# A nonsmooth approach to Einstein's theory of gravity

Robert J McCann

University of Toronto

www.math.toronto.edu/mccann/

1 August 2023

- Einstein's gravity is formulated on smooth Lorentzian manifolds, but often predicts such manifolds are geodesically incomplete.
- Due to e.g. black hole (Penrose) or big bang (Hawking) type singularities a nonmsooth theory is highly desirable

- Einstein's gravity is formulated on smooth Lorentzian manifolds, but often predicts such manifolds are geodesically incomplete.
- Due to e.g. black hole (Penrose) or big bang (Hawking) type singularities a nonmsooth theory is highly desirable

In metric(-measure) geometry with positive signature, there are theories of

- $\bullet$  sectional curvature bounds based on triangle comparison (Aleksandrov. . . )
- pointed Gromov-Hausdorff limits of manifolds under lower Ricci and upper dimensional bounds (Fukaya, Gromov, Cheeger-Colding, ...)
- Ricci lower bounds via displacement convexity of entropy (Bakry-Emery, Lott-Sturm-Villani, Ambrosio-Gigli-Savare, ...)

- Einstein's gravity is formulated on smooth Lorentzian manifolds, but often predicts such manifolds are geodesically incomplete.
- Due to e.g. black hole (Penrose) or big bang (Hawking) type singularities a nonmsooth theory is highly desirable

In metric(-measure) geometry with positive signature, there are theories of

- $\bullet$  sectional curvature bounds based on triangle comparison (Aleksandrov. . . )
- pointed Gromov-Hausdorff limits of manifolds under lower Ricci and upper dimensional bounds (Fukaya, Gromov, Cheeger-Colding, ...)
- Ricci lower bounds via displacement convexity of entropy (Bakry-Emery, Lott-Sturm-Villani, Ambrosio-Gigli-Savare, ...)

Can something similar be done in Lorentzian geometry?

- tidal forces (Kunzinger-Sämann '18)
- convergence of spaces (Müeller 22+, Minguzzi-Suhr 22+)
- Einstein equation (M. 20, Mondino-Suhr 18+, Cavalletti-Mondino 20+, Braun 22+, ...)

## Definition (Time-separation function)

On a set *M* of events, a *time-separation function* refers to  $\ell : M \times M \longrightarrow \{-\infty\} \cup [0, \infty)$  satisfying the reverse triangle inequality and antisymmetry:  $\forall x, y, z \in M$ 

$$\frac{\ell(x,y) \ge \ell(x,z) + \ell(z,y)}{\min\{\ell(x,y), \ell(y,x)\} > -\infty \Leftrightarrow x = y.}$$
(1)

Remark:  $(1) + (2) \Rightarrow \ell(x, x) = 0$ ; (2) gives the arrow of time

#### Example (Minkowski space)

$$M = R^{1,3}$$
 with  $\ell(x, y) = L(y - x)$  where

$$L(v) = \begin{cases} |g(v, v)|^{1/2} & \text{if } v \text{ is future-directed} \\ -\infty & \text{else.} \end{cases}$$

Notice L(v) is *concave* (as is  $L(v)^q$  for any  $0 < q \le 1$  if  $(-\infty)^q := -\infty$ ).

#### Example (Causal spaces)

A time-separation function induces  $M_{\leq}^2 = \{(x, y) \in M^2 \mid \ell(x, y) \ge 0\}$  a partial order and  $M_{\ll}^2 = \{(x, y) \in M^2 \mid \ell(x, y) > 0\}$  a preorder. The triple  $(M, \leq, \ll)$  is a special example of what Kronheimer and Penrose '67 call a *causal space*.

# Definition (Causal and timelike futures)

We say y lies in the *causal future* of x and write  $x \le y$  if  $\ell(x, y) \ge 0$ ; we say y lies in the *timelike future* of x and write  $x \ll y$  if  $\ell(x, y) > 0$ . Also

$$\begin{aligned} J^+(x) &= \{ y \in M \mid \ell(x, y) \geq 0 \} & J^+(X) = \cup_{x \in X} J(x) \\ J^-(y) &= \{ x \in M \mid \ell(x, y) \geq 0 \} & J^-(Y) = \cup_{y \in Y} J(y) \\ J(x, y) &= J^+(x) \cap J^-(y) & J(X, Y) = J^+(X) \cap J^-(Y) \end{aligned}$$

and similarly  $I^{\pm}(z)$  and I(X, Y) but with strict inequalities  $\ell > 0$ .

