Transport- and Measure-Theoretic Approaches for Modeling, Identifying, and Forecasting Dynamical Systems

Yunan Yang, Cornell University

January 23, 2025

Kantorovich Initiative Seminar Series. Online.

List of works:

- Optimal transport for parameter identification of chaotic dynamics via invariant measures. 2023. SIADS.
- Learning dynamics on invariant measures using PDE-constrained optimization. 2023. *Chaos.*
- Measure-Theoretic Time-Delay Embedding. arXiv:2409.08768.
- Invariant Measures in Time-Delay Coordinates for Unique Dynamical System Identification. arXiv:2412.00589.

Collaborators

(a) Levon Nurbekyan (Emory)

(b) Robert Martin (ARL)

(C) Elisa Negrini (UCLA)

(d) Mirjeta Pasha (Virginia Tech)

(e) Jonah Botvinick-Greenhouse (Cornell)

(f) Maria Oprea (Cornell)

(g) Romit Malik (PSU)

Data-Driven Modeling of Dynamical Systems

Data-Driven Modeling for Dynamical System

A general parameterized dynamical system may take the form

$$\dot{\mathbf{x}} = \begin{pmatrix} \dot{x} \\ \dot{y} \\ \dot{z} \end{pmatrix} = \mathbf{v}(x, y, z; \underbrace{\sigma, \rho, \beta}_{\theta}) \approx \mathbf{v}(\mathbf{x}, \theta)$$

where the mathematical approximation $v \approx v(\cdot, \theta)$ is given by

- polynomials, e.g., SINDy [Brunton et al., 2016], [Schaeffer-Tran-Ward, 2018]
- other basis functions, e.g., piecewise polynomials, RBFs, Fourier, etc.
- neural networks [many references], and so on,

where θ corresponds to **expansion coefficients**, neural network weights, etc.

Unique Challenges for Chaotic Systems: Chaos

Challenge One: The initial condition of the system is unknown.

Figure: The comparison between $\mathbf{x}_0 = [10.001, 10, 10]$ and $\mathbf{x}_0 = [10, 10, 10]$.

Unique Challenges for Chaotic Systems: Noises

Challenge Two: The time trajectories contain noise.

No noise

$$\dot{\mathbf{x}} = f(\mathbf{x}).$$

Extrinsic noise

$$\mathbf{x}_{\gamma} = \mathbf{x} + \gamma, \ \dot{\mathbf{x}} = f(\mathbf{x}).$$

Intrinsic noise

$$\dot{\mathbf{x}} = f(\mathbf{x}) + \omega.$$

Figure: The comparison among the three cases.

Unique Challenges for Chaotic Systems: Poor Data Quality

Challenge Three: Cannot measure the Lagrangian particle velocity flow

Measurements $\{x_i\}$ are not good enough to estimate the particle velocity \dot{x} evaluated at $\{x_i\}$

$$\hat{\mathbf{v}} pprox rac{\mathbf{x}_{i+1} - \mathbf{x}_i}{t_{i+1} - t_i}$$

Figure: The continuous trajectory vs the samples

The Eulerian Approach

Often, chaotic systems admit well-defined statistical properties:

$$\mu_{\mathbf{X},\mathsf{T}}(B) = \frac{1}{\mathsf{T}} \int_{\mathsf{O}}^{\mathsf{T}} \mathbb{1}_{B}(\mathbf{x}(s)) ds = \frac{\int_{\mathsf{O}}^{\mathsf{T}} \mathbb{1}_{B}(\mathbf{x}(s)) ds}{\int_{\mathsf{O}}^{\mathsf{T}} \mathbb{1}_{\mathbb{R}^{d}}(\mathbf{x}(s)) ds}$$

where $\mathbf{x}(t)$ is a trajectory starting with $\mathbf{x}(0) = x$, and $\mu_{x,T}$ is called the *occupation* measure. We call μ^* a physical measure if $\lim_{T\to\infty} \mu_{x,T} = \mu^*$ for $x \in U$, Leb(U) > 0.

