=\sum_{k} \alpha_{k} \delta_{\left(x_{0, k}, r_{0, k} ; x_{1, k} r_{1, k}\right)} \in \mathcal{P}\left(X_{0} \times \mathbb{R}_{+} \times X_{1} \times \mathbb{R}_{+}\right)
\end{aligned}
$$

Primal formulation

How to represent convex combinations of pair of Dirac masses?

Given $\alpha_{k} \geqslant 0, \sum_{k} \alpha_{k}=1$, we may consider

$$
\begin{aligned}
\left(\mu_{0}, \mu_{1}\right) & =\sum_{k} \alpha_{k}\left(r_{0, k} \delta_{x_{0, k}}, r_{1, k} \delta_{x_{1, k}}\right) \\
& \rightsquigarrow \Gamma-\text { UOT }_{\text {Dirac }}\left(\mu_{0}, \mu_{1}\right) \leqslant \sum_{k} \alpha_{k} h\left(x_{0, k}, r_{0, k} ; x_{1, k}, r_{1, k}\right)=\int h d \alpha \\
& \rightsquigarrow \alpha=\sum_{k} \alpha_{k} \delta_{\left(x_{0, k}, r_{0, k} ; x_{1, k} r_{1, k}\right)} \in \mathcal{P}\left(X_{0} \times \mathbb{R}_{+} \times X_{1} \times \mathbb{R}_{+}\right)
\end{aligned}
$$

Constraints:

$$
\begin{aligned}
\mu_{0}(A) & =\sum_{k} \alpha_{k} r_{0, k} \delta_{x_{0, k}}(A)=\int_{A \times \mathbb{R}_{+} \times x_{1} \times \mathbb{R}_{+}} r_{0} d \boldsymbol{\alpha}\left(x_{0}, r_{0} ; x_{1}, r_{1}\right) \\
& =\mathfrak{h}_{0} \alpha(A) \\
\mu_{1}(B) & =\sum_{k} \alpha_{k} r_{1, k} \delta_{x_{1, k}}(B)=\int_{X_{0} \times \mathbb{R}_{+} \times B \times \mathbb{R}_{+}} r_{1} d \boldsymbol{\alpha}\left(x_{0}, r_{0} ; x_{1}, r_{1}\right) \\
& =\mathfrak{h}_{1} \boldsymbol{\alpha}(B)
\end{aligned}
$$

$$
\mu_{0}=\mathfrak{h}_{0} \boldsymbol{\alpha}=\pi_{\sharp}^{X_{0}}\left(r_{0} \boldsymbol{\alpha}\right), \quad \mu_{1}=\mathfrak{h}_{1} \boldsymbol{\alpha}=\pi_{\sharp}^{X_{1}}\left(r_{1} \boldsymbol{\alpha}\right) \quad \text { 1-homogeneous marginals of } \boldsymbol{\alpha}
$$

Representation

We introduce the set of plans with homogeneous marginals μ_{0}, μ_{1} :

$$
\begin{aligned}
\mathfrak{H}\left(\mu_{0}, \mu_{1}\right):= & \left\{\alpha \in \mathcal{P}\left(X_{0} \times \mathbb{R}_{+} \times X_{1} \times \mathbb{R}_{+}\right):\right. \\
& \left.\mathfrak{h}_{0} \boldsymbol{\alpha}=\pi_{\sharp}^{x_{0}}\left(r_{0} \boldsymbol{\alpha}\right)=\mu_{0}, \mathfrak{h}_{1} \boldsymbol{\alpha}=\pi_{\sharp}^{x_{1}}\left(r_{1} \boldsymbol{\alpha}\right)=\mu_{1}\right\}
\end{aligned}
$$

Representation

We introduce the set of plans with homogeneous marginals μ_{0}, μ_{1} :

$$
\begin{aligned}
\mathfrak{H}\left(\mu_{0}, \mu_{1}\right):= & \left\{\alpha \in \mathcal{P}\left(X_{0} \times \mathbb{R}_{+} \times X_{1} \times \mathbb{R}_{+}\right):\right. \\
& \left.\mathfrak{h}_{0} \boldsymbol{\alpha}=\pi_{\sharp}^{x_{0}}\left(r_{0} \alpha\right)=\mu_{0}, \mathfrak{h}_{1} \alpha=\pi_{\sharp}^{x_{1}}\left(r_{1} \alpha\right)=\mu_{1}\right\}
\end{aligned}
$$

Primal formulation

$$
\operatorname{UOT}\left(\mu_{0}, \mu_{1}\right)=\min \left\{\int h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right) d \boldsymbol{\alpha}: \boldsymbol{\alpha} \in \mathfrak{H}\left(\mu_{0}, \mu_{1}\right)\right\}
$$

Representation

We introduce the set of plans with homogeneous marginals μ_{0}, μ_{1} :

$$
\begin{aligned}
\mathfrak{H}\left(\mu_{0}, \mu_{1}\right):= & \left\{\alpha \in \mathcal{P}\left(X_{0} \times \mathbb{R}_{+} \times X_{1} \times \mathbb{R}_{+}\right):\right. \\
& \left.\mathfrak{h}_{0} \boldsymbol{\alpha}=\pi_{\sharp}^{x_{0}}\left(r_{0} \boldsymbol{\alpha}\right)=\mu_{0}, \mathfrak{h}_{1} \alpha=\pi_{\sharp}^{x_{1}}\left(r_{1} \boldsymbol{\alpha}\right)=\mu_{1}\right\}
\end{aligned}
$$

Primal formulation

$$
\operatorname{UOT}\left(\mu_{0}, \mu_{1}\right)=\min \left\{\int \mathrm{h}\left(\mathrm{x}_{0}, \mathrm{r}_{0} ; \mathrm{x}_{1}, \mathrm{r}_{1}\right) \mathrm{d} \boldsymbol{\alpha}: \boldsymbol{\alpha} \in \mathfrak{H}\left(\mu_{0}, \mu_{1}\right)\right\}
$$

It is possible to check that UOT is convex, l.s.c., and it is dominated by UOT ${ }_{\text {Dirac }}$, so that

$$
\operatorname{UOT}\left(\mu_{0}, \mu_{1}\right) \leqslant \operatorname{UOT}_{\text {Dirac }}^{* *}\left(\mu_{0}, \mu_{1}\right)
$$

On the other hand it is also immediate to check that

$$
\operatorname{UOT}\left(\mu_{0}, \mu_{1}\right) \geqslant \operatorname{UOT}_{\text {Dirac }}^{* *}\left(\mu_{0}, \mu_{1}\right)
$$

Primal-dual equivalence of Unbalanced Optimal Transport

$$
\begin{aligned}
& \operatorname{UOT}\left(\mu_{0}, \mu_{1}\right)=\text { UOT }_{\text {Dirac }}^{* *}\left(\mu_{0}, \mu_{1}\right)=\sup \left\{\int \phi_{0} d \mu_{0}+\int \phi_{1} d \mu_{1}:\left(\phi_{0}, \phi_{1}\right) \in \mathrm{K}[\mathrm{~h}]\right\}, \\
& \mathrm{K}[\mathrm{~h}]=\left\{\left(\phi_{0}, \phi_{1}\right) \in \mathrm{C}_{\mathrm{b}}\left(\mathrm{X}_{0}\right) \times \mathrm{C}_{\mathrm{b}}\left(\mathrm{X}_{1}\right): \mathrm{r}_{0} \phi_{0}\left(\mathrm{x}_{0}\right)+\mathrm{r}_{1} \phi_{1}\left(\mathrm{x}_{1}\right) \leqslant \mathrm{h}\left(x_{0}, \mathrm{r}_{0} ; \mathrm{x}_{1}, \mathrm{r}_{1}\right)\right\} .
\end{aligned}
$$

The link with Optimal Transport in the cone space

Consider the space $\mathfrak{C}\left[X_{i}\right]=\left(X_{i} \times \mathbb{R}_{+}\right) / \sim$ and the cost functional h. It induces the OT problem

$$
\mathrm{OT}_{\mathrm{h}}\left(\alpha_{0}, \alpha_{1}\right)=\min \left\{\int h \mathrm{~d} \alpha: \alpha \in \Gamma\left(\alpha_{1}, \alpha_{2}\right)\right\} .
$$

We have

Optimal transport formulation via homogeneous marginals

$$
\operatorname{UOT}\left(\mu_{0}, \mu_{1}\right)=\min \left\{\operatorname{OT}_{\mathrm{h}}\left(\alpha_{0}, \alpha_{1}\right): \alpha_{i} \in \mathcal{P}\left(\mathfrak{C}\left[X_{i}\right]\right), \mathfrak{h} \alpha_{i}=\mu_{i}\right\}
$$

where

$$
\mathfrak{h} \alpha_{i}=\pi_{\sharp}^{X_{i}}\left(r_{i} \alpha_{i}\right) .
$$

The link with Optimal Transport in the cone space

Consider the space $\mathfrak{C}\left[X_{i}\right]=\left(X_{i} \times \mathbb{R}_{+}\right) / \sim$ and the cost functional h. It induces the OT problem

$$
\mathrm{OT}_{\mathrm{h}}\left(\alpha_{0}, \alpha_{1}\right)=\min \left\{\int h \mathrm{~d} \alpha: \alpha \in \Gamma\left(\alpha_{1}, \alpha_{2}\right)\right\} .
$$

We have

Optimal transport formulation via homogeneous marginals

$$
\operatorname{UOT}\left(\mu_{0}, \mu_{1}\right)=\min \left\{\operatorname{OT}_{h}\left(\alpha_{0}, \alpha_{1}\right): \alpha_{i} \in \mathcal{P}\left(\mathfrak{C}\left[X_{i}\right]\right), \mathfrak{h} \alpha_{i}=\mu_{i}\right\}
$$

where

$$
\mathfrak{h} \alpha_{i}=\pi_{\sharp}^{X_{i}}\left(r_{i} \alpha_{i}\right) .
$$

How to choose interesting costs h? We discuss the particular case of the hellinger-Kantorovich metric, induced by the natural cone distance on $\mathfrak{C}\left[\mathbb{R}^{\mathrm{d}}\right]$.

Outline

1 Unbalanced Optimal Transport: a relaxation viewpoint

2 The Hellinger-Kantorovich metric between positive measures of arbitrary mass

3 Geodesics and geodesic convexity

4 Regularity of solutions to the Conical Hopf-Lax semigroup

The dynamic perspective

Let $\mu \in C^{0}\left([0,1] ; \mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right)\right),(\boldsymbol{v}, w): \mathbb{R}^{\mathrm{d}} \times(0,1) \rightarrow \mathbb{R}^{\mathrm{d}+1}$ be a Borel vector field satisfying

$$
\int_{0}^{1} \int\left(\left|v_{t}(x)\right|^{2}+w_{t}^{2}(x)\right) d \mu_{t}(x) d t<\infty
$$

Continuity equation with reaction governed by the field $(\boldsymbol{v}, \boldsymbol{w})$ if

$$
\begin{equation*}
\partial_{\mathrm{t}} \mu_{\mathrm{t}}+\nabla \cdot\left(v_{\mathrm{t}} \mu_{\mathrm{t}}\right)=2 w_{\mathrm{t}} \mu_{\mathrm{t}} \quad \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{\mathrm{d}} \times(0,1)\right) \tag{CER}
\end{equation*}
$$

The dynamic perspective

Let $\mu \in C^{0}\left([0,1] ; \mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right)\right),(\boldsymbol{v}, w): \mathbb{R}^{\mathrm{d}} \times(0,1) \rightarrow \mathbb{R}^{\mathrm{d}+1}$ be a Borel vector field satisfying

$$
\int_{0}^{1} \int\left(\left|v_{\mathrm{t}}(x)\right|^{2}+w_{\mathrm{t}}^{2}(x)\right) \mathrm{d} \mu_{\mathrm{t}}(x) \mathrm{dt}<\infty
$$

Continuity equation with reaction governed by the field $(\boldsymbol{v}, \boldsymbol{w})$ if

$$
\begin{equation*}
\partial_{\mathrm{t}} \mu_{\mathrm{t}}+\nabla \cdot\left(v_{\mathrm{t}} \mu_{\mathrm{t}}\right)=2 w_{\mathrm{t}} \mu_{\mathrm{t}} \quad \text { in } \mathscr{D}^{\prime}\left(\mathbb{R}^{\mathrm{d}} \times(0,1)\right) \tag{CER}
\end{equation*}
$$

The Hellinger-Kantorovich distance via dynamic interpolation

$$
\begin{aligned}
\mathbb{H}^{2}\left(\mu_{0}, \mu_{1}\right)=\min \{ & \int_{0}^{1} \int\left(\left|v_{t}\right|^{2}+\left|w_{t}\right|^{2}\right) d \mu_{t} d t: \mu \in C\left([0,1] ; \mathcal{N}\left(\mathbb{R}^{d}\right)\right) \\
& \left.\partial_{t} \mu_{t}+\nabla \cdot\left(v_{t} \mu_{t}\right)=2 w_{t} \mu_{t}, \quad \mu_{t=i}=\mu_{i}\right\}
\end{aligned}
$$

This approach has been independently proposed by
Kondratiev, Monsaingeon, Vorotnikov and Chizat, Peyré, Vialard, Schmitzer.