## Definition (Causal and timelike paths)

A path  $s \mapsto \sigma(s) \in M$  is called *causal* if and only if  $\ell(\sigma(s), \sigma(t)) \ge 0$  for all  $s \le t$ , and *timelike* if and only if  $\ell(\sigma(s), \sigma(t)) > 0$  for all s < t.

Definition (Lorentzian length of a causal path)

The (negative)  $\ell$ -length of a causal path  $\sigma : [a, b] \longrightarrow M$  is defined by

## Definition (Causal and timelike paths)

A path  $s \mapsto \sigma(s) \in M$  is called *causal* if and only if  $\ell(\sigma(s), \sigma(t)) \ge 0$  for all  $s \le t$ , and *timelike* if and only if  $\ell(\sigma(s), \sigma(t)) > 0$  for all s < t.

#### Definition (Lorentzian length of a causal path)

The (negative)  $\ell$ -length of a causal path  $\sigma : [a, b] \longrightarrow M$  is defined by

$$L_{-\ell}(\sigma) := \sup_{k \in \mathbf{N}} \sup_{a=t_0 \le t_1 \le \dots \le t_k = b} - \sum_{i=1}^k \ell(\sigma(t_{i-1}), \sigma(t_i))$$
  
 
$$\geq -\ell(\sigma(a), \sigma(b))$$

by the triangle inequality.

# Definition (*l*-path)

#### A path $\sigma : [0,1] \longrightarrow M$ is called an $\ell$ -path if and only if

 $\ell(\sigma(s), \sigma(t)) = (t - s)\ell(\sigma(0), \sigma(1)) > 0 \qquad \forall 0 \le s < t \le 1.$ 

We denote the set of  $\ell$ -paths by  $\operatorname{TPath}^{\ell}(M)$ .

• the above shows each  $\ell$ -path minimizes  $L_{-\ell}$  relative to its endpoints

# Definition (*l*-path)

#### A path $\sigma : [0,1] \longrightarrow M$ is called an $\ell$ -path if and only if

 $\ell(\sigma(s), \sigma(t)) = (t - s)\ell(\sigma(0), \sigma(1)) > 0 \qquad \forall 0 \le s < t \le 1.$ 

We denote the set of  $\ell$ -paths by  $\operatorname{TPath}^{\ell}(M)$ .

- the above shows each  $\ell$ -path minimizes  $L_{-\ell}$  relative to its endpoints
- not all such  $L_{-\ell}$  minimizers are  $\ell$ -paths however, if only because  $\ell$ -paths are by definition timelike and affinely parameterized

# Definition (*l*-path)

#### A path $\sigma : [0,1] \longrightarrow M$ is called an $\ell$ -path if and only if

 $\ell(\sigma(s), \sigma(t)) = (t - s)\ell(\sigma(0), \sigma(1)) > 0 \qquad \forall 0 \le s < t \le 1.$ 

We denote the set of  $\ell$ -paths by  $\operatorname{TPath}^{\ell}(M)$ .

- $\bullet$  the above shows each  $\ell\text{-path}$  minimizes  $L_{-\ell}$  relative to its endpoints
- not all such  $L_{-\ell}$  minimizers are  $\ell$ -paths however, if only because  $\ell$ -paths are by definition timelike and affinely parameterized

### Definition

We call  $(M, \ell)$  a *timelike*  $\ell$ -*path space* if each timelike related pair of events  $x \ll y$  are connected by an  $\ell$ -path.

• Kunzinger and Sämann's (regular) globally hyperbolic Lorentzian length spaces provide a rich class of examples of timelike  $\ell$ -path spaces

• to achieve this, they need a (metrizable) topology

# a variation on Kunzinger & Sämann (hereafter K-S)

## Definition (Metric spacetime)

A metric space (M, d) equipped with its metric topology and a time-separation function  $\ell$  is called a *metric spacetime* 

## Definition (Causal curve)

A nonconstant causal *path* is called a causal *curve* if it is *d*-Lipschitz.

# a variation on Kunzinger & Sämann (hereafter K-S)

# Definition (Metric spacetime)

A metric space (M, d) equipped with its metric topology and a time-separation function  $\ell$  is called a *metric spacetime* 

## Definition (Causal curve)

A nonconstant causal *path* is called a causal *curve* if it is *d*-Lipschitz.