<u>Data</u> Change: take μ^* as observation data instead of the trajectory $\mathbf{x}(t)$. <u>Model</u> Change: μ^* is the steady-state solution to the continuity equation:

$$\frac{\partial \rho(\mathbf{x},t)}{\partial t} + \nabla \cdot (\mathbf{v}(\mathbf{x},\theta)\rho(\mathbf{x},t)) = \mathbf{0}\,.$$

Road map: from Lagrangian to Eulerian

ODE model
$$\dot{\mathbf{x}} = \mathbf{v}(\mathbf{x})$$
, observe $\{\mathbf{x}(t_i)\}_i$
 \Downarrow

Occupation measure

$$\mu_{\mathbf{x},T}(B) = \frac{1}{T} \int_{0}^{T} \mathbb{1}_{B}(\mathbf{x}(s)) ds$$
$$= \frac{\int_{0}^{T} \mathbb{1}_{B}(\mathbf{x}(s)) ds}{\int_{0}^{T} \mathbb{1}_{\mathbb{R}^{d}}(\mathbf{x}(s)) ds}$$
$$\Downarrow$$
physical measure μ^{*}
$$\Downarrow$$

Stationary distributional solutions of

$$\frac{\partial \rho(\mathbf{x},t)}{\partial t} + \nabla \cdot (\mathbf{v}(\mathbf{x},\theta)\rho(\mathbf{x},t)) = \mathbf{0}.$$

The New Method — A PDE-Constrained Optimization Problem

¢

We treat the parameter identification problem for the dynamical system as a PDE-constrained optimization problem:

 $heta = \operatorname*{argmin}_{ heta} oldsymbol{d}(
ho^*,
ho(heta)),$

s.t.
$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \left(\mathbf{v}(\mathbf{x}, \theta) \rho(\mathbf{x}, t) \right) \left[+ \frac{1}{2} \frac{\partial^2 D_{ij} \rho}{\partial x_i \partial x_j} \right] = \mathbf{0}.$$

 ho^* : the observed occupation measure converted from time trajectories ho(heta): the distributional steady-state solution of the PDE d: an appropriate metric that captures the essential differences, e.g., W_2 metric

The New Method — A PDE-Constrained Optimization Problem

5

We treat the parameter identification problem for the dynamical system as a PDE-constrained optimization problem:

 $\theta = \operatorname*{argmin}_{ heta} d(
ho^*,
ho(heta)),$

s.t.
$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \left(\mathbf{v}(\mathbf{x}, \theta) \rho(\mathbf{x}, t) \right) \left[+ \frac{1}{2} \frac{\partial^2 D_{ij} \rho}{\partial x_i \partial x_j} \right] = \mathbf{0}.$$

 ρ^* : the observed occupation measure converted from time trajectories $\rho(\theta)$: the distributional steady-state solution of the PDE d: an appropriate metric that captures the essential differences, e.g., W_2 metric Data and forward problem are changed, but parameters remain the same.

The gain is to work with a much More Stable inverse problem!

The New Method — A PDE-Constrained Optimization Problem

We treat the parameter identification problem for the dynamical system as a PDE-constrained optimization problem:

 $\theta = \operatorname*{argmin}_{ heta} d(
ho^*,
ho(heta)),$

s.t.
$$\frac{\partial \rho}{\partial t} = -\nabla \cdot \left(\mathbf{v}(\mathbf{x}, \theta) \rho(\mathbf{x}, t) \right) \left[+ \frac{1}{2} \frac{\partial^2 D_{ij} \rho}{\partial x_i \partial x_j} \right] = \mathbf{0}.$$

 ho^* : the observed occupation measure converted from time trajectories ho(heta): the distributional steady-state solution of the PDE d: an appropriate metric that captures the essential differences, e.g., W_2 metric

Data and forward problem are changed, but parameters remain the same. The gain is to work with a much **More Stable** inverse problem!