The distances between two Dirac masses

Suppose that $\mu_{i}=r_{i}^{2} \delta_{x_{i}}$; if we look for $\mu_{t}:=r^{2}(t) \delta_{x(t)}$

$$
\partial_{\mathrm{t}} \mu_{\mathrm{t}}+\nabla \cdot\left(\mu_{\mathrm{t}} v_{\mathrm{t}}\right)=2 w_{\mathrm{t}} \mu_{\mathrm{t}}, \quad v_{\mathrm{t}}(x(\mathrm{t}))=\dot{\mathrm{x}}(\mathrm{t}), \quad w_{\mathrm{t}}(\mathrm{x}(\mathrm{t}))=\dot{\mathrm{r}}(\mathrm{t}) / \mathrm{r}(\mathrm{t})
$$

We can compute

$$
\begin{aligned}
\mathrm{H}^{2}\left(\mathrm{r}_{0}^{2} \delta_{x_{0}}, r_{1}^{2} \delta_{x_{1}}\right)=\min \{ & \int_{0}^{1}\left(\mathrm{r}^{2}(\mathrm{t})|\dot{x}(\mathrm{t})|^{2}+|\dot{r}(\mathrm{t})|^{2}\right) d t: \\
& \left.(x, r):[0,1] \rightarrow \mathbb{R}^{\mathrm{d}} \times \mathbb{R}_{+},(x(i), r(i))=\left(x_{i}, r_{i}\right) i=0,1\right\}
\end{aligned}
$$

The distances between two Dirac masses

Suppose that $\mu_{i}=r_{i}^{2} \delta_{x_{i}}$; if we look for $\mu_{t}:=r^{2}(t) \delta_{x(t)}$

$$
\partial_{\mathrm{t}} \mu_{\mathrm{t}}+\nabla \cdot\left(\mu_{\mathrm{t}} v_{\mathrm{t}}\right)=2 w_{\mathrm{t}} \mu_{\mathrm{t}}, \quad v_{\mathrm{t}}(\mathrm{x}(\mathrm{t}))=\dot{\mathrm{x}}(\mathrm{t}), \quad w_{\mathrm{t}}(\mathrm{x}(\mathrm{t}))=\dot{\mathrm{r}}(\mathrm{t}) / \mathrm{r}(\mathrm{t})
$$

We can compute

$$
\begin{aligned}
\mathrm{H}^{2}\left(\mathrm{r}_{0}^{2} \delta_{x_{0}}, r_{1}^{2} \delta_{x_{1}}\right)=\min \{ & \int_{0}^{1}\left(\mathrm{r}^{2}(\mathrm{t})|\dot{x}(\mathrm{t})|^{2}+|\dot{r}(\mathrm{t})|^{2}\right) d \mathrm{t}: \\
& \left.(x, r):[0,1] \rightarrow \mathbb{R}^{\mathrm{d}} \times \mathbb{R}_{+},(x(i), r(i))=\left(x_{i}, r_{i}\right) i=0,1\right\}
\end{aligned}
$$

K is associated to the cone distance:

$$
d_{\mathbb{C}}^{2}\left(\left(x_{0}, r_{0}\right),\left(x_{1}, r_{1}\right)\right)=r_{0}^{2}+r_{1}^{2}-2 r_{0} r_{1} \cos _{\pi}\left(\left|x_{1}-x_{0}\right|\right)
$$

where $\cos _{\alpha}(r)=\cos (r \wedge \alpha) \cdot d_{\mathfrak{C}}\left(\left(x_{0}, r_{0}\right),\left(x_{1}, r_{1}\right)\right)$ is a length distance.

The distances between two Dirac masses

Suppose that $\mu_{i}=r_{i}^{2} \delta_{x_{i}}$; if we look for $\mu_{t}:=r^{2}(t) \delta_{x(t)}$

$$
\partial_{\mathrm{t}} \mu_{\mathrm{t}}+\nabla \cdot\left(\mu_{\mathrm{t}} v_{\mathrm{t}}\right)=2 w_{\mathrm{t}} \mu_{\mathrm{t}}, \quad v_{\mathrm{t}}(\mathrm{x}(\mathrm{t}))=\dot{\mathrm{x}}(\mathrm{t}), \quad w_{\mathrm{t}}(\mathrm{x}(\mathrm{t}))=\dot{\mathrm{r}}(\mathrm{t}) / \mathrm{r}(\mathrm{t})
$$

We can compute

$$
\begin{aligned}
\mathrm{K}^{2}\left(r_{0}^{2} \delta_{x_{0}}, r_{1}^{2} \delta_{x_{1}}\right)=\min \{ & \int_{0}^{1}\left(r^{2}(t)|\dot{x}(t)|^{2}+|\dot{r}(t)|^{2}\right) d t: \\
& \left.(x, r):[0,1] \rightarrow \mathbb{R}^{d} \times \mathbb{R}_{+},(x(i), r(i))=\left(x_{i}, r_{i}\right) i=0,1\right\}
\end{aligned}
$$

K is associated to the cone distance:

$$
d_{\mathfrak{C}}^{2}\left(\left(x_{0}, r_{0}\right),\left(x_{1}, r_{1}\right)\right)=r_{0}^{2}+r_{1}^{2}-2 r_{0} r_{1} \cos _{\pi}\left(\left|x_{1}-x_{0}\right|\right)
$$

where $\cos _{\alpha}(r)=\cos (r \wedge \alpha) . d_{\mathfrak{C}}\left(\left(x_{0}, r_{0}\right),\left(x_{1}, r_{1}\right)\right)$ is a length distance.
Truncation effect: when $\left|x_{0}-x_{1}\right| \geqslant \pi / 2$ a better competitor is provided by $\mu_{t}:=\left[(1-t) r_{0}\right]^{2} \delta_{x_{0}}+\left(\operatorname{tr}_{1}\right)^{2} \delta_{x_{1}}$ and we have

$$
\boldsymbol{H}^{2}\left(r_{0}^{2} \delta_{x_{0}}, r_{1}^{2} \delta_{x_{1}}\right)=r_{0}^{2}+r_{1}^{2}
$$

The distances between two Dirac masses

Suppose that $\mu_{i}=r_{i}^{2} \delta_{x_{i}}$; if we look for $\mu_{t}:=r^{2}(t) \delta_{x(t)}$

$$
\partial_{\mathrm{t}} \mu_{\mathrm{t}}+\nabla \cdot\left(\mu_{\mathrm{t}} v_{\mathrm{t}}\right)=2 w_{\mathrm{t}} \mu_{\mathrm{t}}, \quad v_{\mathrm{t}}(\mathrm{x}(\mathrm{t}))=\dot{\mathrm{x}}(\mathrm{t}), \quad w_{\mathrm{t}}(\mathrm{x}(\mathrm{t}))=\dot{\mathrm{r}}(\mathrm{t}) / \mathrm{r}(\mathrm{t})
$$

We can compute

$$
\begin{aligned}
& H^{2}\left(r_{0}^{2} \delta_{x_{0}}, r_{1}^{2} \delta_{x_{1}}\right)=\min \left\{\int_{0}^{1}\left(r^{2}(t)|\dot{x}(t)|^{2}+|\dot{r}(t)|^{2}\right) d t:\right. \\
& \\
& \left.(x, r):[0,1] \rightarrow \mathbb{R}^{d} \times \mathbb{R}_{+},(x(i), r(i))=\left(x_{i}, r_{i}\right) i=0,1\right\}
\end{aligned}
$$

K is associated to the cone distance:

$$
d_{\mathfrak{C}}^{2}\left(\left(x_{0}, r_{0}\right),\left(x_{1}, r_{1}\right)\right)=r_{0}^{2}+r_{1}^{2}-2 r_{0} r_{1} \cos _{\pi}\left(\left|x_{1}-x_{0}\right|\right)
$$

where $\cos _{\alpha}(r)=\cos (r \wedge \alpha) . d_{\mathfrak{C}}\left(\left(x_{0}, r_{0}\right),\left(x_{1}, r_{1}\right)\right)$ is a length distance.
Truncation effect: when $\left|x_{0}-x_{1}\right| \geqslant \pi / 2$ a better competitor is provided by $\mu_{t}:=\left[(1-t) r_{0}\right]^{2} \delta_{x_{0}}+\left(\operatorname{tr}_{1}\right)^{2} \delta_{x_{1}}$ and we have

$$
\mathrm{H}^{2}\left(\mathrm{r}_{0}^{2} \delta_{x_{0}}, \mathrm{r}_{1}^{2} \delta_{x_{1}}\right)=\mathrm{r}_{0}^{2}+\mathrm{r}_{1}^{2}
$$

$$
\mathrm{H}^{2}\left(\mathrm{r}_{0}^{2} \delta_{x_{0}}, r_{1}^{2} \delta_{x_{1}}\right)=\mathrm{r}_{0}^{2}+\mathrm{r}_{1}^{2}-2 \mathrm{r}_{0} \mathrm{r}_{1} \cos _{\pi / 2}\left(\left|x_{1}-x_{0}\right|\right)
$$

Cone metric: $\quad d_{\mathscr{C}}^{2}\left(\left(x_{0}, r_{0}\right),\left(x_{1}, r_{1}\right)\right)=r_{0}^{2}+r_{1}^{2}-2 r_{0} r_{1} \cos _{\pi}\left(\left|x_{1}-x_{0}\right|\right)$
Cone space: identify all the points $(x, 0)$ with the vertex \mathfrak{o}.

$$
\mathfrak{C}:=\left(\mathbb{R}^{\mathrm{d}} \times[0, \infty)\right) / \sim, \quad\left(x^{\prime}, r^{\prime}\right) \sim\left(x^{\prime \prime}, r^{\prime \prime}\right) \quad \Leftrightarrow\left\{\begin{array}{l}
x^{\prime}=x^{\prime \prime}, r^{\prime}=r^{\prime \prime} \neq 0 \\
r^{\prime}=r^{\prime \prime}=0
\end{array}\right.
$$

Cone metric: $\quad d_{\mathbb{C}}^{2}\left(\left(x_{0}, r_{0}\right),\left(x_{1}, r_{1}\right)\right)=r_{0}^{2}+r_{1}^{2}-2 r_{0} r_{1} \cos _{\pi}\left(\left|x_{1}-x_{0}\right|\right)$

Cone space: identify all the points $(x, 0)$ with the vertex \mathfrak{o}.

$$
\mathfrak{C}:=\left(\mathbb{R}^{\mathrm{d}} \times[0, \infty)\right) / \sim, \quad\left(x^{\prime}, r^{\prime}\right) \sim\left(x^{\prime \prime}, r^{\prime \prime}\right) \quad \Leftrightarrow \quad\left\{\begin{array}{l}
x^{\prime}=x^{\prime \prime}, r^{\prime}=r^{\prime \prime} \neq 0 \\
r^{\prime}=r^{\prime \prime}=0
\end{array}\right.
$$

$\mathfrak{C} \backslash\{\mathfrak{o}\}$ can be considered as a smooth Riemannian manifold with metric

Unbalanced transport: the link with the relaxation viewpoint

H^{2} is a convex and subadditive functional
We introduce a function $\mathrm{h}:\left(\mathbb{R}^{\mathrm{d}} \times \mathbb{R}_{+}\right)^{2} \rightarrow[0,+\infty)$ which characterizes the cost of connecting two Dirac measures with possibly different mass:

$$
\begin{aligned}
h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right) & :=H^{2}\left(r_{0} \delta_{x_{0}}, r_{1} \delta_{x_{1}}\right)=d_{\mathbb{C}}^{2}\left(\left(x_{0}, \sqrt{r_{0}}\right),\left(x_{1}, \sqrt{r_{1}}\right)\right) \\
& =r_{0}+r_{1}-2 \sqrt{r_{0} r_{1}} \cos _{\pi / 2}\left(\left|x_{1}-x_{0}\right|\right) \quad x_{i} \in X_{i}, r_{i} \geqslant 0
\end{aligned}
$$

Unbalanced transport: the link with the relaxation viewpoint

\boldsymbol{K}^{2} is a convex and subadditive functional

We introduce a function $\mathrm{h}:\left(\mathbb{R}^{\mathrm{d}} \times \mathbb{R}_{+}\right)^{2} \rightarrow[0,+\infty)$ which characterizes the cost of connecting two Dirac measures with possibly different mass:

$$
\begin{aligned}
h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right) & :=H^{2}\left(r_{0} \delta_{x_{0}}, r_{1} \delta_{x_{1}}\right)=d_{\mathbb{C}}^{2}\left(\left(x_{0}, \sqrt{r_{0}}\right),\left(x_{1}, \sqrt{r_{1}}\right)\right) \\
& =r_{0}+r_{1}-2 \sqrt{r_{0} r_{1}} \cos _{\pi / 2}\left(\left|x_{1}-x_{0}\right|\right) \quad x_{i} \in X_{i}, r_{i} \geqslant 0
\end{aligned}
$$

$$
\left(r_{0}, r_{1}\right) \mapsto h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right) \quad \text { is positively 1-homogeneous and convex }
$$

thanks to the truncation $\left(-\cos _{\pi / 2} \leqslant 0\right)$. Define $\operatorname{UOT}_{\text {Dirac }}\left(\mu_{0}, \mu_{1}\right):=\mathrm{H}^{2}\left(\mu_{0}, \mu_{1}\right)$ if $\mu_{i}=\mathrm{r}_{i} \delta_{x_{i}},+\infty$ otherwise.

Unbalanced transport: the link with the relaxation viewpoint

K^{2} is a convex and subadditive functional

We introduce a function $\mathrm{h}:\left(\mathbb{R}^{\mathrm{d}} \times \mathbb{R}_{+}\right)^{2} \rightarrow[0,+\infty)$ which characterizes the cost of connecting two Dirac measures with possibly different mass:

$$
\begin{aligned}
h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right) & :=H^{2}\left(r_{0} \delta_{x_{0}}, r_{1} \delta_{x_{1}}\right)=d_{\mathbb{C}}^{2}\left(\left(x_{0}, \sqrt{r_{0}}\right),\left(x_{1}, \sqrt{r_{1}}\right)\right) \\
& =r_{0}+r_{1}-2 \sqrt{r_{0} r_{1}} \cos _{\pi / 2}\left(\left|x_{1}-x_{0}\right|\right) \quad x_{i} \in X_{i}, r_{i} \geqslant 0
\end{aligned}
$$

$$
\left(r_{0}, r_{1}\right) \mapsto h\left(x_{0}, r_{0} ; x_{1}, r_{1}\right) \quad \text { is positively 1-homogeneous and convex }
$$

thanks to the truncation $\left(-\cos _{\pi / 2} \leqslant 0\right)$. Define $\operatorname{UOT}_{\text {Dirac }}\left(\mu_{0}, \mu_{1}\right):=\mathrm{H}^{2}\left(\mu_{0}, \mu_{1}\right)$ if $\mu_{i}=\mathrm{r}_{i} \delta_{x_{i}},+\infty$ otherwise.