# Definition (Non-totally imprisoning)

A metric spacetime  $(M, d, \ell)$  is *non-totally imprisoning* if each compact  $K \subset M$  admits a bound  $B < \infty$  such that all causal curves  $\sigma$  in K (i.e.  $\sigma : I \subset \mathbb{R} \longrightarrow K$  with  $\sigma(I) \subset K$ ) have *d*-length  $L_d(\sigma) \leq B$ .

# Definition (Globally hyperbolic)

A metric spacetime  $(M, d, \ell)$  is *globally hyperbolic* if it is non-totally imprisoning and the causal diamond J(x, y) is compact for each  $x, y \in M$ .

Robert J McCann (Toronto)

#### Definition (Timelike curve-connected; Lorentzian geodesic space)

A metric spacetime is *timelike curve-connected* iff each  $x \ll y$  are connected by a timelike curve; it is a *Lorentzian geodesic space* iff each x < y are connected by a causal curve  $\sigma$  with  $L_{-\ell}(\sigma) = -\ell(\sigma(0), \sigma(1))$ .

Without global hyperbolicity, K-S's definition of a *Lorentzian length space (LLS)* is involved. With global hyperbolicity it can be defined via:

## Definition (Timelike curve-connected; Lorentzian geodesic space)

A metric spacetime is *timelike curve-connected* iff each  $x \ll y$  are connected by a timelike curve; it is a *Lorentzian geodesic space* iff each x < y are connected by a causal curve  $\sigma$  with  $L_{-\ell}(\sigma) = -\ell(\sigma(0), \sigma(1))$ .

Without global hyperbolicity, K-S's definition of a *Lorentzian length space (LLS)* is involved. With global hyperbolicity it can be defined via:

Theorem ((M. 23+) Characterizing Lorentzian length spaces)

Assuming globally hyperbolicity, a metric spacetime  $(M, d, \ell)$  is an LLS iff it is (a) a timelike curve-connected (b) Lorentzian geodesic space; (c)  $I^{\pm}(x)$  both nonempty  $\forall x \in M$ ; (d)  $\ell$  is lower semicontinuous and (e)  $\ell_{+} = \max{\{\ell, 0\}}$  is continuous.

• In such spaces, K-S showed that metric topology coincides with the order topology induced by  $\ell$ ; this implies gh LLS's are independent of d!

• Burtscher & Garcia-Hevelling 21+ characterize global hyperbolicity of an LLS via existence of Cauchy time functions (and surfaces)

Robert J McCann (Toronto)

Nonsmooth gravity

#### • Unfortunately, its not clear that all $\ell$ -paths are continuous!

#### Definition (Regular(ly localizable))

An LLS is *regular* (or *regularly localizable*) if for any  $L_{-\ell}$ -minimizing causal curve,  $L_{-\ell}(\sigma|_{[a,b]}) = 0$  with  $\sigma|_{[a,b]}$  non-constant implies  $L_{-\ell}(\sigma) = 0$ .

#### Lemma (M. 23+)

In a globally hyperbolic regular LLS, each *l*-path is continuous.

• Unfortunately, its not clear that all  $\ell$ -paths are continuous!

## Definition (Regular(ly localizable))

An LLS is *regular* (or *regularly localizable*) if for any  $L_{-\ell}$ -minimizing causal curve,  $L_{-\ell}(\sigma|_{[a,b]}) = 0$  with  $\sigma|_{[a,b]}$  non-constant implies  $L_{-\ell}(\sigma) = 0$ .

Lemma (M. 23+)

In a globally hyperbolic regular LLS, each  $\ell$ -path is continuous.

# Corollary (Relation of $\ell$ -paths to $L_{-\ell}$ -extremizers)

In a globally hyperbolic regularly localizable Lorentzian length space: (a) Every  $\ell$ -path becomes a d-Lipschitz  $L_{-\ell}$ -minimizing curve after a continuous increasing (not necessarily Lipschitz) reparameterization. (b) K-S: Conversely, every  $L_{-\ell}$ -minimizing curve with timelike separated endpoints becomes an  $\ell$ -path after a similar reparameterization.

(a) resolves an awkward gap in the literature.

Proof of lemma:

• For convenience, we deal only with metric spacetimes  $(M, d, \ell)$  which are closed Lorentzian geodesic subsets of globally hyperbolic regular Lorentzian length spaces (g.h.r. LLS).

