Transport- and Measure-Theoretic Approaches for Modeling,
Identifying, and Forecasting Dynamical Systems

Yunan Yang, Cornell University
January 23, 2025

Kantorovich Initiative Seminar Series. Online.

List of works:

— Optimal transport for parameter identification of chaotic dynamics via invariant measures. 2023. SIADS.

— Learning dynamics on invariant measures using PDE-constrained optimization. 2023. Chaos.

— Measure-Theoretic Time-Delay Embedding. arXiv:2409.08768.

— Invariant Measures in Time-Delay Coordinates for Unique Dynamical System Identification. arXiv:2412.00589.



Collaborators

(a) Levon Nurbekyan (b) Robert Martin (c) Elisa Negrini (d) mirjeta Pasha
(Emory) (ARL) (UCLA) (Virginia Tech)

(e) Jonah Botvinick- (f) Maria Oprea (g) Romit Malik (PSU)
Greenhouse (Cornell) (Cornell)



Data-Driven Modeling of Dynamical
Systems



Data-Driven Modeling for Dynamical System

X &= v(e) SR o)

| | |

State space Evolution rule Trajectory samples




Parameter Identification

A general parameterized dynamical system may take the form

= V(X7yvz; g, P, B) ~ V(xa 9)
6
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where the mathematical approximation v ~ v(-, 0) is given by

+ polynomials, e.g., SINDy [Brunton et al., 2016], [Schaeffer-Tran-Ward,2018]
- other basis functions, e.g., piecewise polynomials, RBFs, Fourier, etc.

« neural networks [many references], and so on,

where 0 corresponds to expansion coefficients, neural network weights, etc.



Unique Challenges for Chaotic Systems: Chaos

Challenge One: The initial condition of the system is unknown.

—— Xxp=(10.001, 10, 10)
—— X0 =(10, 10, 10)
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Figure: The comparison between xo = [10.001, 10, 10] and X0 = [10, 10, 10].



Unique Challenges for Chaotic Systems: Noises

Challenge Two: The time trajectories contain noise.

No nOise extrinsic noise

— intrinsic noise
—— no noise

X = f(x).
Extrinsic noise
Xy =X+, X:f(X)

Intrinsic noise

X =f(X) + w.
Figure: The comparison among the three cases.



Unique Challenges for Chaotic Systems: Poor Data Quality

Challenge Three: Cannot measure the Lagrangian particle velocity flow

. . 50
—— continuous trajectory

® samples

Measurements {x;} are not good o
enough to estimate the particle
velocity x evaluated at {x;}

Figure: The continuous trajectory vs the samples



The Eulerian Approach

Often, chaotic systems admit well-defined statistical properties:
Jo Ls(X(s))ds
fOT Tga(X(S))ds ’

where x(t) is a trajectory starting with x(0) = x, and s 7 is called the occupation
measure. We call u* a physical measure if Tlim px,t = p* forx € U, Leb(U) > o.
—00

T
per(B) = 7 [ s(x(s))ds -

Data Change: take * as observation data instead of the trajectory x(t).
Model Change: 1.* is the steady-state solution to the continuity equation:
Ip(x, t)

ot + V- (v(x,0)p(x,t)) =0.




Road map: from Lagrangian to Eulerian

Lorenz system (without noise)

ODE modelx = v(x), observe {x(t;)};
U

Occupation measure
1 T
per(B) =7 [ La(x(s))ds
o]

_ J5 1s(x(s))ds
J5 Lga(X(s))ds
(8

physical measure p*

¢

Stationary distributional solutions of

ww - (v(x, 0)p(x, 1)) = 0.




The New Method — A PDE-Constrained Optimization Problem

We treat the parameter identification problem for the dynamical system as a
PDE-constrained optimization problem:

6 = argmind(p*, p(0)),
0

p | 0Dyp

5t = —V - (v(x,0)p(x, t)): +%8X,~Z9])g = 0.

p* : the observed occupation measure converted from time trajectories

p(0) : the distributional steady-state solution of the PDE

d : an appropriate metric that captures the essential differences, e.g., W, metric

s.t.