Theorem

HK^{2} is the Γ-relaxation of $\mathrm{UOT}_{\text {Dirac }}$: the largest convex and lower semicontinuous functional defined in $\mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right) \times \mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right) \rightarrow[0,+\infty]$ dominated by UOT ${ }_{\text {Dirac }}$:

UÔT convex, l.s.c., UÔT \leqslant UOT $_{\text {Dirac }} \Rightarrow$ UÔT $\leqslant H^{2}$.

Representation

$$
\begin{aligned}
\mathfrak{H}\left(\mu_{0}, \mu_{1}\right):= & \left\{\boldsymbol{\alpha} \in \mathcal{P}\left(X_{0} \times \mathbb{R}_{+} \times X_{1} \times \mathbb{R}_{+}\right):\right. \\
& \left.\mathfrak{h}^{0} \boldsymbol{\alpha}=\pi_{\sharp}^{x_{0}}\left(r_{0}^{2} \boldsymbol{\alpha}\right)=\mu_{0}, \mathfrak{h}^{1} \boldsymbol{\alpha}=\pi_{\sharp}^{x_{1}}\left(r_{1}^{2} \boldsymbol{\alpha}\right)=\mu_{1}\right\}
\end{aligned}
$$

Representation

$$
\begin{aligned}
\mathfrak{H}\left(\mu_{0}, \mu_{1}\right):= & \left\{\boldsymbol{\alpha} \in \mathcal{P}\left(X_{0} \times \mathbb{R}_{+} \times X_{1} \times \mathbb{R}_{+}\right):\right. \\
& \left.\mathfrak{h}^{0} \boldsymbol{\alpha}=\pi_{\sharp}^{x_{0}}\left(r_{0}^{2} \boldsymbol{\alpha}\right)=\mu_{0}, \mathfrak{h}^{1} \boldsymbol{\alpha}=\pi_{\sharp}^{x_{1}}\left(r_{1}^{2} \boldsymbol{\alpha}\right)=\mu_{1}\right\}
\end{aligned}
$$

Primal formulation

$$
\begin{aligned}
\mathfrak{H}^{2}\left(\mu_{0}, \mu_{1}\right) & =\min \left\{\int h\left(x_{0}, r_{0}^{2} ; x_{1}, r_{1}^{2}\right) d \boldsymbol{\alpha}: \boldsymbol{\alpha} \in \mathfrak{H}\left(\mu_{0}, \mu_{1}\right)\right\} \\
& =\min \left\{\int d_{\mathfrak{C}}^{2}\left(\left(x_{0}, r_{0}\right),\left(x_{1}, r_{1}\right)\right) d \boldsymbol{\alpha}: \boldsymbol{\alpha} \in \mathfrak{H}\left(\mu_{0}, \mu_{1}\right)\right\}
\end{aligned}
$$

Transport-growth pairs

We can represent $\alpha \in \mathfrak{H}\left(\mu_{0}, \mu_{1}\right)$ as $\alpha=\left(\left(T_{0}, q_{0}\right),\left(T_{1}, q_{1}\right)\right)_{\sharp} \lambda$ where $\lambda \in \mathcal{M}(Y)$, Y is some Polish space, and $\left(\mathbf{T}_{i}, q_{i}\right): Y \rightarrow \mathbb{R}^{d} \times \mathbb{R}_{+}$with $q_{i} \in L^{2}(\boldsymbol{\lambda})$.

Transport-growth pairs

We can represent $\alpha \in \mathfrak{H}\left(\mu_{0}, \mu_{1}\right)$ as $\alpha=\left(\left(T_{0}, q_{0}\right),\left(T_{1}, q_{1}\right)\right)_{\sharp} \lambda$ where $\lambda \in \mathcal{M}(Y), Y$ is some Polish space, and $\left(\mathbf{T}_{i}, q_{i}\right): Y \rightarrow \mathbb{R}^{d} \times \mathbb{R}_{+}$with $q_{i} \in L^{2}(\boldsymbol{\lambda})$.

We say that $\left(\mathbf{T}_{i}, q_{i}\right)$ is a transport-growth pair. (\mathbf{T}, q) acts on $\boldsymbol{\lambda}$ according to this rule:

$$
(\mathbf{T}, q)_{\star} \lambda:=\mathbf{T}_{\sharp}\left(q^{2} \boldsymbol{\lambda}\right)=\mathfrak{h}\left((\mathbf{T}, q)_{\sharp} \boldsymbol{\lambda}\right),
$$

$$
\begin{aligned}
H^{2}\left(\mu_{0}, \mu_{1}\right)=\min \{ & \int_{Y \times Y}\left(q_{0}^{2}+q_{1}^{2}-2 q_{0} q_{1} \cos _{\pi / 2}\left|T_{0}-T_{1}\right|\right) d \lambda \mid \lambda \in \mathcal{M}(Y), \\
& \text { Y Polish, } \left.\left(\mathbf{T}_{i}, q_{i}\right): Y \rightarrow \mathbb{R}^{d} \times \mathbb{R}_{+}, \mu_{i}:=\left(\mathbf{T}_{i}, q_{i}\right)_{\star} \lambda\right\}
\end{aligned}
$$

moreover, it is not restrictive to choose $Y=\mathfrak{C}\left[\mathbb{R}^{\mathrm{d}}\right] \times \mathfrak{C}\left[\mathbb{R}^{\mathrm{d}}\right]$.

Transport-growth pairs

We can represent $\alpha \in \mathfrak{H}\left(\mu_{0}, \mu_{1}\right)$ as $\alpha=\left(\left(T_{0}, q_{0}\right),\left(T_{1}, q_{1}\right)\right)_{\sharp} \lambda$ where $\lambda \in \mathcal{M}(Y), Y$ is some Polish space, and $\left(\mathbf{T}_{i}, q_{i}\right): Y \rightarrow \mathbb{R}^{d} \times \mathbb{R}_{+}$with $q_{i} \in L^{2}(\boldsymbol{\lambda})$.

We say that $\left(\mathbf{T}_{i}, q_{i}\right)$ is a transport-growth pair. (\mathbf{T}, q) acts on $\boldsymbol{\lambda}$ according to this rule:

$$
(\mathbf{T}, \mathrm{q})_{\star} \boldsymbol{\lambda}:=\mathbf{T}_{\sharp}\left(\mathrm{q}^{2} \boldsymbol{\lambda}\right)=\mathfrak{h}\left((\mathbf{T}, q)_{\sharp} \boldsymbol{\lambda}\right),
$$

$$
\begin{aligned}
\mathrm{K}^{2}\left(\mu_{0}, \mu_{1}\right)=\min \{ & \int_{Y \times Y}\left(\mathrm{q}_{0}^{2}+\mathrm{q}_{1}^{2}-2 \mathrm{q}_{0} \mathrm{q}_{1} \cos _{\pi / 2}\left|\mathbf{T}_{0}-\mathbf{T}_{1}\right|\right) \mathrm{d} \lambda \mid \lambda \in \mathcal{M}(\mathrm{Y}), \\
& \left.Y \text { Polish, }\left(\mathbf{T}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}\right): Y \rightarrow \mathbb{R}^{\mathrm{d}} \times \mathbb{R}_{+}, \mu_{\mathrm{i}}:=\left(\mathbf{T}_{\mathrm{i}}, \mathrm{q}_{\mathrm{i}}\right)_{\star} \lambda\right\} ;
\end{aligned}
$$

moreover, it is not restrictive to choose $Y=\mathfrak{C}\left[\mathbb{R}^{\mathrm{d}}\right] \times \mathfrak{C}\left[\mathbb{R}^{\mathrm{d}}\right]$.

Problem (Monge formulation of HK)

Given $\mu_{0}, \mu_{1} \in \mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right)$ find an optimal transport-growth pair $(\mathbf{T}, \mathrm{q}): \mathbb{R}^{\mathrm{d}} \rightarrow \mathbb{R}^{\mathrm{d}} \times \mathbb{R}_{+}$minimizing the cost

$$
\begin{equation*}
\mathscr{M}\left(\mathbf{T}, q ; \mu_{0}\right):=\int\left(1+q^{2}(x)-2 q(x) \cos _{\pi / 2}|\mathbf{T}(x)-x|\right) d \mu_{0}(x) \tag{1}
\end{equation*}
$$

among all the transport-growth maps satisfying $(\mathbf{T}, \mathrm{q})_{\star} \mu_{0}=\mu_{1}$

Duality with the conical Hamilton-Jacobi equation

If

$$
\begin{equation*}
\partial_{t} \xi_{t}+\frac{1}{2}\left|D \xi_{t}\right|^{2}+2 \xi_{t}^{2}(x) \leqslant 0 \tag{CHJ}
\end{equation*}
$$

and

$$
\partial_{\mathrm{t}} \mu_{\mathrm{t}}+\nabla \cdot\left(v_{\mathrm{t}} \mu_{\mathrm{t}}\right)=2 w_{\mathrm{t}} \mu_{\mathrm{t}}
$$

then

$$
\int \xi_{1} \mathrm{~d} \mu_{1}-\int \xi_{0} \mathrm{~d} \mu_{0} \leqslant \frac{1}{2} \int_{0}^{1} \int\left(\left|v_{\mathrm{t}}\right|^{2}+w_{\mathrm{t}}^{2}\right) \mathrm{d} \mu_{\mathrm{t}} \mathrm{dt} .
$$

Duality with the conical Hamilton-Jacobi equation

If

$$
\begin{equation*}
\partial_{t} \xi_{t}+\frac{1}{2}\left|D \xi_{t}\right|^{2}+2 \xi_{t}^{2}(x) \leqslant 0 \tag{CHJ}
\end{equation*}
$$

and

$$
\partial_{\mathrm{t}} \mu_{\mathrm{t}}+\nabla \cdot\left(v_{\mathrm{t}} \mu_{\mathrm{t}}\right)=2 w_{\mathrm{t}} \mu_{\mathrm{t}}
$$

then

$$
\int \xi_{1} \mathrm{~d} \mu_{1}-\int \xi_{0} \mathrm{~d} \mu_{0} \leqslant \frac{1}{2} \int_{0}^{1} \int\left(\left|v_{\mathrm{t}}\right|^{2}+w_{\mathrm{t}}^{2}\right) \mathrm{d} \mu_{\mathrm{t}} \mathrm{dt} .
$$

HK in duality with subsolutions to the conical Hamilton-Jacobi equations

$$
\begin{gathered}
\frac{1}{2} \mathbb{K}^{2}\left(\mu_{0}, \mu_{1}\right)=\sup \left\{\int \xi_{1} \mathrm{~d} \mu_{1}-\int \xi_{0} \mathrm{~d} \mu_{0}: \xi \in \mathrm{C}^{1}\left([0,1] ; \operatorname{Lip}\left(\mathbb{R}^{\mathrm{d}}\right)\right)\right. \\
\left.\partial_{\mathrm{t}} \xi_{\mathrm{t}}+\frac{1}{2}\left|\mathrm{D} \xi_{\mathrm{t}}\right|^{2}+2 \xi_{\mathrm{t}}^{2} \leqslant 0\right\}
\end{gathered}
$$

Conical Hopf-Lax representation formula

Given $\xi_{0} \in \operatorname{Li} p_{\mathrm{b}}\left(\mathbb{R}^{\mathrm{d}}\right)$ with $\xi_{0}>-1 / 2$, the viscosity solution (or the maximal subsolution) of the conical Hamilton Jacobi equation

$$
\begin{equation*}
\partial_{t} \xi_{t}+\frac{1}{2}\left|\mathrm{D} \xi_{t}\right|^{2}+2 \xi_{t}^{2}=0 \tag{CHJ}
\end{equation*}
$$

is given by the conical Hopf-Lax semigroup (cf. BARRON-JENSEN-LIU for different representation formulae)

$$
\begin{equation*}
\mathscr{P}_{\mathrm{t}} \xi(\mathrm{x}):=\inf _{y} \frac{1}{2 \mathrm{t}}\left[1-\frac{\cos _{\pi / 2}^{2}(|y-x|)}{1+2 \mathrm{t} \xi(x)}\right] \tag{CHL}
\end{equation*}
$$

Conical Hopf-Lax representation formula

Given $\xi_{0} \in \operatorname{Li} \dot{p}_{\mathrm{b}}\left(\mathbb{R}^{\mathrm{d}}\right)$ with $\xi_{0}>-1 / 2$, the viscosity solution (or the maximal subsolution) of the conical Hamilton Jacobi equation

$$
\begin{equation*}
\partial_{t} \xi_{t}+\frac{1}{2}\left|D \xi_{t}\right|^{2}+2 \xi_{t}^{2}=0 \tag{CHJ}
\end{equation*}
$$

is given by the conical Hopf-Lax semigroup (cf. BARRON-JENSEN-LIU for different representation formulae)

$$
\begin{equation*}
\mathscr{P}_{\mathrm{t}} \xi(x):=\inf _{y} \frac{1}{2 t}\left[1-\frac{\cos _{\pi / 2}^{2}(|y-x|)}{1+2 \mathrm{t} \xi(x)}\right] \tag{CHL}
\end{equation*}
$$

Conical Hopf-Lax representation for HK

$$
\frac{1}{2} \not \mathrm{~K}^{2}\left(\mu_{0}, \mu_{1}\right)=\sup \left\{\int \xi_{1} \mathrm{~d} \mu_{1}-\int \xi_{0} \mathrm{~d} \mu_{0}: \xi_{1}=\mathscr{P}_{1} \xi_{0}\right\}
$$