Now that timelike geodesics exist:

• given a triple  $x \ll z \ll y$  of timelike related events, we can compare the Lorentzian length of a bisector to that of the Minkowski triangle with the same Lorentzian sidelengths

• and similarly for generalized bisectors (i.e. ratios other than 1:1)

• K-S define T-sec $(M, d, \ell) \ge 0$  if our generalized bisector is longer (and T-sec $(M, d, \ell) \le 0$  if it is shorter) for all such timelike triangles

- they define  $\pm$  T-sec $(M, d, \ell) \ge k \in \mathbb{R}$  analogously by comparing to timelike triangles in constant curvature Lorentzian spaces
- $\bullet$  they also give causal sectional curvature bounds and show such bounds prevent branching of  $\ell\text{-geodesics:}$

#### Definition (timelike nonbranching)

(*M*,  $\ell$ ) timelike nonbranching if for all  $\tilde{\sigma}, \sigma \in \mathrm{TPath}^{\ell}$  with  $\sigma|_{[\frac{1}{3}, \frac{2}{3}]} = \tilde{\sigma}|_{[\frac{1}{3}, \frac{2}{3}]}$ then  $\tilde{\sigma} = \sigma$ ;

- Alexander-Bishop '08 shows consistency of these definitions with smooth timelike sectional curvature bounds on Lorentzian manifolds
- Minguzzi-Suhr '22+ show stability of a similar bound
- Beran-Ohanyan-Rott-Solis '22+: T-sec $(M, d, \ell) \ge 0$  and existence of a timelike line implies geometric splitting of  $(M, d, \ell)$

# To pass from sectional to Ricci curvature / Einstein eq requires averaging: Definition (Optimal transport distance between measures)

• Given metric spaces  $(M^{\pm}, d^{\pm})$ , let  $\mathcal{P}(M)$  denote the Borel probability measures on M and  $\mathcal{P}_c(M)$  those with compact support.

• *Push-forward:* given  $G: M^- \longrightarrow M^+$  Borel and  $\mu^- \in \mathcal{P}(M^-)$ , define  $\mu^+ = G_{\#}\mu^- \in \mathcal{P}(M^+)$  by  $\mu^+(B) = \mu^-(G^{-1}(B))$  for all  $B \subset M^+$ .

• Letting  $\pi^{\mp}(x^-, x^+) = x^{\mp}$  denote the projection from  $M^- \times M^+$  onto its left and right factors, set  $\Gamma(\mu^-, \mu^+) = \{\gamma \in \mathcal{P}(M^- \times M^+) \mid \pi^{\pm}_{\#} \gamma = \mu^{\pm}\}.$ 

# To pass from sectional to Ricci curvature / Einstein eq requires averaging: Definition (Optimal transport distance between measures)

• Given metric spaces  $(M^{\pm}, d^{\pm})$ , let  $\mathcal{P}(M)$  denote the Borel probability measures on M and  $\mathcal{P}_c(M)$  those with compact support.

• *Push-forward:* given  $G: M^- \longrightarrow M^+$  Borel and  $\mu^- \in \mathcal{P}(M^-)$ , define  $\mu^+ = G_{\#}\mu^- \in \mathcal{P}(M^+)$  by  $\mu^+(B) = \mu^-(G^{-1}(B))$  for all  $B \subset M^+$ .

• Letting  $\pi^{\mp}(x^-, x^+) = x^{\mp}$  denote the projection from  $M^- \times M^+$  onto its left and right factors, set  $\Gamma(\mu^-, \mu^+) = \{\gamma \in \mathcal{P}(M^- \times M^+) \mid \pi^{\pm}_{\#} \gamma = \mu^{\pm}\}.$ 

• Given  $p \in [1, \infty)$  and  $M = M^{\pm}$ , the *p*-Kantorovich-Rubinstein-Wasserstein distance  $d_p$  between  $\mu^{\pm} \in \mathcal{P}(M)$  defined by

$$d_{p}(\mu^{-},\mu^{+}) := \inf_{\gamma \in \Gamma(\mu^{+},\mu^{-})} \left( \int_{M^{2}} d(x,y)^{p} d\gamma(x,y) \right)^{1/p}$$
(3)

is well-known to metrize convergence against functions growing no faster than  $d(x, \cdot)^p$  provided (M, d) is *Polish* (i.e. complete and separable), in which case the inf is attained.

• If (M, d) is a geodesic space so is  $(\mathcal{P}_c(M), d_p)$ .



