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Data-Driven Modeling of Dynamical
Systems



Data-Driven Modeling for Dynamical System
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Parameter Identification

A general parameterized dynamical system may take the form

ẋ =

ẋẏ
ż

 = v(x, y, z;σ, ρ, β︸ ︷︷ ︸
θ

) ≈ v(x, θ)

where the mathematical approximation v ≈ v(·, θ) is given by

• polynomials, e.g., SINDy [Brunton et al., 2016], [Schaeffer-Tran-Ward,2018]
• other basis functions, e.g., piecewise polynomials, RBFs, Fourier, etc.
• neural networks [many references], and so on,

where θ corresponds to expansion coefficients, neural network weights, etc.
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Unique Challenges for Chaotic Systems: Chaos

Challenge One: The initial condition of the system is unknown.

X axis

−20 −15 −10 −5 0 5 10 15 20

Y a
xis

−20
−10

0
10

20

Z 
ax

is

10

20

30

40

50

x0= (10.001, 10, 10)
x0= (10, 10, 10)

0 2000 4000 6000 8000 10000 12000 14000
time step

0
5

10
15
20
25
30
35
40

L2 pointwise difference

Figure: The comparison between x0 = [10.001, 10, 10] and x0 = [10, 10, 10].

All the differences are NOT from the parameters!!!
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Unique Challenges for Chaotic Systems: Noises

Challenge Two: The time trajectories contain noise.

No noise

ẋ = f (x).

Extrinsic noise

xγ = x + γ, ẋ = f (x).

Intrinsic noise

ẋ = f (x) + ω.
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Figure: The comparison among the three cases.
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Unique Challenges for Chaotic Systems: Poor Data Quality

Challenge Three: Cannot measure the Lagrangian particle velocity flow

Measurements {xi} are not good
enough to estimate the particle
velocity ẋ evaluated at {xi}

v̂ ≈
xi+1 − xi
ti+1 − ti
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Figure: The continuous trajectory vs the samples
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The Eulerian Approach

Often, chaotic systems admit well-defined statistical properties:

µx,T(B) =
1
T

∫ T

0
1B(x(s))ds =

∫ T
0 1B(x(s))ds∫ T

0 1Rd(x(s))ds
,

where x(t) is a trajectory starting with x(0) = x, and µx,T is called the occupation
measure. We call µ∗ a physical measure if lim

T→∞
µx,T = µ∗ for x ∈ U, Leb(U) > 0.

Data Change: take µ∗ as observation data instead of the trajectory x(t).
Model Change: µ∗ is the steady-state solution to the continuity equation:

∂ρ(x, t)
∂t

+∇ · (v(x, θ)ρ(x, t)) = 0 .
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Road map: from Lagrangian to Eulerian

ODE model ẋ = v(x), observe {x(ti)}i
⇓

Occupation measure

µx,T(B) =
1
T

∫ T

0
1B(x(s))ds

=

∫ T
0 1B(x(s))ds∫ T

0 1Rd(x(s))ds

⇓

physical measure µ∗

⇓

Stationary distributional solutions of
∂ρ(x, t)

∂t +∇ ·
(
v(x, θ)ρ(x, t)

)
= 0. X axis
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The New Method — A PDE-Constrained Optimization Problem

We treat the parameter identification problem for the dynamical system as a
PDE-constrained optimization problem:

θ = argmin
θ

d(ρ∗, ρ(θ)),

s.t. ∂ρ

∂t
= −∇ ·

(
v(x, θ)ρ(x, t)

)
+ 1

2
∂2Dijρ
∂xi∂xj

= 0.

ρ∗ : the observed occupation measure converted from time trajectories
ρ(θ) : the distributional steady-state solution of the PDE
d : an appropriate metric that captures the essential differences, e.g., W2 metric

Data and forward problem are changed, but parameters remain the same.
The gain is to work with a much More Stable inverse problem!

Next: an objective function comparing distributions
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Optimal Transport

Figure: Proposed by Monge in 1781

• Monge (1781)

• Kantorovich (1975)

• Brenier, Caffarelli, Gangbo, McCann, Benamou, Otto,
Villani, Figalli, etc. (1990s - present)

• Data Assimilation (Reich, Vidard, Bocquet...)

• Hyperbolic Model Reduction (Mula, Peherstorfer,Ravela)

• Image Processing (T. Chan, Peyré, C. B. Schönlieb...)

• Inverse Problems (Bao, Marzouk, Engquist, Singer, Y.,...)

• Machine Learning (Cuturi,Peyré, Solomon, ...)

• Sampling (Marzouk, Rigollet, Chewi, ...)

• And more
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The Wasserstein Distance

Definition of the Wasserstein Distance
For f ,g ∈ P(Ω) (f ,g ≥ 0 and

∫
f =

∫
g = 1), the Wasserstein distance is

formulated as

Wp(f ,g) =
(

inf
T∈M

∫
|x − T(x)|p f (x)dx

) 1
p

(1)

M: the set of all maps that rearrange the distribution f into g.