The New Method — A PDE-Constrained Optimization Problem

We treat the parameter identification problem for the dynamical system as a
PDE-constrained optimization problem:

6 = argmind(p*, p(0)),
0

p | 0Dyp

5t = —V - (v(x,0)p(x, t)): +%8X,~Z9])g = 0.

p* : the observed occupation measure converted from time trajectories

p(0) : the distributional steady-state solution of the PDE

d : an appropriate metric that captures the essential differences, e.g., W, metric

s.t.

Data and forward problem are changed, but parameters remain the same.
The gain is to work with a much More Stable inverse problem!



The New Method — A PDE-Constrained Optimization Problem

We treat the parameter identification problem for the dynamical system as a
PDE-constrained optimization problem:

6 = argmind(p*, p(0)),
0

8 \r o 78;5,"7 j‘
st. a{ = =V - (v(%,0)p(x, 1)) +3 5z | = O-

p* : the observed occupation measure converted from time trajectories
p(0) : the distributional steady-state solution of the PDE
d : an appropriate metric that captures the essential differences, e.g., W, metric

Data and forward problem are changed, but parameters remain the same.
The gain is to work with a much More Stable inverse problem!

Next: an objective function comparing distributions ?



Optimal Transport

+ Monge (1781)
« Kantorovich (1975)

« Brenier, Caffarelli, Gangbo, McCann, Benamou, Otto,
Villani, Figalli, etc. (1990s - present)

Figure: Proposed by Monge in 1781
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Optimal Transport

+ Monge (1781)
« Kantorovich (1975)

X « Brenier, Caffarelli, Gangbo, McCann, Benamou, Otto,
Villani, Figalli, etc. (1990s - present)

« Data Assimilation (Reich, Vidard, Bocquet...)

+ Hyperbolic Model Reduction (Mula, Peherstorfer,Ravela)
+ Image Processing (T. Chan, Peyré, C. B. Schonlieb...)

« Inverse Problems (Bao, Marzouk, Engquist, Singer, Y.,...)
Figure: Proposed by Monge in 1781 + Machine Learning (Cuturi,Peyré, Solomon, ...)
- Sampling (Marzouk, Rigollet, Chewi, ...)

- And more
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The Wasserstein Distance

Definition of the Wasserstein Distance
Forf,g € P(Q) (f,g >oand [f = [ g=1), the Wasserstein distance is

formulated as )
= ( inf /|X— dX> (1)

M: the set of all maps that rearrange the distribution f into g.

The commonly used cases include p =1and p = 2.

1"



The Wasserstein Distance

Definition of the Wasserstein Distance
Forf,g € P(Q) (f,g >oand [f = [ g=1), the Wasserstein distance is

formulated as )
= ( inf /|X— )dX> (1)

M: the set of all maps that rearrange the distribution f into g.

The commonly used cases include p =1and p = 2.

Properties of I/, as the loss function
(1) Provide better optimization landscape for Nonlinear Inverse Problems:

0" = argmin W3(p(0), p*)
6

(2) Robust in Inversion with Noisy Data (equivalent to H~" norm) .



Recap: our approach from Lagrangian view to Eulerian perspective

{z(te) i _
SINDy!  Shooting methods? Neural ODEs?

* Noise blows up divided difference
* Slow sampling makes divided difference inaccurate
* Unable to distinguish small modeling errors from chaos

i Data Forward Model Objective Function
1 1 . *
i pri=—= Z 5:t(tk) 0 — ,0(9) Iglelél j(p(0)7 P )

"Brunton, S. L, Proctor, . L, & Kutz, J. N. (2016). Discovering governing equations from data by sparse identification of nonlinear dynamical systems. Proceedings of the national academy of sciences, 113(15), 3932-3937.
2Michalik, C., Hannemann, R., & Marquardt, W. (2009). Incremental single shooting—a robust method for the estimation of parameters in dynamical systems. Computers ¢ Chemical Engineering, 33(7), 1298-1305.
3Chen, R. T, Rubanova, Y., Bettencourt, ., & Duvenaud, D. K. (2018). Neural ordinary differential cquations. Adsances in neural information processing systems, 31.
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Comparison with Other Methods