Conical lift of the Hopf-Lax formula

Formally, if ξ is a solution of

$$
\begin{equation*}
\partial_{\mathrm{t}} \xi_{\mathrm{t}}+\frac{1}{2}\left|\mathrm{D} \xi_{\mathrm{t}}\right|^{2}+2 \xi_{\mathrm{t}}^{2} \leqslant 0 \tag{CHJ}
\end{equation*}
$$

then $\zeta_{t}(x, r):=\xi_{t}(x) r^{2}$ is a solution of

$$
\begin{equation*}
\partial_{t} \zeta_{t}+\frac{1}{2}\left|\mathrm{D}_{\mathfrak{C}} \zeta_{t}\right|^{2} \leqslant 0 \tag{HJ}
\end{equation*}
$$

since

$$
\frac{1}{2}\left|D_{\mathbb{C}} \zeta\right|^{2}=\frac{1}{2} \mathfrak{g}^{*}\left(D_{x} \zeta, \partial_{r} \zeta\right)=\frac{1}{2}\left(\frac{1}{r^{2}}\left|D_{x} \zeta\right|^{2}+\left(\partial_{r} \zeta\right)^{2}\right)=\left(\frac{1}{2}\left|D \xi_{t}\right|^{2}+2 \xi_{t}^{2}\right) r^{2}
$$

Conical lift of the Hopf-Lax formula

Formally, if ξ is a solution of

$$
\begin{equation*}
\partial_{\mathrm{t}} \xi_{\mathrm{t}}+\frac{1}{2}\left|\mathrm{D} \xi_{\mathrm{t}}\right|^{2}+2 \xi_{\mathrm{t}}^{2} \leqslant 0 \tag{CHJ}
\end{equation*}
$$

then $\zeta_{t}(x, r):=\xi_{t}(x) r^{2}$ is a solution of

$$
\begin{equation*}
\partial_{\mathrm{t}} \zeta_{\mathrm{t}}+\frac{1}{2}\left|\mathrm{D}_{\mathfrak{C}} \zeta_{\mathrm{t}}\right|^{2} \leqslant 0 \tag{HJ}
\end{equation*}
$$

since

$$
\frac{1}{2}\left|D_{\mathfrak{C}} \zeta\right|^{2}=\frac{1}{2} \mathfrak{g}^{*}\left(D_{x} \zeta, \partial_{r} \zeta\right)=\frac{1}{2}\left(\frac{1}{r^{2}}\left|D_{x} \zeta\right|^{2}+\left(\partial_{r} \zeta\right)^{2}\right)=\left(\frac{1}{2}\left|D \xi_{t}\right|^{2}+2 \xi_{t}^{2}\right) r^{2}
$$

The Hopf-Lax semigroup in \mathfrak{C}

$$
\begin{aligned}
\mathscr{D}_{t}^{\mathfrak{c}} \zeta(x, r) & =\min _{y, s} \zeta(y, s)+\frac{1}{2 t} d_{\mathfrak{C}}^{2}((x, r),(y, s)) \\
& =\min _{y, s} \xi(y) s^{2}+\frac{1}{2 t}\left(r^{2}+s^{2}-2 r s \cos \left(|x-y|_{\pi}\right)\right)
\end{aligned}
$$

yields

$$
\mathscr{Q}_{\mathrm{t}}^{\mathfrak{c}} \zeta(x, r)=\xi_{\mathrm{t}}(x) \mathrm{r}^{2}, \quad \xi_{\mathrm{t}}=\mathscr{P}_{\mathrm{t}} \xi
$$

Dual formulation (II)

Change of variable: $\varphi_{1}:=-\frac{1}{2} \log \left(1-2 \xi_{1}\right), \varphi_{0}:=\frac{1}{2} \log \left(1+2 \xi_{0}\right)$

$$
\begin{gathered}
2 \xi_{1}(y) \leqslant 1-\frac{\cos _{\pi / 2}^{2}(|y-x|)}{1+2 \xi_{0}(x)} \Leftrightarrow \quad \varphi_{1}(y)-\varphi_{0}(x) \leqslant \ell(y-x), \\
\ell(\mathbf{r})=-\frac{1}{2} \log \left(\cos _{\pi / 2}^{2}|\mathbf{r}|\right)=\frac{1}{2} \log \left(1+\tan _{\pi / 2}^{2}|\mathbf{r}|\right), \quad D \ell(\mathbf{r})=\underline{\tan }(\mathbf{r})
\end{gathered}
$$

Dual formulation (II)

Change of variable: $\varphi_{1}:=-\frac{1}{2} \log \left(1-2 \xi_{1}\right), \varphi_{0}:=\frac{1}{2} \log \left(1+2 \xi_{0}\right)$

$$
\begin{gathered}
2 \xi_{1}(y) \leqslant 1-\frac{\cos _{\pi / 2}^{2}(|y-x|)}{1+2 \xi_{0}(x)} \Leftrightarrow \quad \varphi_{1}(y)-\varphi_{0}(x) \leqslant \ell(y-x), \\
\ell(\mathbf{r})=-\frac{1}{2} \log \left(\cos _{\pi / 2}^{2}|\mathbf{r}|\right)=\frac{1}{2} \log \left(1+\tan _{\pi / 2}^{2}|\mathbf{r}|\right), \quad D \ell(\mathbf{r})=\underline{\tan }(\mathbf{r})
\end{gathered}
$$

Dual Kantorovich formulation

$$
\begin{aligned}
& \frac{1}{2} H K^{2}\left(\mu_{0}, \mu_{1}\right)=\sup \{ \int \frac{1}{2}\left(1-e^{-2 \varphi_{1}}\right) d \mu_{1}-\int \frac{1}{2}\left(\mathrm{e}^{2 \varphi_{0}}-1\right) \mathrm{d} \mu_{0}: \\
&\left.\varphi_{1}(y)-\varphi_{0}(x) \leqslant \ell(y-x)\right\}
\end{aligned}
$$

The Legendre conjugate of $G(\varphi):=\frac{1}{2}\left(\mathrm{e}^{2 \varphi}-1\right)$ is

$$
\mathrm{G}^{*}(\mathrm{~s})=\frac{1}{2} \mathbb{E}(s), \quad \operatorname{EE}(s):=s \log s-(s-1)
$$

Primal formulation: Logarithmic Entropy-Transport problem

The Legendre conjugate of $G(\varphi):=\frac{1}{2}\left(\mathrm{e}^{2 \varphi}-1\right)$ is

$$
\mathrm{G}^{*}(\mathrm{~s})=\frac{1}{2} \mathbb{E}(s), \quad \operatorname{EE}(s):=s \log s-(s-1)
$$

When γ is a plan in $\mathcal{M}\left(\mathbb{R}^{\mathrm{d}} \times \mathbb{R}^{\mathrm{d}}\right)$ with marginals γ_{i} we find

Logarithmic Entropy-Transport (LET) formulation

$$
\mathbb{E T}\left(\mu_{0}, \mu_{1}\right)=\min _{\gamma \in \mathcal{M}\left(\mathbb{R}^{\mathrm{d}} \times \mathbb{R}^{\mathrm{d}}\right)}\left(\mathscr{E}\left(\gamma_{0} \mid \mu_{0}\right)+\mathscr{E}\left(\gamma_{1} \mid \mu_{1}\right)+2 \int \ell(y-x) \mathrm{d} \gamma(x, y)\right)
$$

where $\ell(\mathbf{r})=\frac{1}{2} \log \left(1+\tan _{\pi / 2}^{2}(|\mathbf{r}|)\right)$.

Primal formulation: Logarithmic Entropy-Transport problem

The Legendre conjugate of $G(\varphi):=\frac{1}{2}\left(\mathrm{e}^{2 \varphi}-1\right)$ is

$$
\mathrm{G}^{*}(\mathrm{~s})=\frac{1}{2} \mathbb{E}(s), \quad \operatorname{EE}(s):=s \log s-(s-1)
$$

When γ is a plan in $\mathcal{M}\left(\mathbb{R}^{\mathrm{d}} \times \mathbb{R}^{\mathrm{d}}\right)$ with marginals γ_{i} we find

Logarithmic Entropy-Transport (LET) formulation

$$
\operatorname{EET}\left(\mu_{0}, \mu_{1}\right)=\min _{\gamma \in \mathcal{M}\left(\mathbb{R}^{\mathrm{d}} \times \mathbb{R}^{\mathrm{d}}\right)}\left(\mathscr{E}\left(\gamma_{0} \mid \mu_{0}\right)+\mathscr{E}\left(\gamma_{1} \mid \mu_{1}\right)+2 \int \ell(y-x) \mathrm{d} \boldsymbol{\gamma}(x, y)\right)
$$

where $\ell(\mathbf{r})=\frac{1}{2} \log \left(1+\tan _{\pi / 2}^{2}(|\mathbf{r}|)\right)$.

$$
\mathbb{H K}^{2}\left(\mu_{0}, \mu_{1}\right)=\mathbb{E T}\left(\mu_{0}, \mu_{1}\right)
$$

Dynamic formulation	$\stackrel{\text { Duality }}{\Longleftrightarrow}$	Conical Hamilton Jacobi
Optimal Entropy-Transport	Convex duality	Conical Hopf-Lax
	duality	

Four equivalent formulations for HK

Dynamic formulation	$\stackrel{\text { Duality }}{\Longleftrightarrow}$	Conical Hamilton Jacobi
Optimal Entropy-Transport	Convex duality	Kantorovich duality

$$
\begin{align*}
H^{2}\left(\mu_{0}, \mu_{1}\right)= & \min \left\{\int_{0}^{1} \int\left(\left|v_{t}\right|^{2}+\left|w_{t}\right|^{2}\right) \mathrm{d} \mu_{\mathrm{t}} \mathrm{dt}: \mu \in \mathrm{C}\left([0,1] ; \mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right)\right),\right. \\
& \left.\partial_{\mathrm{t}} \mu_{\mathrm{t}}+\nabla \cdot\left(\boldsymbol{v}_{\mathrm{t}} \mu_{\mathrm{t}}\right)=2 w_{\mathrm{t}} \mu_{\mathrm{t}}, \quad \mu_{\mathrm{t}=\mathrm{i}}=\mu_{\mathrm{i}}\right\} \tag{CER}\\
= & 2 \sup \left\{\int \xi_{1} \mathrm{~d} \mu_{1}-\int \xi_{0} \mathrm{~d} \mu_{0}: \xi \in \mathrm{C}^{1}\left([0,1] ; \operatorname{Lip_{\mathrm {b}}}\left(\mathbb{R}^{\mathrm{d}}\right)\right)\right. \\
& \left.\partial_{\mathrm{t}} \xi_{\mathrm{t}}+\frac{1}{2}\left|\mathrm{D} \xi_{\mathrm{t}}\right|^{2}+2 \xi_{\mathrm{t}}^{2} \leqslant 0\right\} \tag{CHJ}\\
= & 2 \sup \left\{\int \xi_{1} \mathrm{~d} \mu_{1}-\int \xi_{0} \mathrm{~d} \mu_{0}: \xi_{1}=\mathscr{P}_{1} \xi_{0}\right\} \tag{CHL}\\
= & \min _{\gamma} \mathscr{E}\left(\gamma_{0} \mid \mu_{0}\right)+\mathscr{E}\left(\gamma_{1} \mid \mu_{1}\right)+2 \int \ell(x, y) \mathrm{d} \gamma(x, y) \tag{LET}
\end{align*}
$$

Outline

1 Unbalanced Optimal Transport: a relaxation viewpoint

2 The Hellinger-Kantorovich metric between positive measures of arbitrary mass

3 Geodesics and geodesic convexity

4 Regularity of solutions to the Conical Hopf-Lax semigroup

Important properties

- $\left(\mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right), \mathrm{H}\right)$ is a complete and separable metric space if X is complete and separable; the induced topology coincides with the topology of weak convergence (no bounds on moments are required).

Important properties

- $\left(\mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right), \mathrm{K}\right)$ is a complete and separable metric space if X is complete and separable; the induced topology coincides with the topology of weak convergence (no bounds on moments are required).
- $\left(\mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right), \mathrm{K}\right)$ is geodesic

Important properties

- $\left(\mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right), \mathrm{H}\right)$ is a complete and separable metric space if X is complete and separable; the induced topology coincides with the topology of weak convergence (no bounds on moments are required).
- $\left(\mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right), \mathrm{H}\right)$ is geodesic
- If $\mu_{0} \ll \mathscr{L}^{\mathrm{d}}$ then there exists a unique geodesic connecting μ_{0} to μ_{1} and a unique optimal plan γ minimizing IET $\left(\mu_{0}, \mu_{1}\right)$.

Important properties

- $\left(\mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right), \mathrm{H}\right)$ is a complete and separable metric space if X is complete and separable; the induced topology coincides with the topology of weak convergence (no bounds on moments are required).
- $\left(\mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right), \mathrm{H}\right)$ is geodesic
- If $\mu_{0} \ll \mathscr{L}^{\mathrm{d}}$ then there exists a unique geodesic connecting μ_{0} to μ_{1} and a unique optimal plan γ minimizing IET $\left(\mu_{0}, \mu_{1}\right)$.

Problem

Characterize geodesics and study the convexity properties of integral functionals.

In particular, we want to prove that power-like entropies

$$
\mathscr{E}_{\alpha}(\mu):=\int c^{\alpha} d x, \quad \mu=c \mathscr{L}^{\mathrm{d}}
$$

are geodesically convex if $\alpha \geqslant 1$ (reinforced McCann condition).

