Deep kernel-based distances between distributions

Danica J. Sutherland

Michael Arbel Arthur Gretton Aaditya Ramdas Hsiao-Yu (Fish) Tung Based on work with: Mikołaj Bińkowski Feng Liu Alex Smola Wenkai Xu

Soumyajit De Jie Lu Heiko Strathmann Guangquan Zhang

 ${\cal D}$

PIHOT kick-off, 30 Jan 2021

• Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^{\mathsf{T}}\left(x,1
ight)$

• Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}\left(x,1
ight)$

• Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}\left(x,1
ight)$

- Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}(x,1)$
- Use a "richer" *x*:

$$f(x) = w^{\mathsf{T}}\left(x, x^2, 1
ight) = w^{\mathsf{T}}\phi(x)$$

- Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}(x,1)$
- Use a "richer" *x*:

$$f(x) = w^{\mathsf{T}}\left(x, x^2, 1
ight) = w^{\mathsf{T}}\phi(x)$$

- Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}(x,1)$
- Use a "richer" *x*:

$$f(x) = w^{\mathsf{T}}\left(x, x^2, 1
ight) = w^{\mathsf{T}}\phi(x)$$

- Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}\left(x,1
 ight)$
- Use a "richer" *x*:

$$f(x) = w^{\mathsf{T}}\left(x, x^2, 1
ight) = w^{\mathsf{T}}\phi(x)$$

- Can avoid explicit $\phi(x)$; instead $k(x,y) = \langle \phi(x), \phi(y)
angle_{\mathcal{H}}$

- Linear classifiers: $\hat{y}(x) = \mathrm{sign}(f(x))$, $f(x) = w^\mathsf{T}\left(x,1
 ight)$
- Use a "richer" *x*:

$$f(x) = w^{\mathsf{T}}\left(x, x^2, 1
ight) = w^{\mathsf{T}}\phi(x)$$

- Can avoid explicit $\phi(x)$; instead $k(x,y) = \langle \phi(x), \phi(y)
 angle_{\mathcal{H}}$
- "Kernelized" algorithms access data only through k(x,y)

$$f(x) = \langle w, \phi(x)
angle_{\mathcal{H}} = \sum_{i=1}^n lpha_i k(X_i, x)$$

• Ex: Gaussian RBF

$$k(x,y) = \exp\left(-rac{\|x-y\|^2}{2\sigma^2}
ight)$$

• Ex: Gaussian RBF

$$k(x,y) = \exp\left(-rac{\|x-y\|^2}{2\sigma^2}
ight)$$

$$k(x,y) = \exp \left(-rac{\left\| x - y
ight\|^2}{2\sigma^2}
ight)$$

• Ex: Gaussian RBF / exponentiated quadratic / squared exponential / ...

$$k(x,y) = \exp \left(-rac{\|x-y\|^2}{2\sigma^2}
ight)$$

- Reproducing property: $\langle f, \phi(x)
angle_{\mathcal{H}} = f(x)$ for $f \in \mathcal{H}$

$$k(x,y) = \exp \left(-rac{\|x-y\|^2}{2\sigma^2}
ight)$$

- Reproducing property: $\langle f, \phi(x)
 angle_{\mathcal{H}} = f(x)$ for $f \in \mathcal{H}$
- $\mathcal{H} = \operatorname{cl}(\{\sum_{i=1}^n lpha_i \phi(X_i) \mid n \geq 0, lpha \in \mathbb{R}^n, X_i \in \mathcal{X}\})$

$$k(x,y) = \exp \left(-rac{\|x-y\|^2}{2\sigma^2}
ight)$$

- Reproducing property: $\langle f, \phi(x)
 angle_{\mathcal{H}} = f(x)$ for $f \in \mathcal{H}$
- $\mathcal{H} = \operatorname{cl}(\{\sum_{i=1}^n lpha_i \phi(X_i) \mid n \geq 0, lpha \in \mathbb{R}^n, X_i \in \mathcal{X}\})$

$$k(x,y) = \exp \left(-rac{\|x-y\|^2}{2\sigma^2}
ight)$$

- Reproducing property: $\langle f, \phi(x)
 angle_{\mathcal{H}} = f(x)$ for $f \in \mathcal{H}$
- $\mathcal{H} = \operatorname{cl}(\{\sum_{i=1}^n lpha_i \phi(X_i) \mid n \geq 0, lpha \in \mathbb{R}^n, X_i \in \mathcal{X}\})$

$$k(x,y) = \exp \left(-rac{\|x-y\|^2}{2\sigma^2}
ight)$$

- Reproducing property: $\langle f, \phi(x)
 angle_{\mathcal{H}} = f(x)$ for $f \in \mathcal{H}$
- $\mathcal{H} = \operatorname{cl}(\{\sum_{i=1}^n lpha_i \phi(X_i) \mid n \geq 0, lpha \in \mathbb{R}^n, X_i \in \mathcal{X}\})$

$$k(x,y) = \exp \left(-rac{\|x-y\|^2}{2\sigma^2}
ight)$$

- Reproducing property: $\langle f, \phi(x)
 angle_{\mathcal{H}} = f(x)$ for $f \in \mathcal{H}$
- $\mathcal{H} = \operatorname{cl}(\{\sum_{i=1}^n lpha_i \phi(X_i) \mid n \geq 0, lpha \in \mathbb{R}^n, X_i \in \mathcal{X}\})$
- $\left\|\sum_i lpha_i \phi(X_i)
 ight\|_{\mathcal{H}}^2 = lpha^\mathsf{T} K lpha$, where $K_{ij} = k(X_i, X_j)$