Next: an objective function comparing distributions

Optimal Transport

Figure: Proposed by Monge in 1781

- Monge (1781)
- Kantorovich (1975)
- Brenier, Caffarelli, Gangbo, McCann, Benamou, Otto, Villani, Figalli, etc. (1990s - present)

Optimal Transport

Figure: Proposed by Monge in 1781

- Monge (1781)
- Kantorovich (1975)
- Brenier, Caffarelli, Gangbo, McCann, Benamou, Otto, Villani, Figalli, etc. (1990s - present)
- Data Assimilation (Reich, Vidard, Bocquet...)
- Hyperbolic Model Reduction (Mula, Peherstorfer, Ravela)
- Image Processing (T. Chan, Peyré, C. B. Schönlieb...)
- Inverse Problems (Bao, Marzouk, Engquist, Singer, Y.,...)
- Machine Learning (Cuturi, Peyré, Solomon, ...)
- Sampling (Marzouk, Rigollet, Chewi, ...)
- And more

The Wasserstein Distance

Definition of the Wasserstein Distance

For $f,g\in \mathcal{P}(\Omega)$ ($f,g\geq 0$ and $\int f=\int g=$ 1), the Wasserstein distance is formulated as

$$W_p(f,g) = \left(\inf_{T \in \mathcal{M}} \int |x - T(x)|^p f(x) dx\right)^{\frac{1}{p}}$$
(1)

 \mathcal{M} : the set of all maps that rearrange the distribution f into g.

The commonly used cases include p = 1 and p = 2.

Definition of the Wasserstein Distance

For $f,g\in \mathcal{P}(\Omega)$ ($f,g\geq 0$ and $\int f=\int g=$ 1), the Wasserstein distance is formulated as

$$W_p(f,g) = \left(\inf_{T \in \mathcal{M}} \int |x - T(x)|^p f(x) dx\right)^{\frac{1}{p}}$$
(1)

 \mathcal{M} : the set of all maps that rearrange the distribution f into g.

The commonly used cases include p = 1 and p = 2.

Properties of W_2 as the loss function

(1) Provide better optimization landscape for Nonlinear Inverse Problems:

$$heta^* = \operatorname*{argmin}_{ heta} W^2_2(
ho(heta),
ho^*)$$

(2) Robust in Inversion with Noisy Data (equivalent to \dot{H}^{-1} norm)

Recap: our approach from Lagrangian view to Eulerian perspective

¹Branton, S. L., Proctor, J. L., & Kutz, J. N. (2016). Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of national

Comparison with Other Methods

Method	Sampling Freq.	Wall-Clock Time (s)	Error] [Method	Sampling Freq.	Wall-Clock Time (s)	Error
SINDy	10.00	$2 \cdot 10^{-2}$	$5.6 \cdot 10^{-3}$] [SINDy	0.25	10^{-2}	3.52
Neural ODE	10.00	$5 \cdot 10^2$	$5.32\cdot 10^{-3}$		Neural ODE	0.25	$5 \cdot 10^2$	1.81
Ours	10.00	$5 \cdot 10^2$	$1.14\cdot 10^{-1}$		Ours	0.25	$5 \cdot 10^2$	$6.79 \cdot 10^{-2}$

Application to Real-World Data: Hall-Effect Thruster

14

Limitation: Nonuniqueness

$$T_{\#}\mu = \mu \& S_{\#}\mu = \mu \Rightarrow T = S$$

15

Invariant Measures in Time-Delay Coordinates for *Unique* Dynamical System Identification

Takens' Embedding Theorem

Theorem (Takens, 1981)

Let M be a compact manifold of dimension m. For pairs (y, T), where $T \in C^2(M, M)$ and $y \in C^2(M, \mathbb{R})$, it is a generic property that the mapping $\Phi_{(y,T)} : M \to N \subseteq \mathbb{R}^{2d+1}$ given by $\Phi_{(y,T)}(\mathbf{x}) := (y(\mathbf{x}), y(T(\mathbf{x})), \dots, y(T^{2m}(\mathbf{x})))$ is an embedding of M in \mathbb{R}^{2d+1} .