The $\pi / 2$ treshold and K geodesics between Dirac masses

$$
\mu_{0}=r_{0}^{2} \delta_{x_{0}}, \mu_{1}=r_{1}^{2} \delta_{x_{1}},\left|x_{1}-x_{0}\right| \in[0, \pi], \mu_{t}:=r_{t} \delta_{x_{t}} \text { geodesic. }
$$

Initial velocities $(u, v) \in \mathbb{R} \times \mathbb{R}^{\mathrm{d}}$

$$
u:=\frac{r_{1}}{r_{0}} \cos \left(\left|x_{1}-x_{0}\right|\right)-1 \quad v:=\frac{r_{1}}{r_{0}} \underline{\sin \left(x_{1}-x_{0}\right), \quad \underline{\sin (w)}:=\sin (|\boldsymbol{w}|) \frac{w}{|\boldsymbol{w}|}, ~(w)}
$$

curve:

$$
\mathrm{r}_{\mathrm{t}}:=\mathrm{r}_{0}\left((1+\mathrm{tu})^{2}+\mathrm{t}^{2}|\boldsymbol{v}|^{2}\right)^{1 / 2}, \quad x_{\mathrm{t}}:=\mathrm{x}_{0}+\underline{\arctan }\left(\frac{\mathrm{tv}}{1+\mathrm{tu}}\right)
$$

Regularity of optimal potentials for the LET formulation

Theorem

For every $\mu_{0}, \mu_{1} \in \mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right)$ there exists a pair of optimal potentials $\left(\varphi_{0}, \varphi_{1}\right)$ such that $\varphi_{1}(y)-\varphi_{0}(x) \leqslant 2 \ell(y-x)$ and

$$
\mathrm{K}^{2}\left(\mu_{0}, \mu_{1}\right)=\int\left(1-\mathrm{e}^{-2 \varphi_{1}}\right) \mathrm{d} \mu_{1}-\int\left(\mathrm{e}^{2 \varphi_{0}}-1\right) \mathrm{d} \mu_{0} .
$$

Regularity of optimal potentials for the LET formulation

Theorem

For every $\mu_{0}, \mu_{1} \in \mathcal{M}\left(\mathbb{R}^{d}\right)$ there exists a pair of optimal potentials $\left(\varphi_{0}, \varphi_{1}\right)$ such that $\varphi_{1}(y)-\varphi_{0}(x) \leqslant 2 \ell(y-x)$ and

$$
\mathbf{K}^{2}\left(\mu_{0}, \mu_{1}\right)=\int\left(1-e^{-2 \varphi_{1}}\right) d \mu_{1}-\int\left(e^{2 \varphi_{0}}-1\right) d \mu_{0} .
$$

The Optimal potential φ_{0} is locally semiconcave outside a closed ($\mathrm{d}-1$)-rectifiable set.

Regularity of optimal potentials for the LET formulation

Theorem

For every $\mu_{0}, \mu_{1} \in \mathcal{M}\left(\mathbb{R}^{d}\right)$ there exists a pair of optimal potentials $\left(\varphi_{0}, \varphi_{1}\right)$ such that $\varphi_{1}(y)-\varphi_{0}(x) \leqslant 2 \ell(y-x)$ and

$$
\mathbf{K}^{2}\left(\mu_{0}, \mu_{1}\right)=\int\left(1-e^{-2 \varphi_{1}}\right) d \mu_{1}-\int\left(e^{2 \varphi_{0}}-1\right) d \mu_{0} .
$$

The Optimal potential φ_{0} is locally semiconcave outside a closed ($\mathrm{d}-1$)-rectifiable set.
When $\mu_{0} \ll \mathscr{L}^{\mathrm{d}}$ and $\mu_{1}\left\{y \in \mathbb{R}^{\mathrm{d}}: \mathrm{d}\left(\mathrm{y}\right.\right.$, $\left.\left.\operatorname{supp}\left(\mu_{0}\right)\right) \geqslant \pi / 2\right\}=0$, then Monge formulation has a unique solution (\mathbf{T}, \mathbf{q}) such that $(\mathbf{T}, \mathbf{q}) * \mu_{0}=\mu_{1}$ and

$$
\underline{\tan }(\mathbf{T}(x)-x)=\nabla \varphi_{0}(x), \quad q^{2}(x)=\left(e^{2 \varphi_{0}(x)}\right)^{2}+\frac{1}{4}\left|\nabla \mathrm{e}^{2 \varphi_{0}}(x)\right|^{2}
$$

Regularity of optimal potentials for the LET formulation

Theorem

For every $\mu_{0}, \mu_{1} \in \mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right)$ there exists a pair of optimal potentials $\left(\varphi_{0}, \varphi_{1}\right)$ such that $\varphi_{1}(y)-\varphi_{0}(x) \leqslant 2 \ell(y-x)$ and

$$
\mathbf{K}^{2}\left(\mu_{0}, \mu_{1}\right)=\int\left(1-e^{-2 \varphi_{1}}\right) d \mu_{1}-\int\left(e^{2 \varphi_{0}}-1\right) d \mu_{0} .
$$

The Optimal potential φ_{0} is locally semiconcave outside a closed ($\mathrm{d}-1$)-rectifiable set.
When $\mu_{0} \ll \mathscr{L}^{\mathrm{d}}$ and $\mu_{1}\left\{y \in \mathbb{R}^{\mathrm{d}}: \mathrm{d}\left(\mathrm{y}, \operatorname{supp}\left(\mu_{0}\right)\right) \geqslant \pi / 2\right\}=0$, then Monge formulation has a unique solution (\mathbf{T}, \mathbf{q}) such that $(\mathbf{T}, \mathbf{q}) * \mu_{0}=\mu_{1}$ and

$$
\underline{\tan }(\mathbf{T}(x)-x)=\nabla \varphi_{0}(x), \quad q^{2}(x)=\left(e^{2 \varphi_{0}(x)}\right)^{2}+\frac{1}{4}\left|\nabla \mathrm{e}^{2 \varphi_{0}}(x)\right|^{2}
$$

After the transformation $\xi_{0}:=\frac{1}{2}\left(\mathrm{e}^{2 \varphi_{0}}-1\right)$ we can identify

$$
\mathbf{T}(x)=x+\underline{\arctan }\left(\frac{\nabla \xi_{0}}{1+2 \xi_{0}}\right), \quad q^{2}=\left(1+2 \xi_{0}\right)^{2}+\left|\nabla \xi_{0}\right|^{2}
$$

Regularity of optimal potentials for the LET formulation

Theorem

For every $\mu_{0}, \mu_{1} \in \mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right)$ there exists a pair of optimal potentials $\left(\varphi_{0}, \varphi_{1}\right)$ such that $\varphi_{1}(y)-\varphi_{0}(x) \leqslant 2 \ell(y-x)$ and

$$
\mathbf{K}^{2}\left(\mu_{0}, \mu_{1}\right)=\int\left(1-e^{-2 \varphi_{1}}\right) d \mu_{1}-\int\left(e^{2 \varphi_{0}}-1\right) d \mu_{0} .
$$

The Optimal potential φ_{0} is locally semiconcave outside a closed $(\mathrm{d}-1)$-rectifiable set.
When $\mu_{0} \ll \mathscr{L}^{\mathrm{d}}$ and $\mu_{1}\left\{y \in \mathbb{R}^{\mathrm{d}}: \mathrm{d}\left(\mathrm{y}, \operatorname{supp}\left(\mu_{0}\right)\right) \geqslant \pi / 2\right\}=0$, then Monge formulation has a unique solution (\mathbf{T}, \mathbf{q}) such that $(\mathbf{T}, q){ }_{*} \mu_{0}=\mu_{1}$ and

$$
\underline{\tan }(\mathbf{T}(x)-x)=\nabla \varphi_{0}(x), \quad q^{2}(x)=\left(e^{2 \varphi_{0}(x)}\right)^{2}+\frac{1}{4}\left|\nabla \mathrm{e}^{2 \varphi_{0}}(x)\right|^{2}
$$

After the transformation $\xi_{0}:=\frac{1}{2}\left(\mathrm{e}^{2 \varphi_{0}}-1\right)$ we can identify

$$
\begin{array}{|c}
\hline \mathbf{T}(x)=x+\underline{\arctan }\left(\frac{\nabla \xi_{0}}{1+2 \xi_{0}}\right), \quad q^{2}=\left(1+2 \xi_{0}\right)^{2}+\left|\nabla \xi_{0}\right|^{2} \\
\mathcal{H K}^{2}\left(\mu_{0}, \mu_{1}\right)=\mathscr{M}\left(\mathbf{T}, q ; \mu_{0}\right)=\int_{\mathbb{R}^{\mathrm{d}}}\left(4 \xi_{0}^{2}+\left|\nabla \xi_{0}\right|^{2}\right) \mathrm{d} \mu_{0} \\
\hline
\end{array}
$$

Tangent space: $\operatorname{Tan}_{\mu_{0}} \mathcal{M}\left(\mathbb{R}^{\mathrm{d}}\right)=\mathrm{H}^{1,2}\left(\mathbb{R}^{\mathrm{d}}, \mu_{0}\right)$.

Geodesics

Recalling

$$
\mathbf{T}(x)=x+\underline{\arctan }\left(\frac{\nabla \xi_{0}}{1+2 \xi_{0}}\right), \quad q^{2}=\left(1+2 \xi_{0}\right)^{2}+\left|\nabla \xi_{0}\right|^{2}
$$

the geodesic interpolations can be obtained by rescaling $\xi_{0} \rightsquigarrow \mathrm{t} \xi_{0}, \mathrm{t} \in[0,1]$:

$$
\mathrm{T}_{0 \rightarrow \mathrm{t}}(\mathrm{x}):=\mathrm{x}+\underline{\arctan }\left(\frac{\mathrm{t} \nabla \xi_{0}}{1+2 \mathrm{t} \xi_{0}(\mathrm{x})}\right), \quad \mathrm{q}_{0 \rightarrow \mathrm{t}}^{2}(\mathrm{x}):=\left(1+2 \mathrm{t} \xi_{0}(\mathrm{x})\right)^{2}+\mathrm{t}^{2}\left|\nabla \xi_{0}(\mathrm{x})\right|^{2}
$$

They provide an explicit characterization of the unique HK geodesic connecting μ_{0} to μ_{1} :

$$
\mu_{\mathrm{t}}=\left(\mathbf{T}_{0 \rightarrow \mathrm{t}}, \mathrm{q}_{0 \rightarrow \mathrm{t}}\right)_{*} \mu_{0}, \quad \mu_{\mathrm{t}}=\mathrm{c}_{\mathrm{t}} \mathscr{L}^{\mathrm{d}}, \quad \mathrm{c}_{\mathrm{t}}\left(\mathbf{T}_{0 \rightarrow \mathrm{t}}(\mathrm{x})\right)=\mathrm{c}_{0}(\mathrm{x}) \frac{\mathrm{q}_{0 \rightarrow \mathrm{t}}^{2}(\mathrm{x})}{\operatorname{det} D T_{0 \rightarrow \mathrm{t}}(\mathrm{x})}
$$

Geodesics

Recalling

$$
\mathbf{T}(x)=x+\underline{\arctan }\left(\frac{\nabla \xi_{0}}{1+2 \xi_{0}}\right), \quad q^{2}=\left(1+2 \xi_{0}\right)^{2}+\left|\nabla \xi_{0}\right|^{2}
$$

the geodesic interpolations can be obtained by rescaling $\xi_{0} \rightsquigarrow \mathrm{t} \xi_{0}, \mathrm{t} \in[0,1]$:

$$
\mathrm{T}_{0 \rightarrow \mathrm{t}}(\mathrm{x}):=\mathrm{x}+\underline{\arctan }\left(\frac{\mathrm{t} \nabla \xi_{0}}{1+2 \mathrm{t} \xi_{0}(x)}\right), \quad \mathrm{q}_{0 \rightarrow \mathrm{t}}^{2}(\mathrm{x}):=\left(1+2 \mathrm{t} \xi_{0}(x)\right)^{2}+\mathrm{t}^{2}\left|\nabla \xi_{0}(x)\right|^{2}
$$

They provide an explicit characterization of the unique HK geodesic connecting μ_{0} to μ_{1} :

$$
\mu_{\mathrm{t}}=\left(\mathbf{T}_{0 \rightarrow \mathrm{t}}, \mathrm{q}_{0 \rightarrow \mathrm{t}}\right)_{*} \mu_{0}, \quad \mu_{\mathrm{t}}=\mathrm{c}_{\mathrm{t}} \mathscr{L}^{\mathrm{d}}, \quad \mathrm{c}_{\mathrm{t}}\left(\mathbf{T}_{0 \rightarrow \mathrm{t}}(\mathrm{x})\right)=\mathrm{c}_{0}(\mathrm{x}) \frac{\mathrm{q}_{0 \rightarrow \mathrm{t}}^{2}(\mathrm{x})}{\operatorname{det} D \mathbf{T}_{0 \rightarrow \mathrm{t}}(\mathrm{x})}
$$

Simplifying assumption: μ_{0}, μ_{1} have compact support,

$$
\operatorname{supp}\left(\mu_{1}\right) \subset B_{\pi / 2}\left(\operatorname{supp}\left(\mu_{0}\right)\right), \operatorname{supp}\left(\mu_{0}\right) \subset B_{\pi / 2}\left(\operatorname{supp}\left(\mu_{1}\right)\right) .
$$

Optimal potentials φ_{0} and ξ_{0} are semiconvex, φ_{1} and ξ_{1} are semiconcave, all the functions are globally Lipschitz and for suitable constants $a, b \in \mathbb{R}$

$$
-\frac{1}{2}<-a \leqslant \xi_{0}(x) \leqslant b, \quad-b \leqslant \xi_{1}(y) \leqslant a<\frac{1}{2} .
$$

Dynamic optimality conditions for geodesics

Theorem (Formal)

A continuous curve $(\mu)_{t \in[0,1]}$ is a geodesic if and only if there exists a curve $\left(\xi_{t}\right)_{t \in[0,1]}$ such that

$$
\left\{\begin{aligned}
\partial_{\mathrm{t}} \mu_{\mathrm{t}}+\nabla \cdot\left(\mu_{\mathrm{t}} v_{\mathrm{t}}\right) & =2 w_{\mathrm{t}} \mu_{\mathrm{t}} \\
\partial_{\mathrm{t}} \xi_{\mathrm{t}}+\frac{1}{2}\left|\nabla \xi_{\mathrm{t}}\right|^{2}+2 \xi_{\mathrm{t}}^{2} & \leqslant 0 \\
\partial_{\mathrm{t}} \xi_{\mathrm{t}}+\frac{1}{2}\left|\nabla \xi_{\mathrm{t}}\right|^{2}+2 \xi_{\mathrm{t}}^{2} & =0 \quad \text { on the support of } \mu, \\
v_{\mathrm{t}} & =\nabla \xi_{\mathrm{t}} \\
w_{\mathrm{t}} & =2 \xi_{\mathrm{t}}
\end{aligned}\right.
$$