$$k(x,y) = \exp \left(-rac{\|x-y\|^2}{2\sigma^2}
ight)$$

- Reproducing property: $\langle f, \phi(x)
 angle_{\mathcal{H}} = f(x)$ for $f \in \mathcal{H}$
- $\mathcal{H} = \operatorname{cl}(\{\sum_{i=1}^n lpha_i \phi(X_i) \mid n \geq 0, lpha \in \mathbb{R}^n, X_i \in \mathcal{X}\})$
- $\left\|\sum_i lpha_i \phi(X_i)
 ight\|_{\mathcal{H}}^2 = lpha^\mathsf{T} K lpha$, where $K_{ij} = k(X_i, X_j)$
- $\operatorname{argmin}_{f \in \mathcal{H}} L(f(X_1), \dots, f(X_n)) + \lambda \|f\|_{\mathcal{H}}^2$ is in $\{\sum_{i=1}^n \alpha_i \phi(X_i) \mid \alpha \in \mathbb{R}^n\}$ – the representer theorem

$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathop{\mathbb{E}}\limits_{X \sim \mathbb{P}} [f(X)] - \mathop{\mathbb{E}}\limits_{Y \sim \mathbb{Q}} [f(Y)]$

$egin{aligned} \mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[f(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}_{X \sim \mathbb{P}}[\langle f, arphi(X) angle_{\mathcal{H}}] - \mathbb{E}_{Y \sim \mathbb{Q}}[\langle f, arphi(Y) angle_{\mathcal{H}}] \end{aligned}$

 $egin{aligned} \mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}\left[f(X)
ight] - \mathbb{E}\left[f(Y)
ight] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}\left[\langle f, arphi(X)
angle_{\mathcal{H}}
ight] - \mathbb{E}\left[\langle f, arphi(Y)
angle_{\mathcal{H}}
ight] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mathbb{E}\left[arphi(X)
ight] - \mathbb{E}\left[arphi(X)
ight] - \mathbb{E}\left[arphi(Y)
ight]
angle_{\mathcal{H}} \end{aligned}$

$$egin{aligned} \mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \sup_{X \sim \mathbb{P}} \mathbb{E}\left[f(X)
ight] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}\left[\langle f, arphi(X)
angle_{\mathcal{H}}
ight] - \mathbb{E}_{Y \sim \mathbb{Q}}[\langle f, arphi(Y)
angle_{\mathcal{H}}
ight] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mathbb{E}_{X \sim \mathbb{P}}[arphi(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[arphi(Y)]
ight
angle_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mu_{\mathbb{P}}^k - \mu_{\mathbb{Q}}^k
ight
angle_{\mathcal{H}} \end{aligned}$$

$$egin{aligned} \mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \sup_{X \sim \mathbb{P}} \mathbb{E}\left[f(X)
ight] - \mathbb{E}_{Y \sim \mathbb{Q}}[f(Y)] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \mathbb{E}\left[\langle f, arphi(X)
angle_{\mathcal{H}}
ight] - \mathbb{E}_{Y \sim \mathbb{Q}}[\langle f, arphi(Y)
angle_{\mathcal{H}}
ight] \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mathbb{E}_{X \sim \mathbb{P}}[arphi(X)] - \mathbb{E}_{Y \sim \mathbb{Q}}[arphi(Y)]
ight
angle_{\mathcal{H}} \ &= \sup_{\|f\|_{\mathcal{H}} \leq 1} \left\langle f, \mu_{\mathbb{P}}^k - \mu_{\mathbb{Q}}^k
ight
angle_{\mathcal{H}} = \left\|\mu_{\mathbb{P}}^k - \mu_{\mathbb{Q}}^k
ight\|_{\mathcal{H}} \end{aligned}$$

MMD as feature matching

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \left\| \mathop{\mathbb{E}}_{X\sim\mathbb{P}}[arphi(X)] - \mathop{\mathbb{E}}_{Y\sim\mathbb{Q}}[arphi(Y)]
ight\|_{\mathcal{H}}$$

. .

• $arphi: X o \mathcal{H}$ is the *feature map* for $k(x,y) = \langle arphi(x), arphi(y)
angle$

MMD as feature matching

...

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \left\| \mathop{\mathbb{E}}_{X\sim\mathbb{P}}[arphi(X)] - \mathop{\mathbb{E}}_{Y\sim\mathbb{Q}}[arphi(Y)]
ight\|_{\mathcal{H}}$$

. .

- $arphi: X o \mathcal{H}$ is the *feature map* for $k(x,y) = \langle arphi(x), arphi(y)
 angle$
- If $k(x,y) = x^{\mathsf{T}}y$, $\varphi(x) = x$; MMD is distance between means

MMD as feature matching

$$\mathrm{MMD}_k(\mathbb{P},\mathbb{Q}) = \left\| \mathop{\mathbb{E}}_{X\sim\mathbb{P}}[arphi(X)] - \mathop{\mathbb{E}}_{Y\sim\mathbb{Q}}[arphi(Y)]
ight\|_{\mathcal{H}}$$

- $arphi: X o \mathcal{H}$ is the *feature map* for $k(x,y) = \langle arphi(x), arphi(y)
 angle$
- If $k(x,y) = x^{\mathsf{T}}y$, $\varphi(x) = x$; MMD is distance between means
- Many kernels: infinite-dimensional ${\cal H}$