Takens' Embedding Theorem

Theorem (Takens, 1981)

Let M be a compact manifold of dimension m. For pairs (y, T), where $T \in C^2(M, M)$ and $y \in C^2(M, \mathbb{R})$, it is a generic property that the mapping $\Phi_{(y,T)} : M \to N \subseteq \mathbb{R}^{2d+1}$ given by $\Phi_{(y,T)}(\mathbf{x}) := (y(\mathbf{x}), y(T(\mathbf{x})), \dots, y(T^{2m}(\mathbf{x})))$ is an embedding of M in \mathbb{R}^{2d+1} .

Invariant Measures in Time-Delay Coordinates for Uniqueness

Invariant Measures in Time-Delay Coordinates for Uniqueness

Theorem 1. The equality $\hat{\mu}_{(y,T)}^{(m+1)} = \hat{\nu}_{(y,S)}^{(m+1)}$ implies $T|_{supp(\mu)}$ and $S|_{supp(\nu)}$ are topologically conjugate, for almost every $y \in C^1(U, \mathbb{R})$.

Invariant Measures in Time-Delay Coordinates for Uniqueness

Theorem 1. The equality $\hat{\mu}_{(y,T)}^{(m+1)} = \hat{\nu}_{(y,S)}^{(m+1)}$ implies $T|_{supp(\mu)}$ and $S|_{supp(\nu)}$ are topologically conjugate, for almost every $y \in C^1(U, \mathbb{R})$.

Theorem 2. The conditions below imply that T = S on supp (μ) , for a.e. $Y \in C^1(U, \mathbb{R}^m)$:

1. there exists $x^* \in B_{\mu,T} \cap \text{supp}(\mu)$, such that $T^k(x^*) = S^k(x^*)$ for $1 \le k \le m - 1$, and 2. $\hat{\mu}_{(y_1,T)}^{(m+1)} = \hat{\mu}_{(y_1,S)}^{(m+1)}$ for $1 \le j \le m$, where $Y := (y_1, \ldots, y_m)$ is a vector-valued observable.

Numerical Example

 $\mathcal{J}_1(\theta) := \mathcal{D}(\mathsf{T}_{\theta} \# \mu^*, \mathsf{T}^* \# \mu^*), \qquad \mathcal{J}_2(\theta) := \mathcal{D}(\mathsf{T}_{\theta} \# \mu^*, \mathsf{T}^* \# \mu^*) + \mathcal{D}(\Psi_{\theta} \# \mu^*, \Psi^* \# \mu^*).$

 Ψ_{θ} is the delay map based on T_{θ} , and Ψ^* is the true delay map.

Embedding Over the Probability Space $\mathcal{P}_2(M)$

Takens' Embedding Theorem (Again)

Theorem (Takens, 1981)

Let M be a compact manifold of dimension m. For pairs (y, T), where $T \in C^2(M, M)$ and $y \in C^2(M, \mathbb{R})$, it is a generic property that the mapping $\Phi_{(y,T)} : M \to N \subseteq \mathbb{R}^{2d+1}$ given by $\Phi_{(y,T)}(\mathbf{x}) := (y(\mathbf{x}), y(T(\mathbf{x})), \dots, y(T^{2m}(\mathbf{x})))$ is an embedding of M in \mathbb{R}^{2d+1} .

19

Measure-Theoretic Embedding

- Challenges: Takens' Theorem no longer applies when dynamics have noise.
- Can we lift the statement to the space of probability measures?

Measure-Theoretic Embedding

- Challenges: Takens' Theorem no longer applies when dynamics have noise.
- Can we lift the statement to the space of probability measures?
- If $\Phi: M \to N$ is an embedding, is $\Phi \# : \mathcal{P}(M) \to \mathcal{P}(N)$ also an embedding?

Measure-Theoretic Embedding

- Challenges: Takens' Theorem no longer applies when dynamics have noise.
- Can we lift the statement to the space of probability measures?
- If $\Phi: M \to N$ is an embedding, is $\Phi \# : \mathcal{P}(M) \to \mathcal{P}(N)$ also an embedding?

