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SOLVING IVP BY CONVEX MINIMIZATION

Solving initial value problems by convex minimization
is an old idea going back to the least square method
for linear equations.

For nonlinear systems there has
been many contributions, including Brezis-Ekeland,
Ghoussoub, Mielke-Stefanelli, Visintin, etc...
Recently, we introduced another approach, working for
systems of conservation laws with a convex entropy.
cf. Y.B. CMP 2018, followed by D. Vorotnikov arXiv:1905.060592.

It turns out that this method also applies to some
parabolic equations: porous medium, viscous
Hamilton-Jacobi and incompressible Navier-Stokes.
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I. The quadratic porous medium equation (QPME)

∂tu = ∆u2/2, u = u(t , x) ≥ 0, t ≥ 0, x ∈ Td ,

which is nothing but the macroscopic limit of the
properly rescaled (deterministic) system of particles:

dXk

dt
= ε−1

∑
j=1,N

(Xk − Xj) exp(−
|Xk − Xj |2

ε
),

u(t , x) ∼ 1
N

∑
j=1,N

δ(x − Xj(t)), 1/N << εd << 1.

cf. P.-L. Lions, S. Mas-Gallic 2001 and ...A. Figalli, R. Philipowski 2008 .
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A weird minimization problem.
We start with the rather absurd problem of minimizing
the time integral of the "entropy"∫

Q
u2(t , x)dxdt , Q = [0,T ]× Td ,

among weak solutions ot the QPME

∂tu = ∆u2/2, u = u(t , x) ∈ R, t ≥ 0, x ∈ Td .

with a given initial condition u0 ≥ 0 in L∞(Td).
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The saddle point formulation reads

I(u0) = inf
u

sup
φ

∫
Q

(
u2 − 2∂tφu −∆φ u2 + 2u0∂tφ

)
,

where the only constraints are:
i) for test function φ to be smooth and vanish at t = T ;
ii) for function u to be square integrable on Q.
This problem admits an interesting concave relaxation:

J(u0) = sup
φ

inf
u

∫
Q

(
u2 − 2∂tφu −∆φ u2 + 2u0∂tφ

)
.
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The relaxed problem is very simple

J(u0) = sup
φ

inf
u

∫
Q

(
u2 − 2∂tφu −∆φ u2 + 2u0∂tφ

)
=

sup
φ

∫
Q

(
− (∂tφ)2

1−∆φ
+ 2u0∂tφ

)
, ∆φ ≤ 1, φ(T , ·) = 0.

Setting q = ∂tφ, σ = 1−∆φ, we get: J(u0) =

sup
σ,q

∫
Q

(
−q2

σ
+ 2u0 q

)
, ∂tσ + ∆q = 0, σ(T , ·) = 1
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Interestingly enough, this optimisation problem

sup
σ,q

∫
Q

(
−q2

σ
+ 2u0 q

)
,

s.t.
∂tσ + ∆q = 0, σ(T , ·) = 1,

is (at least as d = 1) almost the same as the recent
formulation "à la Benamou-Brenier" proposed by
Huesmann and Trevisan for the time-discrete
martingale optimal transport problem.
(See also Ghoussoub-Kim.)
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Main result: there is no duality gap!

The proof relies on the Aronson-Bénilan estimate for
all solutions of the QPME ∆u ≥ −κ(d)/t

Let us try to find a solution φ to the concave
optimization problem just by solving the final VP

∂tφ = (1−∆φ)u, φ(T , ·) = 0,

i.e., for α = 1−∆φ : ∂tα + ∆(αu) = 0, α(T , ·) = 1.

From Aronson-Bénilan, we deduce α(t , x) ≥ (t/T )κ.
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Proof. (Assuming u to be smooth) we have

∂tα + ∆(αu) = ∂tα + u∆α + 2∇α · ∇u + α∆u = 0.

Thanks to AB, we get for A(t) = infx∈Td α(t , x)

A′(t) ≤ κA(t)/t .

So, log A(T )− log A(t) ≤ κ(log T − log t), and therefore

A(t) ≥ (t/T )κ (since A(T ) = 1). End of proof.
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Optimality of φ. Let us now evaluate

j =

∫
Q

(
− (∂tφ)2

1−∆φ
+ 2u0∂tφ

)
.