MMD and OT

 $\mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) = \mathop{\mathbb{E}}_{X,X'\sim\mathbb{P}}[k(X,X')] + \mathop{\mathbb{E}}_{Y,Y'\sim\mathbb{Q}}[k(Y,Y')] - 2\mathop{\mathbb{E}}_{\substack{X\sim\mathbb{P}}{Y\sim\mathbb{Q}}}[k(X,Y)]$

$$\mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) = \mathop{\mathbb{E}}_{X,X'\sim\mathbb{P}}[k(X,X')] + \mathop{\mathbb{E}}_{Y,Y'\sim\mathbb{Q}}[k(Y,Y')] - 2 \mathop{\mathbb{E}}_{\substack{X\sim\mathbb{P}} Y\sim\mathbb{Q}}[k(X,Y)]$$

 $\widehat{\mathrm{MMD}}_k^2(X, Y) = \mathrm{mean}(K_{XX}) + \mathrm{mean}(K_{YY}) - 2 \mathrm{mean}(K_{XY})$

$$\mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) = \mathop{\mathbb{E}}_{X,X'\sim\mathbb{P}}[k(X,X')] + \mathop{\mathbb{E}}_{Y,Y'\sim\mathbb{Q}}[k(Y,Y')] - 2\mathop{\mathbb{E}}_{\substack{X\sim\mathbb{P}\\Y\sim\mathbb{Q}}}[k(X,Y)]$$

 $\widehat{\mathrm{MMD}}_k^{2}(X,Y) = \mathrm{mean}(K_{XX}) + \mathrm{mean}(K_{YY}) - 2 \mathrm{mean}(K_{XY})$

K_{XX}

$$\mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) = \mathop{\mathbb{E}}_{X,X'\sim\mathbb{P}}[k(X,X')] + \mathop{\mathbb{E}}_{Y,Y'\sim\mathbb{Q}}[k(Y,Y')] - 2\mathop{\mathbb{E}}_{\substack{X\sim\mathbb{P}\\Y\sim\mathbb{Q}}}[k(X,Y)]$$

 $\widetilde{\mathrm{MMD}}_{k}(X,Y) = \mathrm{mean}(K_{XX}) + \mathrm{mean}(K_{YY}) - 2 \mathrm{mean}(K_{XY})$

 K_{XX}

$$K_{YY}$$

1.0	0.2	0.6	, <u>(</u> , , , , , , , , , , , , , , , , , , ,	1.0	0.8	0.7
0.2	1.0	0.5	·(~~~~),	0.8	1.0	0.6
0.6	0.5	1.0	(<u>())</u>	0.7	0.6	1.0

$$egin{aligned} \mathrm{MMD}_k^2(\mathbb{P},\mathbb{Q}) &= \mathop{\mathbb{E}}_{X,X'\sim\mathbb{P}}[k(X,X')] + \mathop{\mathbb{E}}_{Y,Y'\sim\mathbb{Q}}[k(Y,Y')] - 2 \mathop{\mathbb{E}}_{\substack{X\sim\mathbb{P}\\Y\sim\mathbb{Q}}}[k(X,Y)] \ & \widehat{\mathrm{MMD}}_k^2(X,Y) = \mathrm{mean}(K_{XX}) + \mathrm{mean}(K_{YY}) - 2 \mathop{\mathrm{mean}}(K_{XY}) \end{aligned}$$

	1.0	0.2	0.6	1.0	0.8	0.7	(<u>`````````</u>);	0.3	0.1	0.2
- Z	0.2	1.0	0.5	.8	1.0	0.6		0.2	0.3	0.3
	0.6	0.5	1.0	0.7	0.6	1.0		0.2	0.1	0.4

I: Two-sample testing

• Given samples from two unknown distributions

 $X \sim \mathbb{P}$ $Y \sim \mathbb{Q}$

• Question: is $\mathbb{P} = \mathbb{Q}$?

I: Two-sample testing

• Given samples from two unknown distributions

 $X \sim \mathbb{P} \qquad Y \sim \mathbb{O}$ • Do smokers/non-smokers get different cancers?

I: Two-sample testing

• Given samples from two unknown distributions

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
• Given samples from two unknown distributions

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?

- Given samples from two unknown distributions
 - $X \sim \mathbb{P}$ $Y \sim \mathbb{O}$
- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?

• Given samples from two unknown distributions

 $X \sim \mathbb{P} \qquad Y \sim \mathbb{O}$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [MMDiff2]

• Given samples from two unknown distributions

 $X \sim \mathbb{P} \qquad Y \sim \mathbb{O}$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [MMDiff2]
- Do these dob and birthday columns mean the same thing?

• Given samples from two unknown distributions

 $X \sim \mathbb{P} \qquad Y \sim \mathbb{O}$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [MMDiff2]
- Do these dob and birthday columns mean the same thing?
- Does my generative model \mathbb{Q}_{θ} match \mathbb{P}_{data} ?

• Given samples from two unknown distributions

 $X \sim \mathbb{P} \qquad Y \sim \mathbb{Q}$

- Do smokers/non-smokers get different cancers?
- Do Brits have the same friend network types as Americans?
- When does my laser agree with the one on Mars?
- Are storms in the 2000s different from storms in the 1800s?
- Does presence of this protein affect DNA binding? [MMDiff2]
- Do these dob and birthday columns mean the same thing?
- Does my generative model \mathbb{Q}_{θ} match \mathbb{P}_{data} ?
- Independence testing: is P(X, Y) = P(X)P(Y)?

• Given samples from two unknown distributions

 $X \sim \mathbb{P}$ $Y \sim \mathbb{Q}$

• Question: is $\mathbb{P} = \mathbb{Q}$?

