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“Kernelized” algorithms access data only through 
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 is the feature map for 

If , ; MMD is distance between
means

Many kernels: in�nite-dimensional 
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I: Two-sample testingI: Two-sample testing
Given samples from two unknown distributions

Question: is ?
Do smokers/non-smokers get di�erent cancers?

Do Brits have the same friend network types as Americans?

When does my laser agree with the one on Mars?

Are storms in the 2000s di�erent from storms in the 1800s?

Does presence of this protein a�ect DNA binding? [ ]

Do these dob and birthday columns mean the same thing?

Does my generative model  match ?

Independence testing: is ?

MMDiff2

http://bioconductor.org/packages/release/bioc/html/MMDiff2.html
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I: Two-sample testingI: Two-sample testing
Given samples from two unknown distributions

Question: is ?

Hypothesis testing approach:

Reject  if test statistic 
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E�cient permutation testing for 

:  converges in distribution

:  asymptotically normal

Any characteristic kernel gives consistent test…eventually

Need enormous  if kernel is bad for problem
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With  where ,  

get 
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Optimizing test powerOptimizing test power

Asymptotics of  give us immediately that

, ,  are constants: �rst term dominates

Pick  to maximize an estimate of 

Can show uniform  convergence of estimator
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CIFAR-10 vs CIFAR-10.1CIFAR-10 vs CIFAR-10.1

Train on 1 000, test on 1 031, repeat 10 times. Rejection rates:
ME SCF C2ST MMD-O MMD-D
0.588 0.171 0.452 0.316 0.744



Ablation vs classifier-based testsAblation vs classifier-based tests

Cross-entropy Max power
Dataset Sign Lin Ours Sign Lin Ours
Blob 0.84 0.94 0.90 – 0.95 0.99

High-  Gauss. mix. 0.47 0.59 0.29 – 0.64 0.66

Higgs 0.26 0.40 0.35 – 0.30 0.40

MNIST vs GAN 0.65 0.71 0.80 – 0.94 1.00
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“Everybody Dance Now” [ ]Chan et al. ICCV-19

https://arxiv.org/abs/1808.07371
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DCGAN generator [ ]

How to choose ?

Radford+ ICLR-16

https://arxiv.org/abs/1511.06434
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GANs and their flawsGANs and their flaws
GANs [ ] minimize discriminator accuracy
(like classi�er test) between  and 

Problem: if there's a perfect classi�er, discontinuous loss, no
gradient to improve it [ ]

Disjoint at init:

: :

For usual ,  is supported on a
countable union of manifolds with dim 

“Natural image manifold” usually considered low-dim

Won't align at init, so won't ever align

Goodfellow+ NeurIPS-14

Arjovsky/Bottou ICLR-17

https://arxiv.org/abs/1406.2661
https://arxiv.org/abs/https://arxiv.org/abs/1701.04862
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WGANs and MMD GANsWGANs and MMD GANs
Integral probability metrics with “smooth”  are continuous

WGAN:  a set of neural networks satisfying 

WGAN-GP: instead penalize  near the data

Both losses are MMD with 

Some kind of constraint on  is important!



Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

Just need to stay away from tiny bandwidths 

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

Just need to stay away from tiny bandwidths 

…deep kernel analogue is hard.

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

Just need to stay away from tiny bandwidths 

…deep kernel analogue is hard.

Instead, keep witness function from being too steep

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

Just need to stay away from tiny bandwidths 

…deep kernel analogue is hard.

Instead, keep witness function from being too steep

 would give Wasserstein
Nice distance, but hard to estimate

https://arxiv.org/abs/1801.04406


Non-smoothness of plain MMD GANsNon-smoothness of plain MMD GANs
Illustrative problem in , DiracGAN [ ]:Mescheder+ ICML-18

Just need to stay away from tiny bandwidths 

…deep kernel analogue is hard.

Instead, keep witness function from being too steep

 would give Wasserstein
Nice distance, but hard to estimate

Control  on average, near the data
[  /  / ]Gulrajani+ NeurIPS-17 Roth+ NeurIPS-17 Mescheder+ ICML-18

https://arxiv.org/abs/1801.04406
https://arxiv.org/abs/1704.00028
https://arxiv.org/abs/1705.09367
https://arxiv.org/abs/1801.04406
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Smoothness of Smoothness of 

Theorem:  is continuous.

If  has a density;  is Gaussian/linear/…;  
 is fully-connected, Leaky-ReLU, non-increasing width;  

all weights in  have bounded condition number; then



Results on Results on  CelebA CelebA
SN-SMMD-GAN

KID: 0.006

WGAN-GP

KID: 0.022
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Likelihood: hard for GANs, maybe not right thing anyway

Two-sample tests: always reject!

Most common: Fréchet Inception Distance, FID
Run pretrained featurizer on model and target

Model each as Gaussian; compute 

Strong bias, small variance: very misleading

Simple examples where  but 

 for reasonable sample size

Our KID:  instead. Unbiased, asymptotically normal
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RecapRecap
Combining a deep architecture with a kernel machine that takes the
higher-level learned representation as input can be quite powerful.

— Y. Bengio & Y. LeCun (2007), “ ”

Two-sample testing [ , ]
Choose  to maximize power criterion

Exploit closed form of  for permutation testing

Generative modeling with MMD GANs [ , ]
Need a smooth loss function for the generator

Better gradients for generator to follow (?)

Scaling Learning Algorithms towards AI

ICLR-17 ICML-20

ICLR-18 NeurIPS-18

http://yann.lecun.com/exdb/publis/pdf/bengio-lecun-07.pdf
https://arxiv.org/abs/1611.04488
https://arxiv.org/abs/2002.09116
https://arxiv.org/abs/1801.01401
https://arxiv.org/abs/1805.11565
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Future uses of deep kernel distancesFuture uses of deep kernel distances
Selective inference to avoid train/test split? Meta-testing?

When , can we tell how they're di�erent?
Methods so far: some mostly for low-

Some look at points with large critic function

Does model  match dataset  (Stein testing)?

Maximize deep dependence measure for unsupervised
representation learning, as in contrastive learning

…