Dynamic optimality conditions for geodesics

Theorem (Formal)

A continuous curve $(\mu)_{t \in[0,1]}$ is a geodesic if and only if there exists a curve $\left(\xi_{t}\right)_{t \in[0,1]}$ such that

$$
\left\{\begin{aligned}
\partial_{\mathrm{t}} \mu_{\mathrm{t}}+\nabla \cdot\left(\mu_{\mathrm{t}} v_{\mathrm{t}}\right) & =2 w_{\mathrm{t}} \mu_{\mathrm{t}} \\
\partial_{\mathrm{t}} \xi_{\mathrm{t}}+\frac{1}{2}\left|\nabla \xi_{\mathrm{t}}\right|^{2}+2 \xi_{\mathrm{t}}^{2} & \leqslant 0 \\
\partial_{\mathrm{t}} \xi_{\mathrm{t}}+\frac{1}{2}\left|\nabla \xi_{\mathrm{t}}\right|^{2}+2 \xi_{\mathrm{t}}^{2} & =0 \quad \text { on the support of } \mu, \\
v_{\mathrm{t}} & =\nabla \xi_{\mathrm{t}} \\
w_{\mathrm{t}} & =2 \xi_{\mathrm{t}}
\end{aligned}\right.
$$

Characteristic flow: fix $s \in(0,1) \mathbf{T}(\mathrm{t}, \cdot):=\mathbf{T}_{\mathrm{s} \rightarrow \mathrm{t}}(\cdot), \mathrm{q}(\mathrm{t}, \cdot):=\mathrm{q}_{\mathrm{s} \rightarrow \mathrm{t}}(\cdot)$,

$$
\left\{\begin{array}{l}
\dot{\mathbf{T}}(\mathrm{t}, \mathrm{x})=\nabla \xi_{\mathrm{t}}(\mathbf{T}(\mathrm{t}, \mathrm{x})) \\
\dot{\mathrm{q}}(\mathrm{t}, \mathrm{x})=4 \xi_{\mathrm{t}}(\mathbf{T}(\mathrm{t}, \mathrm{x})) \mathrm{q}(\mathrm{t}, \mathrm{x}) \\
\mathbf{T}(\mathrm{s}, \mathrm{x})=x, \\
\mathrm{q}(\mathrm{~s}, \mathrm{x})=1
\end{array}\right.
$$

Formal computations

$$
\partial_{t} \xi_{t}+\frac{1}{2}\left|\nabla \xi_{t}\right|^{2}+2 \xi_{t}^{2}=0 .
$$

Characteristic flow: $\mathbf{T}(\mathrm{t}, \cdot):=\mathbf{T}_{\mathrm{s} \rightarrow \mathrm{t}}(\cdot), \mathrm{q}(\mathrm{t}, \cdot):=\mathrm{q}_{\mathrm{s} \rightarrow \mathrm{t}}(\cdot)$,

$$
\left\{\begin{array}{l}
\dot{\mathbf{\top}}(\mathrm{t}, \mathrm{x})=\nabla \xi_{\mathrm{t}}(\mathbf{T}(\mathrm{t}, \mathrm{x})) \\
\dot{\mathbf{q}}(\mathrm{t}, \mathrm{x})=4 \xi_{\mathrm{t}}(\mathbf{T}(\mathrm{t}, \mathrm{x})) \mathrm{q}(\mathrm{t}, \mathrm{x})
\end{array}\right.
$$

$$
\mathrm{B}(\mathrm{t}, \cdot):=\mathrm{DT}(\mathrm{t}, \cdot), \delta(\mathrm{t}, \cdot):=\operatorname{det} \mathrm{B}(\mathrm{t}, \cdot)
$$

Formal computations

$$
\partial_{t} \xi_{t}+\frac{1}{2}\left|\nabla \xi_{t}\right|^{2}+2 \xi_{t}^{2}=0 .
$$

Characteristic flow: $\mathbf{T}(\mathrm{t}, \cdot):=\mathbf{T}_{\mathrm{s} \rightarrow \mathrm{t}}(\cdot), \mathrm{q}(\mathrm{t}, \cdot):=\mathrm{q}_{\mathrm{s} \rightarrow \mathrm{t}}(\cdot)$,

$$
\left\{\begin{array}{l}
\dot{\mathbf{T}}(\mathrm{t}, \mathrm{x})=\nabla \xi_{\mathrm{t}}(\mathbf{T}(\mathrm{t}, \mathrm{x})) \\
\dot{\mathbf{q}}(\mathrm{t}, \mathrm{x})=4 \xi_{\mathrm{t}}(\mathbf{T}(\mathrm{t}, \mathrm{x})) \mathrm{q}(\mathrm{t}, \mathrm{x})
\end{array}\right.
$$

$$
\mathrm{B}(\mathrm{t}, \cdot):=\mathrm{DT}(\mathrm{t}, \cdot), \delta(\mathrm{t}, \cdot \cdot):=\operatorname{det} \mathrm{B}(\mathrm{t}, \cdot)
$$

$$
\begin{aligned}
\ddot{\mathbf{T}}(\mathrm{t}) & =\partial_{\mathrm{t}} \nabla \xi_{\mathrm{t}}(\mathbf{T}(\mathrm{t}))+\mathrm{D}^{2} \xi_{\mathrm{t}} \nabla \xi_{\mathrm{t}}(\mathbf{T}(\mathrm{t})), \\
\partial_{\mathrm{t}} \nabla \xi_{\mathrm{t}} & =-\mathrm{D}^{2} \xi_{\mathrm{t}} \nabla \xi_{\mathrm{t}}+4 \xi_{\mathrm{t}} \nabla \xi_{\mathrm{t}}
\end{aligned}
$$

Formal computations

$$
\partial_{t} \xi_{t}+\frac{1}{2}\left|\nabla \xi_{t}\right|^{2}+2 \xi_{t}^{2}=0 .
$$

Characteristic flow: $\mathbf{T}(\mathrm{t}, \cdot):=\mathbf{T}_{\mathrm{s} \rightarrow \mathrm{t}}(\cdot), \mathrm{q}(\mathrm{t}, \cdot):=\mathrm{q}_{\mathrm{s} \rightarrow \mathrm{t}}(\cdot)$,

$$
\left\{\begin{array}{l}
\dot{\mathbf{T}}(\mathrm{t}, \mathrm{x})=\nabla \xi_{\mathrm{t}}(\mathbf{T}(\mathrm{t}, \mathrm{x})) \\
\dot{\mathrm{q}}(\mathrm{t}, \mathrm{x})=4 \xi_{\mathrm{t}}(\mathbf{T}(\mathrm{t}, \mathrm{x})) \mathrm{q}(\mathrm{t}, \mathrm{x})
\end{array}\right.
$$

$\mathrm{B}(\mathrm{t}, \cdot \cdot):=\mathrm{DT}(\mathrm{t}, \cdot), \delta(\mathrm{t}, \cdot \cdot):=\operatorname{det} \mathrm{B}(\mathrm{t}, \cdot \cdot)$

$$
\begin{aligned}
\ddot{\boldsymbol{T}}(\mathrm{t}) & =\partial_{\mathrm{t}} \nabla \xi_{\mathrm{t}}(\mathbf{T}(\mathrm{t}))+\mathrm{D}^{2} \xi_{\mathrm{t}} \nabla \xi_{\mathrm{t}}(\mathbf{T}(\mathrm{t})), \\
\partial_{\mathrm{t}} \nabla \xi_{\mathrm{t}} & =-\mathrm{D}^{2} \xi_{\mathrm{t}} \nabla \xi_{\mathrm{t}}+4 \xi_{\mathrm{t}} \nabla \xi_{\mathrm{t}}
\end{aligned}
$$

Second order relations

$$
\begin{aligned}
\ddot{T}(t) & =4 \xi_{t} \nabla \xi_{t}(\mathbf{T}(\mathrm{t})) \\
\ddot{\mathrm{q}}(\mathrm{t}) & =\left|\nabla \xi_{\mathrm{t}}(\mathbf{T}(\mathrm{t}))\right|^{2} \mathrm{q}(\mathrm{t}) \\
\ddot{\mathrm{B}}(\mathrm{t}) & =-4\left(\nabla \xi_{\mathrm{t}} \otimes \nabla \xi_{\mathrm{t}}+\xi_{\mathrm{t}} \mathrm{D}^{2} \xi_{\mathrm{t}}\right) \circ \mathbf{T}(\mathrm{t}) \cdot \mathrm{B}(\mathrm{t}) \\
\ddot{\delta}(\mathrm{t}) & =\left(\left(\Delta \xi_{\mathrm{t}}\right)^{2}-\left|\mathrm{D}^{2} \xi_{\mathrm{t}}\right|^{2}-4\left|\nabla \xi_{\mathrm{t}}\right|^{2}-4 \xi_{\mathrm{t}} \Delta \xi_{\mathrm{t}}\right) \circ \mathbf{T}(\mathrm{t}) \cdot \delta(\mathrm{t}) .
\end{aligned}
$$

$$
\begin{aligned}
& \mu_{\mathrm{t}}=\mathrm{c}(\mathrm{t}, \cdot) \mathscr{L}^{\mathrm{d}} \text { with } \\
& \qquad c(\mathrm{t})=\frac{q^{2}(\mathrm{t})}{\delta(\mathrm{t})}=\frac{q^{\mathrm{d}+2}(\mathrm{t})}{q^{d}(\mathrm{t}) \delta(\mathrm{t})}=\frac{q^{\mathrm{d}+2}(\mathrm{t})}{\rho^{d}(\mathrm{t})}, \quad \rho(\mathrm{t}):=\mathrm{q}(\mathrm{t}) \delta^{1 / \mathrm{d}}(\mathrm{t})
\end{aligned}
$$

$$
\mu_{\mathrm{t}}=\mathrm{c}(\mathrm{t}, \cdot) \mathscr{L}^{\mathrm{d}} \text { with }
$$

$$
\begin{array}{ll}
c(t)=\frac{q^{2}(t)}{\delta(t)}=\frac{q^{d+2}(t)}{q^{d}(t) \delta(t)}=\frac{q^{d+2}(t)}{\rho^{d}(t)}, & \rho(t):=q(t) \delta^{1 / d}(t) \\
\text { Structural estimates } & \frac{\ddot{q}(t)}{q(t)} \geqslant 0, \\
\frac{\ddot{\rho}(t)}{\rho(t)} \leqslant\left(1-\frac{4}{d}\right) \frac{\ddot{q}(t)}{q(t)} .
\end{array}
$$

since the previous identities yield

$$
\left\{\begin{array}{l}
\frac{\ddot{q}(t)}{q(t)}=\left|\nabla \xi_{t}\right|^{2} \\
\frac{\ddot{\rho}(t)}{\rho(t)}=\frac{1}{d^{2}}\left(\left(\Delta \xi_{t}\right)^{2}-d\left|D^{2} \xi_{t}\right|^{2}\right)+\left(1-\frac{4}{d}\right)\left|\nabla \xi_{t}\right|^{2}
\end{array}\right.
$$

$\mu_{\mathrm{t}}=\mathrm{c}(\mathrm{t}, \cdot) \mathscr{L}^{\mathrm{d}}$ with

$$
\begin{array}{ll}
c(t)=\frac{q^{2}(t)}{\delta(t)}=\frac{q^{d+2}(t)}{q^{d}(t) \delta(t)}=\frac{q^{d+2}(t)}{\rho^{d}(t)}, & \rho(t):=q(t) \delta^{1 / d}(t) \\
\text { Structural estimates } & \frac{\ddot{q}(t)}{q(t)} \geqslant 0, \\
\frac{\ddot{\rho}(t)}{\rho(t)} \leqslant\left(1-\frac{4}{d}\right) \frac{\ddot{q}(t)}{q(t)} .
\end{array}
$$

since the previous identities yield

$$
\left\{\begin{array}{l}
\frac{\ddot{q}(t)}{q(t)}=\left|\nabla \xi_{t}\right|^{2} \\
\frac{\ddot{\rho}(t)}{\rho(t)}=\frac{1}{d^{2}}\left(\left(\Delta \xi_{t}\right)^{2}-d\left|D^{2} \xi_{t}\right|^{2}\right)+\left(1-\frac{4}{d}\right)\left|\nabla \xi_{t}\right|^{2}
\end{array}\right.
$$

Theorem

The density $\mathrm{c}(\mathrm{t}, \cdot)$ is convex along the characteristics:

$$
\frac{\ddot{c}}{c} \geqslant 6 \frac{\ddot{q}}{q} \geqslant 0 .
$$

The functional $\mu \mapsto\left\|\mathrm{d} \mu / \mathrm{d} \mathscr{L}^{\mathrm{d}}\right\|_{\mathrm{L}^{\infty}}$ is geodesically convex.

Application: geodesic convexity of integral functionals

Consider a functional

$$
\mathscr{E}(\mu):=\int E(c(x)) d x, \quad c=\frac{d \mu}{d \mathscr{L}^{d}}
$$

where E is convex (smooth).

Application: geodesic convexity of integral functionals

Consider a functional

$$
\mathscr{E}(\mu):=\int E(c(x)) d x, \quad c=\frac{d \mu}{d \mathscr{L}^{\mathrm{d}}}
$$

where E is convex (smooth).
The case $\mathrm{E}(\mathrm{c})=\mathrm{c}$ corresponds to the total mass of μ : it is quadratic.