• Given samples from two unknown distributions

 $X \sim \mathbb{P}$ $Y \sim \mathbb{Q}$

- Question: is $\mathbb{P} = \mathbb{Q}$?
- Hypothesis testing approach:

$$H_0:\mathbb{P}=\mathbb{Q} \qquad H_1:\mathbb{P}
eq \mathbb{Q}$$

• Given samples from two unknown distributions

 $X \sim \mathbb{P}$ $Y \sim \mathbb{Q}$

- Question: is $\mathbb{P} = \mathbb{Q}$?
- Hypothesis testing approach:

$$H_0: \mathbb{P} = \mathbb{Q} \qquad H_1: \mathbb{P} \neq \mathbb{Q}$$

- Reject H_0 if test statistic $\hat{T}(X,Y)>c_lpha$

 $\begin{array}{l} \text{Permutation testing to find } c_{\alpha} \\ & \text{Need } \Pr_{H_0} \left(T(X,Y) > c_{\alpha} \right) \leq \alpha \\ X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \qquad Y_1 \quad Y_2 \quad Y_3 \quad Y_4 \quad Y_5 \\ c_{\alpha} : 1 - \alpha \text{th quantile of } \left\{ \begin{array}{ccc} & & \end{array} \right\} \end{array}$

$\begin{array}{l} \text{Permutation testing to find } c_{\alpha} \\ \text{Need } \Pr_{H_0} \left(T(X,Y) > c_{\alpha} \right) \leq \alpha \\ \hline X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad Y_1 \quad Y_2 \quad Y_3 \quad Y_4 \quad Y_5 \\ c_{\alpha} \colon 1 - \alpha \text{th quantile of } \left\{ \hat{T}(\tilde{X}_1, \tilde{Y}_1), \ \hat{T}(\tilde{X}_2, \tilde{Y}_2), \quad \right\} \end{array}$

 $\begin{array}{l} \text{Permutation testing to find } c_{\alpha} \\ \text{Need } \Pr_{H_0} \left(T(X,Y) > c_{\alpha} \right) \leq \alpha \\ X_1 \quad X_2 \quad X_3 \quad X_4 \quad X_5 \quad Y_1 \quad Y_2 \quad Y_3 \quad Y_4 \quad Y_5 \\ c_{\alpha} : 1 - \alpha \text{th quantile of } \left\{ \hat{T}(\tilde{X}_1,\tilde{Y}_1), \ \hat{T}(\tilde{X}_2,\tilde{Y}_2), \ \cdots \right\} \end{array}$

- If k is characteristic, $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- Efficient permutation testing for $\widehat{\mathrm{MMD}}(X,Y)$

- If k is characteristic, $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- Efficient permutation testing for $\widehat{\mathrm{MMD}}(X,Y)$
 - $H_0: n \widehat{\mathrm{MMD}}^2$ converges in distribution
 - $H_1: \sqrt{n}(\widehat{\mathrm{MMD}}^2 \mathrm{MMD}^2)$ asymptotically normal

- If k is characteristic, $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- Efficient permutation testing for $\widehat{\mathrm{MMD}}(X,Y)$
 - $H_0: n\widehat{\mathrm{MMD}}^2$ converges in distribution
 - $H_1: \sqrt{n}(\widehat{\mathrm{MMD}}^2 \mathrm{MMD}^2)$ asymptotically normal
- Any characteristic kernel gives consistent test

- If k is characteristic, $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- Efficient permutation testing for $\widehat{\mathrm{MMD}}(X,Y)$
 - $H_0: n\widehat{\mathrm{MMD}}^2$ converges in distribution
 - $H_1: \sqrt{n}(\widehat{\mathrm{MMD}}^2 \mathrm{MMD}^2)$ asymptotically normal
- Any characteristic kernel gives consistent test...eventually

- If k is characteristic, $\mathrm{MMD}(\mathbb{P},\mathbb{Q})=0$ iff $\mathbb{P}=\mathbb{Q}$
- Efficient permutation testing for $\widehat{\mathrm{MMD}}(X,Y)$
 - $H_0: n\widehat{\mathrm{MMD}}^2$ converges in distribution
 - $H_1: \sqrt{n}(\widehat{\mathrm{MMD}}^2 \mathrm{MMD}^2)$ asymptotically normal
- Any characteristic kernel gives consistent test...eventually
- Need enormous $oldsymbol{n}$ if kernel is bad for problem

Classifier two-sample tests

- $\hat{T}(X, Y)$ is the accuracy of f on the test set
- Under H_0 , classification impossible: $\hat{T} \sim \mathrm{Binomial}(n, rac{1}{2})$

Classifier two-sample tests

- $\hat{T}(X, Y)$ is the accuracy of f on the test set
- Under H_0 , classification impossible: $\hat{T} \sim \mathrm{Binomial}(n, rac{1}{2})$
- With $k(x,y)=rac{1}{4}f(x)f(y)$ where $f(x)\in\{-1,1\}$, get $\widehat{\mathrm{MMD}}(X,Y)=\left|\hat{T}(X,Y)-rac{1}{2}
 ight|$

Optimizing test power

• Asymptotics of $\widehat{\mathrm{MMD}}^2$ give us immediately that

$$\Pr_{H_1}\left(n\widehat{ ext{MMD}}^2 > c_lpha
ight) pprox \Phi\left(rac{\sqrt{n}\, ext{MMD}^2}{\sigma_{H_1}} - rac{c_lpha}{\sqrt{n}\sigma_{H_1}}
ight)$$