Pointwise embedding (Φ)

- 1. Φ is injective
- 2. Φ is smooth
- 3. $D\Phi$ is injective

Pointwise embedding (ϕ)

- 1. Φ is injective
- 2. Φ is smooth
- 3. $D\Phi$ is injective

Measure-theoretic embedding ($\Phi \#$)

- 1. $\Phi \#$ is injective
- 2. $\Phi \#$ is smooth
- 3. $D(\Phi \#)$ is injective

Pointwise embedding (ϕ)

- 1. Φ is injective
- 2. Φ is smooth
- 3. $D\Phi$ is injective

Measure-theoretic embedding ($\Phi \#$)

- 1. $\Phi \#$ is injective
- 2. $\Phi \#$ is smooth
- 3. $D(\Phi \#)$ is injective

Definition (Differentiability of operator $\mathcal{P}_2(M) \to \mathcal{P}_2(N)$) A map $\Psi : \mathcal{P}_2(M) \to \mathcal{P}_2(N)$ is differentiable if for all $\mu \in \mathcal{P}_2(M)$ there is a bounded linear operator $d\Psi_{\mu} : T_{\mu}\mathcal{P}_2(M) \to T_{\Psi(\mu)}\mathcal{P}_2(N)$ s.t. for any differentiable curve $t \mapsto \mu_t$ through μ , the curve $t \mapsto \Psi(\mu_t)$ is differentiable with velocity v_t and $d\Psi_{\mu_t}(v_t) = \frac{d}{dt}\Psi(\mu_t)$.

Pointwise embedding (ϕ)

- 1. Φ is injective
- 2. Φ is smooth
- 3. $D\Phi$ is injective

Measure-theoretic embedding ($\Phi \#$)

- 1. $\Phi \#$ is injective
- 2. $\Phi \#$ is smooth
- 3. $D(\Phi \#)$ is injective

Definition (Differentiability of operator $\mathcal{P}_2(M) \to \mathcal{P}_2(N)$) A map $\Psi : \mathcal{P}_2(M) \to \mathcal{P}_2(N)$ is differentiable if for all $\mu \in \mathcal{P}_2(M)$ there is a bounded linear operator $d\Psi_{\mu} : T_{\mu}\mathcal{P}_2(M) \to T_{\Psi(\mu)}\mathcal{P}_2(N)$ s.t. for any differentiable curve $t \mapsto \mu_t$ through μ , the curve $t \mapsto \Psi(\mu_t)$ is differentiable with velocity v_t and $d\Psi_{\mu_t}(v_t) = \frac{d}{dt}\Psi(\mu_t)$.

Theorem (Our Main Result)

If $\Phi: M \to N$ is an embedding between differentiable manifolds, then the map $\Phi #: \mathcal{P}_2(M) \to \mathcal{P}_2(N)$ is also an embedding.

Numerical Example

$$\mathcal{L}_{p}(\theta) = \frac{1}{N} \sum_{i=1}^{N} ||X_{i} - \mathcal{R}_{\theta}(\Phi(X_{i}))||_{2}^{2}, \qquad \mathcal{L}_{m}(\theta) = \frac{1}{K} \sum_{i=1}^{K} \mathcal{D}(\mu_{i}, \mathcal{R}_{\theta} \#(\Phi \# \mu_{i})).$$
measure-theoretic loss
$$\int_{0}^{1} \int_{0}^{1} \int_{$$

Conclusion

Conclusions

[Bird-Stewart-Lightfoot, Transport Phenomena, 2002]

Summaries

- From Lagrangian to Eulerian to tackle chaos (ODE \implies PDE problem)
- Using optimal transport to study dynamical system
 - 1. Invariant measure matching
 - 2. Invariant measure in time-delay coordinate matching
 - 3. Generalize pointwise embedding to measure-theoretic embedding

Summaries

- From Lagrangian to Eulerian to tackle chaos (ODE \implies PDE problem)
- Using optimal transport to study dynamical system
 - 1. Invariant measure matching
 - 2. Invariant measure in time-delay coordinate matching
 - 3. Generalize pointwise embedding to measure-theoretic embedding

Outlook

There is great potential for using optimal transport in data-driven modeling of dynamical systems.

Acknowledgments

Research support from

Thank you for the attention!