Since u solves the QPME with initial condition u0,

we have
∫

Q

(
2∂tφu + ∆φu2 − 2∂tφu0

)
= 0. Thus

j =

∫
Q

(
− (∂tφ)2

1−∆φ
+ 2u∂tφ + ∆φu2

)
=

∫
Q

u2

(using ∂tφ = (1−∆φ)u ) which shows that φ is
optimal since J(u0) ≥ j =

∫
Q u2 ≥ I(u0) ≥ J(u0).
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II. The viscous Hamilton-Jacobi equation

∂tφ+
1
2
|∇φ|2 = ε∆φ = 0, on Q = [0,T ]× D, D = Td , φ(0, ·) = φ0.

Minimize
∫

Q |B|
2 among all weak solutions of

∂tB +∇(
|B|2

2
− ε∇ · B) = 0, B(0, ·) = B0 = ∇φ0.

The concave dual problem turns out to be:

inf
ρ,q

∫
Q

q · B0 +
|q − ε∇ρ|2

2ρ

where the fields ρ ≥ 0, q ∈ Rd are constrained by

∂tρ +∇ · q = 0, ρ(T , ·) = 1.
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Here again, there is no duality gap!
Note that the resulting problem can also be written

inf
ρ,q

∫
Q

|q|2 + ε2|∇ρ|2

2ρ

+

∫
D
ρ(0, ·)(ε log ρ(0, ·) + φ0), s.t. ∂tρ+∇ · q = 0, ρ(T , ·) = 1,

i.e. as a variant of the "Schrödinger problem",
a noisy version of the optimal transport problem with quadratic cost, intensively studied

in the recent years, after Ch. Léonard, e.g. in the CNRS-INRIA MOKAPLAN team

(mostly for numerical purposes), and very recently by A. Baradat, and L. Monsaingeon.
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III. Navier-Stokes equation

Now, we minimize
∫

Q |v |
2 among all weak solutions of

∂tv +∇ · (v ⊗ v) +∇p = ε∆v , ∇ · v = 0, v(0, ·) = v0,

and get by duality the convex minimization problem:

inf
M,q

∫
Q

(q − ε∇ ·M) ·M−1 · (q − ε∇ ·M)− 2q · v0

where Q = [0,T ]× Td , the matrix-valued field
M = MT ≥ 0 and the vector field q being subject to

∂tM +∇q +∇qT = 2D2∆−1∇ · q, M(T , ·) = Id .
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Few remarks

1) The Schrödinger problem (1931) is closely related
to the Schrödinger equation (1925), which can be
solved by looking at critical points (ρ,q) of the
following action (featuring a crucial change of sign):∫

Q

|q|2−|∇ρ|2

2ρ
s.t. ∂tρ +∇ · q = 0,

through the Madelung transform (1926):

ψ =
√
ρ eiθ, q = ρ∇θ.
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Few remarks (continued)
2) The optimization problem we obtained from the NS
equations can be seen as a (very special) example of
a matrix-valued Optimal Transport problem (*), for
which we may refer to a collection of works by Tryphon
Georgiou and coll., and a recent paper by Y.B. and
Dmitry Vorotnikov (SIMA 2020).
(*) due to the special structure of its time-boundary conditions, the NS optimization

problem more precisely corresponds to a matrix-valued Mean-Field Game problem.
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Few remarks (continued)
3) In the NS optimization problem features a
matrix-valued "Fisher information"

(∇ ·M) ·M−1 · (∇ ·M), M = MT ≥ 0,

very roughly similar to the 4D-Einstein action (*)

(Γm
ij g ij Γk

km − Γm
ik g ij Γk

jm)
√
−det g

where gij is Lorentzian of inverse g ij and connection

Γi
jk = g im(∂jgkm + ∂kgjm − ∂mgkj)/2.

* Note that General Relativity has been recently related to Optimal Transportation

(in particular by R. McCann arXiv:1808.01536, A. Mondino, S. Suhr arXiv:1810.13309).
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Let us finish with the inviscid Burgers equation

In that case, the concave maximization problem reads

sup
(ρ,q)
{
∫
[0,T ]×T

−q2

2ρ
− qu0 | ∂tρ + ∂xq = 0, ρ(T , ·) = 1}.