 MMD , σ_{H_1} , c_lpha are constants: first term dominates

Optimizing test power

• Asymptotics of $\widehat{\mathrm{MMD}}^2$ give us immediately that

$$\Pr_{H_1}\left(n\widehat{ ext{MMD}}^2 > c_lpha
ight) pprox \Phi\left(rac{\sqrt{n}\, ext{MMD}^2}{\sigma_{H_1}} - rac{c_lpha}{\sqrt{n}\sigma_{H_1}}
ight)$$

 MMD , σ_{H_1} , c_lpha are constants: first term dominates

- Pick k to maximize an estimate of $\mathrm{MMD}^2 \, / \sigma_{H_1}$

Optimizing test power

• Asymptotics of $\widehat{\mathrm{MMD}}^2$ give us immediately that

$$\Pr_{H_1}\left(n\widehat{ ext{MMD}}^2 > c_lpha
ight) pprox \Phi\left(rac{\sqrt{n}\, ext{MMD}^2}{\sigma_{H_1}} - rac{c_lpha}{\sqrt{n}\sigma_{H_1}}
ight)$$

 MMD , σ_{H_1} , c_lpha are constants: first term dominates

- Pick k to maximize an estimate of $\mathrm{MMD}^2 \, / \sigma_{H_1}$
- Can show uniform $\mathcal{O}_P(n^{-rac{1}{3}})$ convergence of estimator

Blobs dataset

Blobs kernels

Blobs results

CIFAR-10 vs CIFAR-10.1

Train on 1 000, test on 1 031, repeat 10 times. Rejection rates:

ΜΕ	SCF	C2ST	MMD-O	MMD-D
0.588	0.171	0.452	0.316	0.744

Ablation vs classifier-based tests

	Cross-entropy			Max power		
Dataset	Sign	Lin	Ours	Sign	Lin	Ours
Blob	0.84	0.94	0.90	_	0.95	0.99
High- d Gauss. mix.	0.47	0.59	0.29	_	0.64	0.66
Higgs	0.26	0.40	0.35	_	0.30	0.40
MNIST vs GAN	0.65	0.71	0.80	_	0.94	1.00

II: Training implicit generative models

Given samples from a distribution \mathbb{P} over \mathcal{X} , we want a model that can produce new samples from $\mathbb{Q}_{\theta} \approx \mathbb{P}$

 $X\sim \mathbb{P}$

II: Training implicit generative models

we want

 $\mathbb{P}_{\theta} \approx \mathbb{P}$

thispersondoesnotexist.com
II: Training implicit generative models

Given samples from a distribution \mathbb{P} over \mathcal{X} , we want a model that can produce new samples from $\mathbb{Q}_{\theta} \approx \mathbb{P}$

Generator networks

Fixed distribution of latents: $Z\sim ext{Uniform}\left([-1,1]^{100}
ight)$ Maps through a network: $G_{ heta}(Z)\sim \mathbb{Q}_{ heta}$

DCGAN generator [Radford+ ICLR-16]

Generator networks

Fixed distribution of latents: $Z\sim ext{Uniform}\left([-1,1]^{100}
ight)$ Maps through a network: $G_{ heta}(Z)\sim \mathbb{Q}_{ heta}$

DCGAN generator [Radford+ ICLR-16] How to choose θ ?

- GANs [Goodfellow+ NeurIPS-14] minimize discriminator accuracy (like classifier test) between \mathbb{P} and \mathbb{Q}_{θ}
- Problem: if there's a perfect classifier, discontinuous loss, no gradient to improve it [Arjovsky/Bottou ICLR-17]
- Disjoint at init:

- GANs [Goodfellow+ NeurIPS-14] minimize discriminator accuracy (like classifier test) between \mathbb{P} and \mathbb{Q}_{θ}
- Problem: if there's a perfect classifier, discontinuous loss, no gradient to improve it [Arjovsky/Bottou ICLR-17]
- Disjoint at init:

• For usual $G_ heta: \mathbb{R}^{100} o \mathbb{R}^{64 imes 64 imes 3}$, $\mathbb{Q}_ heta$ is supported on a countable union of manifolds with dim ≤ 100

- GANs [Goodfellow+ NeurIPS-14] minimize discriminator accuracy (like classifier test) between \mathbb{P} and \mathbb{Q}_{θ}
- Problem: if there's a perfect classifier, discontinuous loss, no gradient to improve it [Arjovsky/Bottou ICLR-17]
- Disjoint at init:

- For usual $G_ heta: \mathbb{R}^{100} o \mathbb{R}^{64 imes 64 imes 3}$, $\mathbb{Q}_ heta$ is supported on a countable union of manifolds with dim ≤ 100
- "Natural image manifold" usually considered low-dim

- GANs [Goodfellow+ NeurIPS-14] minimize discriminator accuracy (like classifier test) between \mathbb{P} and \mathbb{Q}_{θ}
- Problem: if there's a perfect classifier, discontinuous loss, no gradient to improve it [Arjovsky/Bottou ICLR-17]
- Disjoint at init:

- For usual $G_ heta: \mathbb{R}^{100} o \mathbb{R}^{64 imes 64 imes 3}$, $\mathbb{Q}_ heta$ is supported on a countable union of manifolds with dim ≤ 100
- "Natural image manifold" usually considered low-dim
- Won't align at init, so won't ever align

- Integral probability metrics with "smooth" ${\mathcal F}$ are continuous
- WGAN: ${\mathcal F}$ a set of neural networks satisfying $\|f\|_L \leq 1$
- WGAN-GP: instead penalize $\mathbb{E} \|
 abla_x f(x) \|$ near the data