Ground Truth SINDy Neural ODE Our Method
4 t3 tE
] ty.-*
2 - t, />> /“\
> o t ¥
Nk tp X K
ty
-2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2 -2 -1 0 1 2
X X X X

|| Method  [Sampling Freq.|Wall-Clock Time (s)l Error | H Method  [Sampling Freq.|Wall-Clock Time (s)| Error ”

SINDy 10.00 2.102 5.6-1073 SINDy 0.25 102 3.52
Neural ODE 10.00 5102 5.32.1073 Neural ODE 0.25 5102 1.81
Ours 10.00 5-10? 1.14-107! Ours 0.25 5-10? 6.79-1072
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Application to Real-World Data: Hall-Effect Thruster

Embedded Cathode-Pearson Signal Modeled'VeIocity

Modeled Trajectory

My

@
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00
Cz(t) °% s

time = 0.00 time = 0.17 time = 0.33 time = 0.50

’ 0.000 14



Limitation: Nonuniqueness

Tup=p&Syp=p » T=S

Original: (a, B) = (m, 1V2) Original: (a, B) = (11, 2V2) Original: (a, B) = (m, 3V2) Original: (a, B) = (11, 4V2)

Delay: (a, B) = (11, 1V2) Delay: (a, B) = (1, 2V2) Delay: (a, B) = (11, 3V2) Delay: (a, B) = (1, 4V2)
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Invariant Measures in Time-Delay
Coordinates for Unique Dynamical
System Identification




Takens’ Embedding Theorem

Theorem (Takens, 1981)
Let M be a compact manifold of dimension m. For pairs (y,T), where T € C*(M, M) and y € C*(M,R),

it is a generic property that the mapping &, 1y : M — N C R**" given by
1 (X) = (y(X),¥(T(X)),...,¥(T*"(x))) is an embedding of M in R**".

16



Takens’ Embedding Theorem

Theorem (Takens, 1981)
Let M be a compact manifold of dimension m. For pairs (y,T), where T € C*(M, M) and y € C*(M,R),

it is a generic property that the mapping &, 1y : M — N C R**" given by
1 (X) = (y(X),¥(T(X)),...,¥(T*"(x))) is an embedding of M in R**".

16



Invariant Measures in Time-Delay Coordinates for Uniqueness

A ) One delay-coordinate m delay-coordinate
Invariant measure | (new coordinate)] “iyvariant measure |01 MHU)| nvariant measures
TH#up = ~(m+1) _ 1 (m+1) ~(m+1)\m
g by = Yy #1 g Yt
+ initial
condition
No uniqueness Conjugacy on supp(u) { Uniqueness on supp(u)
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Invariant Measures in Time-Delay Coordinates for Uniqueness

A ) One delay-coordinate m delay-coordinate
Invariant measure | (new coordinate)] “iyvariant measure |01 MHU)| nvariant measures
TH#Hu = u A(m+1) (m~+1) ~(m+1)\m
Ky \I/(J T) i (y:,T) Ji=1
+ initial

condition

No uniqueness Conjugacy on supp(u) { Uniqueness on supp(u)
Theorem 1. The equality 2 ’"“ = ((’”“ implies T|supp(,.) and S|supp(v) are topologically conjugate,

for almost every y € C'(U, R)

Theorem 2. The conditions below imply that T = S on supp(u), for a.e. Y € C'(U,R™):

1. there exists x* € B, r N supp(u), such that T*(x*) = S*(x*) for1 < k < m —1,and

2. uéﬁ}’ ﬂg,";; for1<j < m,whereY :=(yi,...,ym) is a vector-valued observable.
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Numerical Example

Ti(0) = D(Todtp™, T #p*),  Ja(8) = D(Totp®, T #u") + D(Wotp®, U™ "),

- Ground Truth Training Loss
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Embedding Over the Probability
Space P,(M)