#### Definition (Causal and timelike measures)

In a Polish g.h.r LLS  $(M, d, \ell)$ , given  $\mu, \nu \in \mathcal{P}(M)$  and  $q \in (0, 1]$  set  $\Gamma_{\leq}(\mu, \nu) := \{\gamma \in \Gamma(\mu, \nu) \mid \gamma[M_{\leq}^2] = 1\} = \{\text{causal measures}\}$  $\Gamma_{\ll}(\mu, \nu) := \{ \qquad \mid \gamma[M_{\ll}^2] = 1\} = \{\text{timelike measures}\}$ 

Lemma (Lift time-separation from events to measures)

$$\ell_q(\mu,\nu) := \max_{\gamma \in \Gamma_{\leq}(\mu,\nu)} \left( \int_{M^2} \ell(x,y)^q d\gamma(x,y) \right)^{1/q}$$
(4)

makes  $(\mathcal{P}_c(M), \ell_q)$  into a timelike  $\ell_q$ -path space. Not all such  $\ell_q$ -paths are  $d_1$ -continuous;

#### Definition (Causal and timelike measures)

In a Polish g.h.r LLS  $(M, d, \ell)$ , given  $\mu, \nu \in \mathcal{P}(M)$  and  $q \in (0, 1]$  set  $\Gamma_{\leq}(\mu, \nu) := \{\gamma \in \Gamma(\mu, \nu) \mid \gamma[M_{\leq}^2] = 1\} = \{\text{causal measures}\}$  $\Gamma_{\ll}(\mu, \nu) := \{ \quad " \quad \mid \gamma[M_{\ll}^2] = 1\} = \{\text{timelike measures}\}$ 

Lemma (Lift time-separation from events to measures)

$$\ell_{q}(\mu,\nu) := \max_{\gamma \in \Gamma_{\leq}(\mu,\nu)} \left( \int_{M^{2}} \ell(x,y)^{q} d\gamma(x,y) \right)^{1/q}$$
(4)

makes  $(\mathcal{P}_c(M), \ell_q)$  into a timelike  $\ell_q$ -path space. Not all such  $\ell_q$ -paths are  $d_1$ -continuous; one will be if  $(\mu, \nu)$  is timelike q-dualizable:

#### Definition (timelike q-dualizability)

Let  $\Gamma^q = \Gamma^q(\mu, \nu)$  denote the set of maximizers. Then •  $(\mu, \nu)$  are *timelike q-dualizable* if  $\Gamma^q_{\ll} := \Gamma^q \cap \Gamma_{\ll}(\mu, \nu)$  is non-empty and  $\exists u \oplus v \in L^1(\mu \times \nu)$  which dominates  $\ell^q$  on  $\operatorname{spt}(\mu \times \nu) \cap M^2_{\leq}$ . •  $(\mu, \nu)$  are *strongly* timelike *q*-dualizable if, in addition,  $\Gamma^q \subset \Gamma_{\ll}(\mu, \nu)$ 

Robert J McCann (Toronto)

# Definition (Polish / proper metric-measure spacetime)

A *metric-measure spacetime* refers to a Lorentzian geodesic closed subset  $(M, d, \ell)$  of a g.h.r. LLS, equipped with a Borel measure  $m \ge 0$ , finite on bounded sets, satisfying  $M = \operatorname{spt} m$ . It's called *Polish* if complete and separable, and *proper* if all bounded subsets  $X \subset M$  are compact.

#### Example (Smooth metric-measure spacetimes)

Any smooth, connected, Hausdorff, time-oriented, *n*-dimensional Lorentzian manifold  $(M^n, g)$  of signature (+ - ... -) is second-countable (Ozeki-Nomizu '61) and its topology comes from a complete Riemannian metric  $\tilde{g}$  (Geroch '68). With the distance  $d_{\tilde{g}}$  and time-separation function  $\ell_g$  induced by  $\tilde{g}$  and g respectively, is a proper g.h.r. LLS provided it has no closed causal curves and causal diamonds J(x, y) are compact. Letting  $V \in C^{\infty}(M)$  and  $\operatorname{vol}_g$  denote its Lorentzian volume, setting  $dm = e^{-V} d\operatorname{vol}_g$  makes it a proper metric-measure spacetime. We call such spaces *smooth metric-measure spacetimes*. Desiderata:

- consistency (with the analogous smooth bounds)
- stability (preservation under suitable limits)
- consequences (e.g. Hawking-type singularity theorem)

# Definition (Entropy)

We define the relative *entropy* by

$$H(\mu \mid m) := \begin{cases} \int_M \rho \log \rho dm & \text{if } \mu \in \mathcal{P}_c^{ac}(M) \text{ and } \rho := \frac{d\mu}{dm}, \\ +\infty & \text{if } \mu \in \mathcal{P}_c(M) \setminus \mathcal{P}^{ac}(M). \end{cases}$$