Application: geodesic convexity of integral functionals

Consider a functional

$$
\mathscr{E}(\mu):=\int E(c(x)) d x, \quad c=\frac{d \mu}{d \mathscr{L}^{\mathrm{d}}}
$$

where E is convex (smooth).
The case $\mathrm{E}(\mathrm{c})=\mathrm{c}$ corresponds to the total mass of μ : it is quadratic.
More generally, we set $\varepsilon_{0}(c):=E(c), \varepsilon_{1}(c):=c E^{\prime}(c), \varepsilon_{2}(c):=c^{2} E^{\prime \prime}(c)$.
McCann condition:

$$
\varepsilon_{2}(c) \geqslant\left(1-\frac{1}{d}\right)\left(\varepsilon_{1}(c)-\varepsilon_{0}(c)\right) \geqslant 0 \quad \Leftrightarrow \quad r^{d} E\left(r^{-d}\right) \text { convex, nonincreasing. }
$$

Application: geodesic convexity of integral functionals

Consider a functional

$$
\mathscr{E}(\mu):=\int E(c(x)) d x, \quad c=\frac{d \mu}{d \mathscr{L}^{\mathrm{d}}}
$$

where E is convex (smooth).
The case $E(c)=c$ corresponds to the total mass of μ : it is quadratic.
More generally, we set $\varepsilon_{0}(c):=E(c), \varepsilon_{1}(c):=c E^{\prime}(c), \varepsilon_{2}(c):=c^{2} E^{\prime \prime}(c)$.

McCann condition:

$$
\varepsilon_{2}(c) \geqslant\left(1-\frac{1}{d}\right)\left(\varepsilon_{1}(c)-\varepsilon_{0}(c)\right) \geqslant 0 \quad \Leftrightarrow \quad r^{d} E\left(r^{-d}\right) \text { convex, nonincreasing. }
$$

Convexity with respect to the Hellinger-Kakutani distance:

$$
\varepsilon_{2}(c)+\frac{1}{2} \varepsilon_{0}(c) \geqslant 0 \quad \Leftrightarrow \quad r \mapsto E\left(r^{2}\right) \text { convex. }
$$

Application: geodesic convexity of integral functionals

Consider a functional

$$
\mathscr{E}(\mu):=\int \mathrm{E}(\mathrm{c}(\mathrm{x})) \mathrm{d} \mathrm{x}, \quad \mathrm{c}=\frac{\mathrm{d} \mu}{\mathrm{~d} \mathscr{L}^{\mathrm{d}}}
$$

where E is convex (smooth).
The case $E(c)=c$ corresponds to the total mass of μ : it is quadratic.
More generally, we set $\varepsilon_{0}(c):=E(c), \varepsilon_{1}(c):=c E^{\prime}(c), \varepsilon_{2}(c):=c^{2} E^{\prime \prime}(c)$.

McCann condition:

$$
\varepsilon_{2}(c) \geqslant\left(1-\frac{1}{d}\right)\left(\varepsilon_{1}(c)-\varepsilon_{0}(c)\right) \geqslant 0 \quad \Leftrightarrow \quad r^{d} E\left(r^{-d}\right) \text { convex, nonincreasing. }
$$

Convexity with respect to the Hellinger-Kakutani distance:

$$
\varepsilon_{2}(c)+\frac{1}{2} \varepsilon_{0}(c) \geqslant 0 \quad \Leftrightarrow \quad r \mapsto E\left(r^{2}\right) \text { convex. }
$$

Theorem

\mathscr{E} is geodesically convex w.r.t. HK if and only if

$$
G(c):=\left(\begin{array}{cc}
\varepsilon_{2}(c)-\frac{d-1}{d}\left(\varepsilon_{1}(c)-\varepsilon_{0}(c)\right) & \varepsilon_{2}(c)-\frac{1}{2}\left(\varepsilon_{1}(c)-\varepsilon_{0}(c)\right) \\
\varepsilon_{2}(c)-\frac{1}{2}\left(\varepsilon_{1}(c)-\varepsilon_{0}(c)\right) & \varepsilon_{2}(c)+\frac{1}{2} \varepsilon_{1}(c)
\end{array}\right) \geqslant 0, \quad \varepsilon_{1} \geqslant \varepsilon_{0} .
$$

An equivalent condition

$$
G(c):=\left(\begin{array}{cc}
\varepsilon_{2}(c)-\frac{d-1}{\mathrm{~d}}\left(\varepsilon_{1}(c)-\varepsilon_{0}(c)\right) & \varepsilon_{2}(c)-\frac{1}{2}\left(\varepsilon_{1}(c)-\varepsilon_{0}(c)\right) \\
\varepsilon_{2}(c)-\frac{1}{2}\left(\varepsilon_{1}(c)-\varepsilon_{0}(c)\right) & \varepsilon_{2}(c)+\frac{1}{2} \varepsilon_{1}(c)
\end{array}\right) \geqslant 0, \quad \varepsilon_{1} \geqslant \varepsilon_{0} .
$$

Theorem

Define

$$
N(\rho, q):=\left(\frac{\rho}{q}\right)^{d} E\left(\frac{q^{d+2}}{\rho^{d}}\right)
$$

\mathscr{E} is geodesically convex if and only if
N_{E} is jointly convex and nonincreasing w.r.t. ρ.

An equivalent condition

$$
G(c):=\left(\begin{array}{cc}
\varepsilon_{2}(c)-\frac{d-1}{d}\left(\varepsilon_{1}(c)-\varepsilon_{0}(c)\right) & \varepsilon_{2}(c)-\frac{1}{2}\left(\varepsilon_{1}(c)-\varepsilon_{0}(c)\right) \\
\varepsilon_{2}(c)-\frac{1}{2}\left(\varepsilon_{1}(c)-\varepsilon_{0}(c)\right) & \varepsilon_{2}(c)+\frac{1}{2} \varepsilon_{1}(c)
\end{array}\right) \geqslant 0, \quad \varepsilon_{1} \geqslant \varepsilon_{0} .
$$

Theorem

Define

$$
N(\rho, q):=\left(\frac{\rho}{q}\right)^{d} E\left(\frac{q^{d+2}}{\rho^{d}}\right)
$$

\mathscr{E} is geodesically convex if and only if
N_{E} is jointly convex and nonincreasing w.r.t. ρ.

Main examples: the power functions $E(c):=c^{p}$ are convex if $p \geqslant 1$.
In dimension $d=2$ also $E(c)=-\sqrt{c}$ is convex.
In dimension $d=1$ all the power functions $E(c)=-c^{p}, p \in[1 / 3,1 / 2]$ induces convex functionals.

Outline

1 Unbalanced Optimal Transport: a relaxation viewpoint

2 The Hellinger-Kantorovich metric between positive measures of arbitrary mass

3 Geodesics and geodesic convexity

4 Regularity of solutions to the Conical Hopf-Lax semigroup

A rigorous proof: regularity of CHL solutions (I)

Conical Hopf-Lax representation formula:

$$
\begin{equation*}
\mathscr{P}_{t} \xi(x):=\inf _{y} \frac{1}{2 t}\left[1-\frac{\cos _{\pi / 2}^{2}(|y-x|)}{1+2 t \xi(x)}\right] \tag{CHL}
\end{equation*}
$$

It is useful to introduce the reverse evolution (Villani '09)

$$
\begin{equation*}
\mathscr{R}_{\mathrm{t}} \bar{\xi}(x):=-\mathscr{P}_{1-\mathrm{t}}(-\bar{\xi})(x)=\sup _{y} \frac{1}{2(1-\mathrm{t})}\left[\frac{\cos _{\pi / 2}^{2}(|y-x|)}{1-2(1-\mathrm{t}) \bar{\xi}(x)}-1\right] \tag{RCHL}
\end{equation*}
$$

A rigorous proof: regularity of CHL solutions (I)

Conical Hopf-Lax representation formula:

$$
\begin{equation*}
\mathscr{P}_{\mathrm{t}} \xi(x):=\inf _{y} \frac{1}{2 \mathrm{t}}\left[1-\frac{\cos _{\pi / 2}^{2}(|y-x|)}{1+2 \mathrm{t} \xi(x)}\right] \tag{CHL}
\end{equation*}
$$

It is useful to introduce the reverse evolution (Villani '09)

$$
\begin{equation*}
\mathscr{R}_{\mathrm{t}} \bar{\xi}(x):=-\mathscr{P}_{1-\mathrm{t}}(-\bar{\xi})(x)=\sup _{y} \frac{1}{2(1-\mathrm{t})}\left[\frac{\cos _{\pi / 2}^{2}(|y-x|)}{1-2(1-\mathrm{t}) \bar{\xi}(x)}-1\right] \tag{RCHL}
\end{equation*}
$$

Theorem

If $\xi_{0}: \mathbb{R}^{\mathrm{d}} \rightarrow[-\mathrm{a}, \mathrm{b}]$ with $-1 / 2<-\mathrm{a}<\mathrm{b}<\infty$ then the functions $\xi_{\mathrm{t}}:=\mathscr{P}_{\mathrm{t}} \xi_{0}(\mathrm{x})$ are globally bounded, Lipschitz and semiconcave $\xi_{\mathrm{t}}=\mathscr{P}_{\mathrm{t}-\mathrm{s}} \xi_{\mathrm{s}}, \xi_{1}<1 / 2$.

A rigorous proof: regularity of CHL solutions (I)

Conical Hopf-Lax representation formula:

$$
\begin{equation*}
\mathscr{P}_{\mathrm{t}} \xi(x):=\inf _{y} \frac{1}{2 \mathrm{t}}\left[1-\frac{\cos _{\pi / 2}^{2}(|y-x|)}{1+2 \mathrm{t} \xi(x)}\right] \tag{CHL}
\end{equation*}
$$

It is useful to introduce the reverse evolution (Villani '09)

$$
\begin{equation*}
\mathscr{R}_{\mathrm{t}} \bar{\xi}(x):=-\mathscr{P}_{1-\mathrm{t}}(-\bar{\xi})(x)=\sup _{y} \frac{1}{2(1-\mathrm{t})}\left[\frac{\cos _{\pi / 2}^{2}(|y-x|)}{1-2(1-\mathrm{t}) \bar{\xi}(x)}-1\right] \tag{RCHL}
\end{equation*}
$$

Theorem

If $\xi_{0}: \mathbb{R}^{\mathrm{d}} \rightarrow[-\mathrm{a}, \mathrm{b}]$ with $-1 / 2<-\mathrm{a}<\mathrm{b}<\infty$ then the functions $\xi_{\mathrm{t}}:=\mathscr{P}_{\mathrm{t}} \xi_{0}(\mathrm{x})$ are globally bounded, Lipschitz and semiconcave $\xi_{\mathrm{t}}=\mathscr{P}_{\mathrm{t}-\mathrm{s}} \xi_{\mathrm{s}}, \xi_{1}<1 / 2$.

If $\bar{\xi}_{1}: \mathbb{R}^{\mathrm{d}} \rightarrow[-\mathrm{b}, \mathrm{a}]$ with $-\infty<-\mathrm{b}<\mathrm{a}<1 / 2$ then the functions $\bar{\xi}_{\mathrm{t}}:=\mathscr{R}_{\mathrm{t}} \xi_{1}(\mathrm{x})$ are globally bounded, Lipschitz and semiconvex, $\xi_{\mathrm{t}}=\mathscr{P}_{\mathrm{t}-\mathrm{s}} \xi_{\mathrm{s}}, \xi_{1}<1 / 2$.

Regulairty of CHL (II)

Theorem (Differentiability on the contact set)

$$
\text { If } \bar{\xi}_{1}=\xi_{1}=\mathscr{P}_{1}\left(\xi_{0}\right), \xi_{0}=\mathscr{R}_{1} \xi_{1} \text { then } \xi_{\mathrm{t}} \geqslant \bar{\xi}_{\mathrm{t}} \text { and the contact set }
$$

$$
\Xi_{t}:=\left\{x: \bar{\xi}_{t}(x)=\xi_{t}(x)\right\} \quad \text { is closed and contains } \operatorname{supp}\left(\mu_{t}\right)
$$

Regulairty of CHL (II)

Theorem (Differentiability on the contact set)

If $\bar{\xi}_{1}=\xi_{1}=\mathscr{P}_{1}\left(\xi_{0}\right), \xi_{0}=\mathscr{R}_{1} \xi_{1}$ then $\xi_{\mathrm{t}} \geqslant \bar{\xi}_{\mathrm{t}}$ and the contact set

$$
\Xi_{t}:=\left\{x: \bar{\xi}_{\mathrm{t}}(x)=\xi_{\mathrm{t}}(x)\right\} \quad \text { is closed and contains } \operatorname{supp}\left(\mu_{\mathrm{t}}\right)
$$

$\xi_{\mathrm{t}}, \bar{\xi}_{\mathrm{t}}$ are differentiable in Ξ_{t} with gradient g_{t}.