As shown in CMP 2018, for arbitrarily large T , we
recover, through this problem, the correct "entropy
solution" à la Kruzhkov, but only at time T and
(surprisingly enough) not for t < T , once shocks form!
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’fort.10’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Formation of two shock waves. (Vertical axis: t ∈ [0,1/4], horizontal axis: x ∈ T.)
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’fort.19’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Recovery of the solution at time T=0.1 by convex optimization.

Observe the formation of a first vacuum zone as the first shock has formed.
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’fort.24’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Recovery of the solution at time T=0.16 by convex optimisation.

Observe the formation of a second vacuum zone as the second shock has formed.

YB (CNRS/DMA-ENS, Paris.) IVP and matrix-valued OT PIMS 29 Jan 2021 20 / 21



 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.2  0.4  0.6  0.8  1

’fort.29’

Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Recovery of the solution at time T=0.225 by convex optimisation.

Observe the extension of the two vacuum zones.

THANKS FOR YOUR ATTENTION!
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IV. Entropic systems of conservation laws

∂tU +∇ · (F (U)) = 0, U = U(t , x) ∈ W ⊂ Rm, x ∈ Td ,

involve a strictly convex "entropy" E :W → R (where
W is convex) and an "entropy flux" Z ∈ W → Rd , such
that each smooth solution U satisfies the extra
conservation law ∂t(E(U)) +∇ · (Z(U)) = 0.

A typical example is the (barotropic) Euler system, where U = (ρ, q) ∈ R+ × Rd ,

with entropy E(ρ, q) = |q|2
2ρ + Φ(ρ) and pressure p(ρ) =

∫ ρ
0 sΦ”(s)ds.
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Inviscid Burgers equation : ∂tu + ∂x(u2/2) = 0, u = u(t , x), x ∈ R/Z, t ≥ 0.
Formation of two shock waves. (Vertical axis: t ∈ [0,1/4], horizontal axis: x ∈ T.)
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Minimization approach to the IVP

Given U0 on D = Td and T > 0, minimize the total
entropy among all weak solutions U of the IVP:

inf
U

∫ T

0

∫
D
E(U), U = U(t , x) ∈ W ⊂ Rm subject to

∫ T

0

∫
D
∂tA · U +∇A · F (U) +

∫
D

A(0, ·) · U0 = 0

for all smooth A = A(t , x) ∈ Rm with A(T , ·) = 0.

The problem is not trivial since there may be many weak solutions starting from U0

which are not entropy-preserving (by "convex integration" à la De Lellis-Székelyhidi).
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The resulting dual convex optimization problem

sup
A(T ,·)=0

inf
U

∫ T

0

∫
D
E(U)− ∂tA · U −∇A · F (U)−

∫
D

A(0, ·) · U0

= sup
A(T ,·)=0

∫ T

0

∫
D
−G(∂tA,∇A)−

∫
D

A(0, ·) · U0,

where G(E ,B) = sup
V∈W⊂Rm

E · V + B · F (V )− E(V ),

for all (E ,B) ∈ Rm × Rd×m.

Observe that G is automatically convex.
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Main results (Y.B. CMP 2018)

Theorem 1: If U is a smooth solution to the IVP and T
is not too large (*), then U can be recovered from the
concave maximization problem which admits
A(t , x) = (t − T )E ′(U(t , x)) as solution.

Theorem 2: For the Burgers equation, all entropy
solutions can be recovered, for arbitrarily large T .

(*) more precisely if, ∀ t , x ,V ∈ W, E”(V )− (T − t)F”(V ) · ∇(E ′(U(t , x))) > 0.
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Example: the isothermal Euler equations (p = ρ)

In that case, we end up with the minimization of∫
[0,T ]×D

exp(u) exp(
1
2

Q ·M−1 ·Q) +

∫
D
σ0ρ0 + w0 · q0,

among all fields u = u(t , x) ∈ R, Q = Q(t , x) ∈ Rd ,
M = M(t , x) = M t(t , x) ∈ Rd×d , M ≥ 0, obeying
the challenging structural linear constraints

u = ∂tσ + ∂ iwi , Qi = ∂twi + ∂iσ, Mij = δij − ∂iwj − ∂jwi ,

where σ and w must vanish at t = T .
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