- Integral probability metrics with "smooth" ${\mathcal F}$ are continuous
- WGAN: ${\mathcal F}$ a set of neural networks satisfying $\|f\|_L \leq 1$
- WGAN-GP: instead penalize $\mathbb{E} \|
 abla_x f(x) \|$ near the data
- Both losses are MMD with $k_\psi(x,y)=\phi_\psi(x)\phi_\psi(y)$

- Integral probability metrics with "smooth" ${\mathcal F}$ are continuous
- WGAN: ${\mathcal F}$ a set of neural networks satisfying $\left\|f
 ight\|_{L} \leq 1$
- WGAN-GP: instead penalize $\mathbb{E} \|
 abla_x f(x) \|$ near the data
- Both losses are MMD with $k_\psi(x,y)=\phi_\psi(x)\phi_\psi(y)$

$$\bullet \quad \min_{\theta} \left[\mathcal{D}^{\Psi}_{\mathrm{MMD}}(\mathbb{P},\mathbb{Q}_{\theta}) = \sup_{\psi \in \Psi} \mathrm{MMD}_{\psi}(\mathbb{P},\mathbb{Q}_{\theta}) \right]$$

- Integral probability metrics with "smooth" ${\mathcal F}$ are continuous
- WGAN: ${\mathcal F}$ a set of neural networks satisfying $\left\|f
 ight\|_{L} \leq 1$
- WGAN-GP: instead penalize $\mathbb{E} \|
 abla_x f(x) \|$ near the data
- Both losses are MMD with $k_\psi(x,y)=\phi_\psi(x)\phi_\psi(y)$

$$\quad \min_{\theta} \left[\mathcal{D}^{\Psi}_{\mathrm{MMD}}(\mathbb{P},\mathbb{Q}_{\theta}) = \sup_{\psi \in \Psi} \mathrm{MMD}_{\psi}(\mathbb{P},\mathbb{Q}_{\theta}) \right]$$

• Some kind of constraint on ϕ_ψ is important!

Illustrative problem in \mathbb{R} , DiracGAN [Mescheder+ ICML-18]:

 $k_{\psi=0.25}(0, x)$

- Just need to stay away from tiny bandwidths ψ
- ...deep kernel analogue is hard.

 $k_{w=2}(0, x)$

- Instead, keep witness function from being too steep
- $\sup_x \|
 abla f(x) \|$ would give Wasserstein
 - Nice distance, but hard to estimate

 $k_{\psi=0.01}(0, x)$

Illustrative problem in \mathbb{R} , DiracGAN [Mescheder+ ICML-18]:

 $k_{\psi=0.25}(0, x)$

• ...deep kernel analogue is hard.

 $k_{\psi=2}(0,x)$

- Instead, keep witness function from being too steep
- $\sup_{x} \| \nabla f(x) \|$ would give Wasserstein • Nice distance, but hard to estimate
- Control $\|
 abla f(ilde X)\|$ on average, near the data
 - [Gulrajani+ NeurIPS-17 / Roth+ NeurIPS-17 / Mescheder+ ICML-18]

 $k_{w=0.01}(0, x)$

- If Ψ gives uniformly Lipschitz critics, $\mathcal{D}^{\Psi}_{\mathrm{MMD}}$ is smooth
- Original MMD-GAN paper [Li+ NeurIPS-17]: box constraint

- If Ψ gives uniformly Lipschitz critics, $\mathcal{D}^{\Psi}_{\mathrm{MMD}}$ is smooth
- Original MMD-GAN paper [Li+ NeurIPS-17]: box constraint
- We [Bińkowski+ ICLR-18] used gradient penalty on critic instead

- If Ψ gives uniformly Lipschitz critics, $\mathcal{D}^{\Psi}_{\mathrm{MMD}}$ is smooth
- Original MMD-GAN paper [Li+ NeurIPS-17]: box constraint
- We [Bińkowski+ ICLR-18] used gradient penalty on critic instead
 - Better in practice, but doesn't fix the Dirac problem...

- If Ψ gives uniformly Lipschitz critics, $\mathcal{D}^{\Psi}_{\mathrm{MMD}}$ is smooth
- Original MMD-GAN paper [Li+ NeurIPS-17]: box constraint
- We [Bińkowski+ ICLR-18] used gradient penalty on critic instead
 - Better in practice, but doesn't fix the Dirac problem...

New distance: Scaled MMD Want to ensure $\mathbb{E}_{ ilde{X}\sim\mathbb{S}}[\| abla f(ilde{X})\|^2]\leq 1$

New distance: Scaled MMD

Want to ensure $\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] \leq 1$

Can solve with $\langle \partial_i \phi(x), f
angle_{\mathcal{H}} = \partial_i f(x)$...but too expensive!

New distance: Scaled MMD

Want to ensure
$$\mathbb{E}_{ ilde{X} \sim \mathbb{S}}[\|
abla f(ilde{X})\|^2] \leq 1$$

Can solve with $\langle \partial_i \phi(x), f
angle_{\mathcal{H}} = \partial_i f(x)$...but too expensive!

Guaranteed if
$$\|f\|_{\mathcal{H}} \leq \sigma_{\mathbb{S},k,\lambda}$$

 $\sigma_{\mathbb{S},k,\lambda} := \left(\lambda + \mathop{\mathbb{E}}_{\tilde{X}\sim\mathbb{S}}\left[k(\tilde{X},\tilde{X}) + [\nabla_1 \cdot \nabla_2 k](\tilde{X},\tilde{X})\right]\right)^{-\frac{1}{2}}$
New distance: Scaled MMD

Want to ensure
$$\mathbb{E}_{ ilde{X} \sim \mathbb{S}}[\|
abla f(ilde{X})\|^2] \leq 1$$

Can solve with $\langle \partial_i \phi(x), f
angle_{\mathcal{H}} = \partial_i f(x)$...but too expensive!