Regulairty of CHL (II)

Theorem (Differentiability on the contact set)

If $\bar{\xi}_{1}=\xi_{1}=\mathscr{P}_{1}\left(\xi_{0}\right), \xi_{0}=\mathscr{R}_{1} \xi_{1}$ then $\xi_{\mathrm{t}} \geqslant \bar{\xi}_{\mathrm{t}}$ and the contact set

$$
\Xi_{\mathrm{t}}:=\left\{x: \bar{\xi}_{\mathrm{t}}(x)=\xi_{\mathrm{t}}(x)\right\} \quad \text { is closed and contains } \operatorname{supp}\left(\mu_{\mathrm{t}}\right) \text {. }
$$

$\xi_{\mathrm{t}}, \bar{\xi}_{\mathrm{t}}$ are differentiable in Ξ_{t} with gradient g_{t}.
g_{t} is Lipschitz in Ξ_{t} and for every $\mathrm{s}, \mathrm{t} \in[0,1]$ defining

$$
\mathrm{T}_{\mathrm{s} \rightarrow \mathrm{t}}(\mathrm{x}):=\mathrm{x}+\underline{\arctan }\left(\frac{(\mathrm{t}-\mathrm{s}) \mathbf{g}_{\mathrm{s}}(\mathrm{x})}{1+2(\mathrm{t}-\mathrm{s}) \mathbf{g}_{\mathrm{s}}(\mathrm{x})}\right)
$$

the map $\mathrm{T}_{\mathrm{s} \rightarrow \mathrm{t}}$ is Lipschitz, it satisfies $\mathrm{T}_{\mathrm{s} \rightarrow \mathrm{t}}\left(\Xi_{\mathrm{s}}\right)=\Xi_{\mathrm{t}}$ and
the concatenation property $\quad \mathrm{T}_{\mathrm{t}_{1} \rightarrow \mathrm{t}_{2}} \circ \mathrm{~T}_{\mathrm{t}_{0} \rightarrow \mathrm{t}_{1}}=\mathrm{T}_{\mathrm{t}_{0} \rightarrow \mathrm{t}_{2}}$

Regulairty of CHL (II)

Theorem (Differentiability on the contact set)

If $\bar{\xi}_{1}=\xi_{1}=\mathscr{P}_{1}\left(\xi_{0}\right), \xi_{0}=\mathscr{R}_{1} \xi_{1}$ then $\xi_{\mathrm{t}} \geqslant \bar{\xi}_{\mathrm{t}}$ and the contact set

$$
\Xi_{t}:=\left\{x: \bar{\xi}_{\mathrm{t}}(x)=\xi_{\mathrm{t}}(x)\right\} \quad \text { is closed and contains } \operatorname{supp}\left(\mu_{\mathrm{t}}\right)
$$

$\xi_{\mathrm{t}}, \bar{\xi}_{\mathrm{t}}$ are differentiable in Ξ_{t} with gradient g_{t}.
g_{t} is Lipschitz in Ξ_{t} and for every $\mathrm{s}, \mathrm{t} \in[0,1]$ defining

$$
\mathbf{T}_{s \rightarrow t}(x):=x+\underline{\arctan }\left(\frac{(t-s) \mathbf{g}_{s}(x)}{1+2(t-s) \mathbf{g}_{s}(x)}\right)
$$

the map $\mathrm{T}_{\mathrm{s} \rightarrow \mathrm{t}}$ is Lipschitz, it satisfies \square $\mathrm{T}_{\mathrm{s} \rightarrow \mathrm{t}}\left(\Xi_{\mathrm{s}}\right)=\Xi_{\mathrm{t}}$ and

$$
\text { the concatenation property } \quad \mathrm{T}_{\mathrm{t}_{1} \rightarrow \mathrm{t}_{2}} \circ \mathrm{~T}_{\mathrm{t}_{0} \rightarrow \mathrm{t}_{1}}=\mathrm{T}_{\mathrm{t}_{0} \rightarrow \mathrm{t}_{2}}
$$

Setting

$$
\mathrm{q}_{\mathrm{s} \rightarrow \mathrm{t}}^{2}(x):=\left(1+2(\mathrm{t}-\mathrm{s}) \xi_{s}(x)\right)^{2}+(\mathrm{t}-\mathrm{s})^{2}\left|\mathbf{g}_{\mathrm{s}}(x)\right|^{2}
$$

we have

$$
\mathrm{q}_{\mathrm{t}_{1} \rightarrow \mathrm{t}_{2}} \circ \mathrm{~T}_{\mathrm{t}_{0} \rightarrow \mathrm{t}_{1}} \cdot \mathrm{q}_{\mathrm{t}_{0} \rightarrow \mathrm{t}_{1}}=\mathrm{q}_{\mathrm{t}_{0} \rightarrow \mathrm{t}_{2}}
$$

Nonbranching and restrictions

Theorem

For every $s \in(0,1)$ and $t \in[0,1]$ the transport-growth pair $\left(\mathrm{T}_{\mathrm{s} \rightarrow \mathrm{t}}, \mathrm{q}_{\mathrm{s} \rightarrow \mathrm{t}}\right)$ is the unique solution to the Monge formulation for the H problem between μ_{s} and μ_{t}.

Nonbranching and restrictions

Theorem

For every $s \in(0,1)$ and $t \in[0,1]$ the transport-growth pair $\left(\mathrm{T}_{\mathrm{s} \rightarrow \mathrm{t}}, \mathrm{q}_{\mathrm{s} \rightarrow \mathrm{t}}\right)$ is the unique solution to the Monge formulation for the H problem between μ_{s} and μ_{t}.

In particular, if for given $\mu_{0}, \mu_{1}, \mu_{\mathrm{s}}$

$$
H K\left(\mu_{0}, \mu_{s}\right)=\operatorname{sHK}\left(\mu_{0}, \mu_{1}\right), \quad H\left(\mu_{s}, \mu_{1}\right)=(1-s) H\left(\mu_{0}, \mu_{1}\right)
$$

then there exists a unique geodesic $\mu:[0,1] \rightarrow \mathcal{M}\left(\mathbb{R}^{d}\right)$ connecting μ_{0} to μ_{1} such that $\mu(s)=\mu_{s}$.

Nonbranching and restrictions

Theorem

For every $s \in(0,1)$ and $t \in[0,1]$ the transport-growth pair $\left(\mathrm{T}_{\mathrm{s} \rightarrow \mathrm{t}}, \mathrm{q}_{\mathrm{s} \rightarrow \mathrm{t}}\right)$ is the unique solution to the Monge formulation for the H problem between μ_{s} and μ_{t}.

In particular, if for given $\mu_{0}, \mu_{1}, \mu_{\mathrm{s}}$

$$
H K\left(\mu_{0}, \mu_{s}\right)=\operatorname{sHK}\left(\mu_{0}, \mu_{1}\right), \quad H\left(\mu_{s}, \mu_{1}\right)=(1-s) H\left(\mu_{0}, \mu_{1}\right)
$$

then there exists a unique geodesic $\mu:[0,1] \rightarrow \mathcal{M}\left(\mathbb{R}^{d}\right)$ connecting μ_{0} to μ_{1} such that $\mu(s)=\mu_{s}$.

If $\mu_{\mathrm{s}} \ll \mathscr{L}^{\mathrm{d}}$ then $\mu_{\mathrm{t}} \ll \mathscr{L}^{\mathrm{d}}$ for every $\mathrm{t} \in(0,1)$.

Nonbranching and restrictions

Theorem

For every $s \in(0,1)$ and $t \in[0,1]$ the transport-growth pair $\left(\mathrm{T}_{\mathrm{s} \rightarrow \mathrm{t}}, \mathrm{q}_{\mathrm{s} \rightarrow \mathrm{t}}\right)$ is the unique solution to the Monge formulation for the H problem between μ_{s} and μ_{t}.

In particular, if for given $\mu_{0}, \mu_{1}, \mu_{\text {s }}$

$$
H K\left(\mu_{0}, \mu_{s}\right)=\operatorname{sHK}\left(\mu_{0}, \mu_{1}\right), \quad H\left(\mu_{s}, \mu_{1}\right)=(1-s) H\left(\mu_{0}, \mu_{1}\right)
$$

then there exists a unique geodesic $\mu:[0,1] \rightarrow \mathcal{M}\left(\mathbb{R}^{d}\right)$ connecting μ_{0} to μ_{1} such that $\mu(s)=\mu_{s}$.

If $\mu_{\mathrm{s}} \ll \mathscr{L}^{\mathrm{d}}$ then $\mu_{\mathrm{t}} \ll \mathscr{L}^{\mathrm{d}}$ for every $\mathrm{t} \in(0,1)$.
If $\operatorname{supp}\left(\nu_{s}\right) \subset \operatorname{supp}\left(\mu_{\mathrm{s}}\right)$ then $v_{\mathrm{t}}:=\left(\mathrm{T}_{\mathrm{s} \rightarrow \mathrm{t}}, \mathrm{q}_{\mathrm{s} \rightarrow \mathrm{t}}\right)_{*} \mathrm{v}_{\mathrm{s}}$ is a geodesic.

Second order regularity of CHL (III)

Let $\mathfrak{D}_{s} \subset \Xi_{s}$ the set of points of density 1 where g_{s} is differentiable.

Theorem

$A_{s}:=\mathrm{D} g_{\mathrm{s}}$ is symmetric. ξ_{s} has a second order Taylor expansion in terms of g_{s} and A_{s}. We thus can set $\mathrm{g}_{\mathrm{s}}=\nabla \xi_{\mathrm{s}}, \mathrm{B}_{\mathrm{s}}=\mathrm{D} \nabla \xi_{\mathrm{s}}=\mathrm{D}^{2} \xi_{\mathrm{s}}$ in $\mathfrak{D}_{\mathrm{s}}$.

Second order regularity of CHL (III)

Let $\mathfrak{D}_{\mathrm{s}} \subset \Xi_{\mathrm{s}}$ the set of points of density 1 where g_{s} is differentiable.

Theorem

$A_{s}:=\mathrm{D} g_{\mathrm{s}}$ is symmetric. ξ_{s} has a second order Taylor expansion in terms of g_{s} and A_{s}. We thus can set $\mathrm{g}_{\mathrm{s}}=\nabla \xi_{\mathrm{s}}, \mathrm{B}_{\mathrm{s}}=\mathrm{D} \nabla \xi_{\mathrm{s}}=\mathrm{D}^{2} \xi_{\mathrm{s}}$ in $\mathfrak{D}_{\mathrm{s}}$.

If $\mu_{\mathrm{s}} \ll \mathscr{L}^{\mathrm{d}}$ then $\mu_{\mathrm{s}}\left(\Xi_{\mathrm{s}} \backslash \mathfrak{D}_{\mathrm{s}}\right)=0$.

Second order regularity of CHL (III)

Let $\mathfrak{D}_{\mathrm{s}} \subset \Xi_{\mathrm{s}}$ the set of points of density 1 where g_{s} is differentiable.

Theorem

$A_{s}:=\mathrm{D} \mathrm{g}_{\mathrm{s}}$ is symmetric. ξ_{s} has a second order Taylor expansion in terms of g_{s} and A_{s}. We thus can set $\mathrm{g}_{\mathrm{s}}=\nabla \xi_{\mathrm{s}}, \mathrm{B}_{\mathrm{s}}=\mathrm{D} \nabla \xi_{\mathrm{s}}=\mathrm{D}^{2} \xi_{\mathrm{s}}$ in $\mathfrak{D}_{\mathrm{s}}$.

If $\mu_{\mathrm{s}} \ll \mathscr{L}^{\mathrm{d}}$ then $\mu_{\mathrm{s}}\left(\Xi_{\mathrm{s}} \backslash \mathfrak{D}_{\mathrm{s}}\right)=0$.
$\mathrm{T}_{\mathrm{s} \rightarrow \mathrm{t}}$ is differentiable in $\mathfrak{D}_{\mathrm{s}}$ and $\mathrm{T}_{\mathrm{s} \rightarrow \mathrm{t}}\left(\mathfrak{D}_{\mathrm{s}}\right)=\mathfrak{D}_{\mathrm{t}}$.
The maps $\mathbf{T}(\mathrm{t}):=\mathrm{T}_{\mathrm{s} \rightarrow \mathrm{t}}, \mathrm{B}(\mathrm{t}, \cdot):=\mathrm{DT}(\mathrm{t}, \cdot), \delta(\mathrm{t}, \cdot):=\operatorname{det} \mathrm{B}(\mathrm{t}, \cdot)$ are analytic in time and satisfy the characteristic systems of ODE.

$$
\left\{\begin{array}{l}
\ddot{\mathrm{T}}(\mathrm{t})=4 \xi_{\mathrm{t}} \nabla \xi_{\mathrm{t}}(\mathbf{T}(\mathrm{t})) \\
\ddot{\mathrm{q}}(\mathrm{t})=\left|\nabla \xi_{\mathrm{t}}(\mathbf{T}(\mathrm{t}))\right|^{2} \mathrm{q}(\mathrm{t}) \\
\ddot{\mathrm{B}}(\mathrm{t})=-4\left(\nabla \xi_{\mathrm{t}} \otimes \nabla \xi_{\mathrm{t}}+\xi_{\mathrm{t}} \mathrm{D}^{2} \xi_{\mathrm{t}}\right) \circ \mathbf{T}(\mathrm{t}) \cdot \mathrm{B}(\mathrm{t}) \\
\ddot{\delta}(\mathrm{t})=\left(\left(\Delta \xi_{\mathrm{t}}\right)^{2}-\left|\mathrm{D}^{2} \xi_{\mathrm{t}}\right|^{2}-4\left|\nabla \xi_{\mathrm{t}}\right|^{2}-4 \xi_{\mathrm{t}} \Delta \xi_{\mathrm{t}}\right) \circ \mathbf{T}(\mathrm{t}) \cdot \delta(\mathrm{t})
\end{array}\right.
$$

References

1. M. Liero, A. Mielke, G. Savaré Optimal entropy-transport problems and a new Hellinger-Kantorovich distance between positive measures. Invent. Math. 211 (2018), no. 3, 969-1117.
2. G. Savaré, G. Sodini A simple relaxation approach to duality for optimal transport problems in completely regular spaces. J. Convex Anal. 29 (2022), no. 1, 1-12.
3. V. LASchos, A. MIeLke Geometric properties of cones with applications on the Hellinger-Kantorovich space, and a new distance on the space of probability measures J. Funct. Anal. 276 (2019), no. 11, 3529-3576.
4. B. Piccoli, F. Rossi Generalized Wasserstein distance and its application to transport equations with source. Arch. Ration. Mech. Anal. 211, 335-358 (2014)
5. S. Kondratyev, L. Monsaingeon, D. Vorotnikov A new optimal transport distance on the space of finite Radon measures Adv. Differ. Equ. 21, 1117-1164 (2016)
6. L. Chizat, G. Peyré, B. Schmitzer, F.X. Vialard Unbalanced optimal transport: geometry and Kantorovich formulation J. Funct. Anal. 274 (2018), no. 11, 3090-3123.