The commonly used cases include p = 1 and p = 2.

Properties of W2 as the loss function
(1) Provide better optimization landscape for Nonlinear Inverse Problems:

θ∗ = argmin
θ

W2
2(ρ(θ), ρ

∗)

(2) Robust in Inversion with Noisy Data (equivalent to Ḣ−1 norm)
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Recap: our approach from Lagrangian view to Eulerian perspective
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Comparison with Other Methods
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Application to Real-World Data: Hall-Effect Thruster
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Limitation: Nonuniqueness

T#µ = µ & S#µ = µ ⇏ T = S
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Invariant Measures in Time-Delay
Coordinates for Unique Dynamical
System Identification



Takens’ Embedding Theorem

Theorem (Takens, 1981)
Let M be a compact manifold of dimension m. For pairs (y, T), where T ∈ C2(M,M) and y ∈ C2(M,R),
it is a generic property that the mapping Φ(y,T) : M→ N ⊆ R2d+1 given by
Φ(y,T)(x) := (y(x), y(T(x)), . . . , y(T2m(x))) is an embedding of M in R2d+1.
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Invariant Measures in Time-Delay Coordinates for Uniqueness

Theorem 1. The equality µ̂
(m+1)
(y,T) = ν̂

(m+1)
(y,S) implies T|supp(µ) and S|supp(ν) are topologically conjugate,

for almost every y ∈ C1(U,R).

Theorem 2. The conditions below imply that T = S on supp(µ), for a.e. Y ∈ C1(U,Rm):

1. there exists x∗ ∈ Bµ,T ∩ supp(µ), such that Tk(x∗) = Sk(x∗) for 1 ≤ k ≤ m− 1, and
2. µ̂

(m+1)
(yj,T)

= µ̂
(m+1)
(yj,S)

for 1 ≤ j ≤ m, where Y := (y1, . . . , ym) is a vector-valued observable.
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Numerical Example

J1(θ) := D(Tθ#µ∗, T∗#µ∗), J2(θ) := D(Tθ#µ∗, T∗#µ∗) +D(Ψθ#µ∗,Ψ∗#µ∗).

Ψθ is the delay
map based on Tθ ,
and Ψ∗ is the true
delay map.
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Embedding Over the Probability
Space P2(M)



Takens’ Embedding Theorem (Again)

Theorem (Takens, 1981)
Let M be a compact manifold of dimension m. For pairs (y, T), where T ∈ C2(M,M) and y ∈ C2(M,R),
it is a generic property that the mapping Φ(y,T) : M→ N ⊆ R2d+1 given by
Φ(y,T)(x) := (y(x), y(T(x)), . . . , y(T2m(x))) is an embedding of M in R2d+1.
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Measure-Theoretic Embedding

• Challenges: Takens’ Theorem no longer applies when dynamics have noise.
• Can we lift the statement to the space of probability measures?

• If Φ : M→ N is an embedding, is Φ# : P(M) → P(N) also an embedding?
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Measure-Theoretic Embedding

Pointwise embedding (Φ)
1. Φ is injective
2. Φ is smooth
3. DΦ is injective

Measure-theoretic embedding (Φ#)
1. Φ# is injective
2. Φ# is smooth
3. D(Φ#) is injective

Definition (Differentiability of operator P2(M) → P2(N))
A map Ψ : P2(M) → P2(N) is differentiable if for all µ ∈ P2(M) there is a bounded
linear operator dΨµ : TµP2(M) → TΨ(µ)P2(N) s.t. for any differentiable curve
t 7→ µt through µ, the curve t 7→ Ψ(µt) is differentiable with velocity vt and
dΨµt(vt) = d

dtΨ(µt).

Theorem (Our Main Result)
If Φ : M→ N is an embedding between differentiable manifolds, then the map
Φ# : P2(M) → P2(N) is also an embedding.
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Numerical Example

Lp(θ)︸ ︷︷ ︸
pointwise loss

= 1
N
∑N

i=1 ∥xi −Rθ(Φ(xi))∥2
2 , Lm(θ)︸ ︷︷ ︸

measure-theoretic loss

= 1
K
∑K

i=1 D(µi,Rθ#(Φ#µi)) .
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Conclusion



Conclusions

(a) Lagrangian view (b) Eulerian view

[Bird-Stewart-Lightfoot, Transport Phenomena, 2002]
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Conclusions

Summaries

• From Lagrangian to Eulerian to tackle chaos (ODE =⇒ PDE problem)
• Using optimal transport to study dynamical system

1. Invariant measure matching
2. Invariant measure in time-delay coordinate matching
3. Generalize pointwise embedding to measure-theoretic embedding

Outlook
There is great potential for using optimal transport in data-driven modeling of
dynamical systems.
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