Guaranteed if
$$\|f\|_{\mathcal{H}} \leq \sigma_{\mathbb{S},k,\lambda}$$

 $\sigma_{\mathbb{S},k,\lambda} := \left(\lambda + \mathop{\mathbb{E}}_{\tilde{X}\sim\mathbb{S}}\left[k(\tilde{X},\tilde{X}) + [\nabla_1 \cdot \nabla_2 k](\tilde{X},\tilde{X})\right]\right)^{-\frac{1}{2}}$

Gives distance $\mathrm{SMMD}_{\mathbb{S},k,\lambda}(\mathbb{P},\mathbb{Q}) = \sigma_{\mathbb{S},k,\lambda} \operatorname{MMD}_k(\mathbb{P},\mathbb{Q})$

New distance: Scaled MMD

Want to ensure
$$\mathbb{E}_{ ilde{X} \sim \mathbb{S}}[\|
abla f(ilde{X})\|^2] \leq 1$$

Can solve with $\langle \partial_i \phi(x), f
angle_{\mathcal{H}} = \partial_i f(x)$...but too expensive!

Guaranteed if
$$\|f\|_{\mathcal{H}} \leq \sigma_{\mathbb{S},k,\lambda}$$

 $\sigma_{\mathbb{S},k,\lambda} := \left(\lambda + \mathop{\mathbb{E}}_{\tilde{X}\sim\mathbb{S}}\left[k(\tilde{X},\tilde{X}) + [\nabla_1 \cdot \nabla_2 k](\tilde{X},\tilde{X})\right]\right)^{-\frac{1}{2}}$

Gives distance $\mathrm{SMMD}_{\mathbb{S},k,\lambda}(\mathbb{P},\mathbb{Q}) = \sigma_{\mathbb{S},k,\lambda} \operatorname{MMD}_k(\mathbb{P},\mathbb{Q})$

$$egin{aligned} \mathcal{D}^{\Psi}_{ ext{MMD}} & ext{has} \ \mathcal{F} &= igcup_{\psi \in \Psi} \left\{ f: \|f\|_{\mathcal{H}_{\psi}} \ \leq 1
ight\} \ \mathcal{D}^{\mathbb{S},\Psi,\lambda}_{ ext{SMMD}} & ext{has} \ \mathcal{F} &= igcup_{\psi \in \Psi} \left\{ f: \|f\|_{\mathcal{H}_{\psi}} \ \leq \sigma_{\mathbb{S},k,\lambda}
ight\} \end{aligned}$$

$\mathop{\mathbb{E}}_{ ilde{X}\sim\mathbb{S}}[f(ilde{X})^2] + \mathop{\mathbb{E}}_{ ilde{X}\sim\mathbb{S}}[\| abla f(ilde{X})\|^2] + \lambda \|f\|_{\mathcal{H}}^2 \leq 1$

 $\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [f(ilde{X})^2] + \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] + \lambda \|f\|_{\mathcal{H}}^2 \leq 1$ $\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [f(ilde{X})^2] = \left\langle f, \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [k(ilde{X}, \cdot) \otimes k(ilde{X}, \cdot)]f
ight
angle$

$$\mathbb{E}_{ ilde{X} \sim \mathbb{S}} [f(ilde{X})^2] + \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] + \lambda \|f\|_{\mathcal{H}}^2 \leq 1 \ \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [f(ilde{X})^2] = \left\langle f, \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [k(ilde{X}, \cdot) \otimes k(ilde{X}, \cdot)]f
ight
angle \ \mathbb{E}_{ ilde{X} \sim \mathbb{S}} [\|
abla f(ilde{X})\|^2] = \left\langle f, \mathbb{E}_{ ilde{X} \sim \mathbb{S}} \left[\sum_{i=1}^d \partial_i k(ilde{X}, \cdot) \otimes \partial_i k(ilde{X}, \cdot)
ight] f
ight
angle$$

$$\mathbb{E}_{ ilde{X} \sim \mathbb{S}}[f(ilde{X})^2] + \mathbb{E}_{ ilde{X} \sim \mathbb{S}}[\|
abla f(ilde{X})\|^2] + \lambda \|f\|_{\mathcal{H}}^2 \leq 1$$
 $\mathbb{E}_{ ilde{X} \sim \mathbb{S}}[f(ilde{X})^2] = \left\langle f, \mathbb{E}_{ ilde{X} \sim \mathbb{S}}\left[k(ilde{X}, \cdot) \otimes k(ilde{X}, \cdot)
ight]f
ight
angle$
 $\mathbb{E}_{ ilde{X} \sim \mathbb{S}}[\|
abla f(ilde{X})\|^2] = \left\langle f, \mathbb{E}_{ ilde{X} \sim \mathbb{S}}\left[\sum_{i=1}^d \partial_i k(ilde{X}, \cdot) \otimes \partial_i k(ilde{X}, \cdot)
ight]f
ight
angle$
 $\langle f, D_\lambda f
angle \leq \|D_\lambda\| \|f\|_{\mathcal{H}}^2 \leq \sigma_{\mathbb{S},k,\lambda}^{-2}\|f\|_{\mathcal{H}}^2$

Theorem: $\mathcal{D}_{\mathrm{SMMD}}^{\mathbb{S},\Psi,\lambda}$ is continuous.