Takens' Embedding Theorem (Again)

Theorem (Takens, 1981)
Let M be a compact manifold of dimension m. For pairs (y,T), where T € C*(M, M) and y € C*(M,R),

it is a generic property that the mapping &, 1y : M — N C R**" given by
1 (X) = (y(X),¥(T(X)),...,¥(T*"(x))) is an embedding of M in R**".
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Measure-Theoretic Embedding

« Challenges: Takens’ Theorem no longer applies when dynamics have noise.
« Can we lift the statement to the space of probability measures?
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Measure-Theoretic Embedding

« Challenges: Takens’ Theorem no longer applies when dynamics have noise.

« Can we lift the statement to the space of probability measures?
« If & : M — N is an embedding, is ®# : P(M) — P(N) also an embedding?

\v

Pointwise Embedding

Probabilistic Embedding

12 ot
p(t1) olta) s p(ts) tolts)

) l Es & D#p(ty) 1 o
W L H
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Measure-Theoretic Embedding

1. ® is injective
2. ® is smooth

3. Do is injective
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Measure-Theoretic Embedding

1. ® is injective 1. ®# is injective
2. ¢ is smooth 2. ®# is smooth
3. Do is injective 3. D(®#) is injective

Definition (Differentiability of operator P,(M) — P,(N))
A map V : P,(M) — P,(N) is differentiable if for all x € P,(M) there is a bounded

linear operator dV, : T,P,(M) — Ty, P=(N) s.t. for any differentiable curve
t — ut through g, the curve t — V() is differentiable with velocity v; and
AR AT
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Measure-Theoretic Embedding

Pointwise embedding (¢) Measure-theoretic embedding (+)
1. ® is injective 1. ®# is injective
2. ¢ is smooth 2. ®# is smooth
3. Do is injective 3. D(®#) is injective

Definition (Differentiability of operator P,(M) — P,(N))
A map V : P,(M) — P,(N) is differentiable if for all x € P,(M) there is a bounded

linear operator dV, : T,P,(M) — Ty, P=(N) s.t. for any differentiable curve

t — ut through g, the curve t — V() is differentiable with velocity v; and
d\ultt(vt) - %\U(:U't)'

Theorem (Our Main Result)

If ®: M — Nis an embedding between differentiable manifolds, then the map
®# : P,(M) — P,(N) is also an embedding.

21



Numerical Example

Lp(0) =5 2k 1% — Re(®(x))[5
——

pointwise loss

Ground Truth

0.25

0.40
X1

Lm(0)
——

measure-theoretic loss

Measure-Based Reconstruction

30
20

10

102
0 10 0 2010°Y

20 19

X

Measure-Based Reconstruction

0.70 0.40 0.25

X1

% i D, Ro#(DH)) -

Pointwise Reconstruction
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Conclusion




2¥
0z

ay.
ay

with the velocity components

DY_gy,,, &Y.
Drot tax W

of the fluid wy, wy.w;, gy 4 T 2
&
k’_:é&."‘ A
B “-_————% ————r
—_— B
o= o~
A~ T
T Ty e o
» o o W
o Vi, Y . S
(a) Lagrangian view (b) Eulerian view

[Bird-Stewart-Lightfoot, Transport Phenomena, 2002]
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Summaries

- From Lagrangian to Eulerian to tackle chaos (ODE = PDE problem)
+ Using optimal transport to study dynamical system

1. Invariant measure matching
2. Invariant measure in time-delay coordinate matching
3. Generalize pointwise embedding to measure-theoretic embedding
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Summaries

- From Lagrangian to Eulerian to tackle chaos (ODE = PDE problem)
+ Using optimal transport to study dynamical system

1. Invariant measure matching
2. Invariant measure in time-delay coordinate matching
3. Generalize pointwise embedding to measure-theoretic embedding

Outlook

There is great potential for using optimal transport in data-driven modeling of
dynamical systems.
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