If \mathbb{S} has a density; k_{top} is Gaussian/linear/...; ϕ_{ψ} is fully-connected, Leaky-ReLU, non-increasing width; all weights in Ψ have bounded condition number; then $\mathcal{W}(\mathbb{Q}_n, \mathbb{P}) \to 0$ implies $\mathcal{D}_{SMMD}^{\mathbb{S}, \Psi, \lambda}(\mathbb{Q}_n, \mathbb{P}) \to 0$.

Results on 160×160 CelebA

SN-SMMD-GAN

KID: 0.006

KID: 0.022

Training process on CelebA

Training process on CelebA $KID \times 10^{3}$ **SN-SMMDGAN** WGAN-GP MMDGAN-GP-L2 $\times 10^4$ generator iterations

Training process on CelebA $KID \times 10^{3}$ 30 **SN-SMMDGAN SN-SWGAN** 25 20 WGAN-GP MMDGAN-GP-L2 15 10 0 10 2 6 8 4 $\times 10^4$ generator iterations

Training process on CelebA

- Human evaluation: good at precision, bad at recall
- Likelihood: hard for GANs, maybe not right thing anyway
- Two-sample tests: always reject!

- Human evaluation: good at precision, bad at recall
- Likelihood: hard for GANs, maybe not right thing anyway
- Two-sample tests: always reject!
- Most common: Fréchet Inception Distance, FID
 - Run pretrained featurizer on model and target
 - Model each as Gaussian; compute W_2

- Human evaluation: good at precision, bad at recall
- Likelihood: hard for GANs, maybe not right thing anyway
- Two-sample tests: always reject!
- Most common: Fréchet Inception Distance, FID
 - Run pretrained featurizer on model and target
 - Model each as Gaussian; compute W_2
 - Strong bias, small variance: very misleading

- Human evaluation: good at precision, bad at recall
- Likelihood: hard for GANs, maybe not right thing anyway
- Two-sample tests: always reject!
- Most common: Fréchet Inception Distance, FID
 - Run pretrained featurizer on model and target
 - Model each as Gaussian; compute W_2
 - Strong bias, small variance: very misleading
 - Simple examples where $\operatorname{FID}(\mathbb{Q}_1) > \operatorname{FID}(\mathbb{Q}_2)$ but $\widehat{\operatorname{FID}}(\hat{\mathbb{Q}}_1) < \widehat{\operatorname{FID}}(\hat{\mathbb{Q}}_2)$ for reasonable sample size

- Human evaluation: good at precision, bad at recall
- Likelihood: hard for GANs, maybe not right thing anyway
- Two-sample tests: always reject!
- Most common: Fréchet Inception Distance, FID
 - Run pretrained featurizer on model and target
 - Model each as Gaussian; compute W_2
 - Strong bias, small variance: very misleading
 - Simple examples where $\operatorname{FID}(\mathbb{Q}_1) > \operatorname{FID}(\mathbb{Q}_2)$ but $\widehat{\operatorname{FID}}(\hat{\mathbb{Q}}_1) < \widehat{\operatorname{FID}}(\hat{\mathbb{Q}}_2)$ for reasonable sample size
- Our KID: \ensuremath{MMD}^2 instead. Unbiased, asymptotically normal

Recap

Combining a deep architecture with a kernel machine that takes the higher-level learned representation as input can be quite powerful. — Y. Bengio & Y. LeCun (2007), "Scaling Learning Algorithms towards AI"

Recap

Combining a deep architecture with a kernel machine that takes the higher-level learned representation as input can be quite powerful. — Y. Bengio & Y. LeCun (2007), "Scaling Learning Algorithms towards AI"

- Two-sample testing [ICLR-17, ICML-20]
 - Choose ψ to maximize power criterion
 - Exploit closed form of f^*_{ψ} for permutation testing
- Generative modeling with MMD GANs [ICLR-18, NeurIPS-18]
 - Need a smooth loss function for the generator
 - Better gradients for generator to follow (?)

• Selective inference to avoid train/test split? Meta-testing?

- Selective inference to avoid train/test split? Meta-testing?
- When $\mathbb{P} \neq \mathbb{Q}$, can we tell *how* they're different?
 - Methods so far: some mostly for low-d
 - Some look at points with large critic function

- Selective inference to avoid train/test split? Meta-testing?
- When $\mathbb{P} \neq \mathbb{Q}$, can we tell *how* they're different?
 - Methods so far: some mostly for low-d
 - Some look at points with large critic function

- Selective inference to avoid train/test split? Meta-testing?
- When $\mathbb{P} \neq \mathbb{Q}$, can we tell *how* they're different?
 - Methods so far: some mostly for low-d
 - Some look at points with large critic function

• Does model ${\mathbb Q}$ match dataset X (Stein testing)?

- Selective inference to avoid train/test split? Meta-testing?
- When $\mathbb{P} \neq \mathbb{Q}$, can we tell *how* they're different?
 - Methods so far: some mostly for low-d
 - Some look at points with large critic function

- Does model ${\mathbb Q}$ match dataset X (Stein testing)?
- Maximize deep dependence measure for unsupervised representation learning, as in contrastive learning

- Selective inference to avoid train/test split? Meta-testing?
- When $\mathbb{P} \neq \mathbb{Q}$, can we tell *how* they're different?
 - Methods so far: some mostly for low-d
 - Some look at points with large critic function

- Does model ${\mathbb Q}$ match dataset X (Stein testing)?
- Maximize deep dependence measure for unsupervised representation learning, as in contrastive learning