- our sign convention is opposite to that of the physicists' entropy

# Entropic weak timelike curvature-dimension conditions

# Definition (TCD versus wTCD; e.g. K = 0 = 1/N)

For  $(K, N, q) \in \mathbb{R} \times (0, \infty] \times (0, 1]$  write  $(M, d, \ell, m) \in wTCD_q^e(K, N)$  if and only if every strongly timelike *q*-dualizable finite entropy pair  $\mu_0, \mu_1 \in \mathcal{P}_c(M)$  admit a maximizer  $\gamma \in \Gamma^q_{\ll}$  and corresponding  $\ell_q$ -path  $(\mu_t)_{t \in [0,1]}$  along which the entropy  $t \in [0,1] \mapsto h(t) := H(\mu_t \mid m)$  is upper-semicontinuous and distributionally solves the semiconvexity inequality

$$h''(t) \ge \frac{h'(t)^2}{N} + K \|\ell\|_{L^2(\gamma)}^2.$$

# Entropic weak timelike curvature-dimension conditions

# Definition (TCD versus wTCD; e.g. K = 0 = 1/N)

For  $(K, N, q) \in \mathbb{R} \times (0, \infty] \times (0, 1]$  write  $(M, d, \ell, m) \in wTCD_q^e(K, N)$  if and only if every strongly timelike *q*-dualizable finite entropy pair  $\mu_0, \mu_1 \in \mathcal{P}_c(M)$  admit a maximizer  $\gamma \in \Gamma^q_{\ll}$  and corresponding  $\ell_q$ -path  $(\mu_t)_{t \in [0,1]}$  along which the entropy  $t \in [0,1] \mapsto h(t) := H(\mu_t \mid m)$  is upper-semicontinuous and distributionally solves the semiconvexity inequality

$$h''(t) \ge \frac{h'(t)^2}{N} + K \|\ell\|_{L^2(\gamma)}^2.$$

Cavalletti-Mondino '20+ prove all limits of  $TCD_q^e(K, N)$  space in a suitable (pointed measured weak) sense lie in  $wTCD_q^e(K, N)$  if  $N < \infty$ ; they also display remarkable similarities to smooth spacetimes (such as a Hawking singularity theorem)

c.f. Burtscher-Ketterer-M.-Woolgar '20 analogous sharp Riemannian injectivity radius bound; characterizes RCD(K, N) spaces which attain it

Robert J McCann (Toronto)

Nonsmooth gravity

# Pointed measured weak convergence [Cav.-Mondino 20+]

Fixing  $x_j \in M_j = \operatorname{spt} m_j$  where  $m_j$  is a Radon measure, we say  $(M_j, d_j, \ell_j, m_j, x_j) \rightarrow_{pmGL} (M_{\infty}, d_{\infty}, \ell_{\infty}, m_{\infty}, x_{\infty})$  iff all  $(M_j, d_j, \ell_j, m_j, x_j)$  embed *d*-continuously and *l*-isometrically into a single proper g.h.r. LLS  $(X, d, \ell)$  and after this embedding,  $d(x_j, x_{\infty}) \rightarrow 0$  and the measures  $m_j \rightarrow m_{\infty}$  converge weakly against continuous compactly supported test functions: i.e.

$$\lim_{j\to\infty}\int_X\phi dm_j=\int_X\phi dm_\infty\qquad\forall\phi\in C_c(X).$$

# Pointed measured weak convergence [Cav.-Mondino 20+]

Fixing  $x_j \in M_j = \operatorname{spt} m_j$  where  $m_j$  is a Radon measure, we say  $(M_j, d_j, \ell_j, m_j, x_j) \rightarrow_{pmGL} (M_{\infty}, d_{\infty}, \ell_{\infty}, m_{\infty}, x_{\infty})$  iff all  $(M_j, d_j, \ell_j, m_j, x_j)$  embed *d*-continuously and *l*-isometrically into a single proper g.h.r. LLS  $(X, d, \ell)$  and after this embedding,  $d(x_j, x_{\infty}) \rightarrow 0$  and the measures  $m_j \rightarrow m_{\infty}$  converge weakly against continuous compactly supported test functions: i.e.

$$\lim_{j\to\infty}\int_X\phi dm_j=\int_X\phi dm_\infty\qquad\forall\phi\in C_c(X).$$

• although the limit of  $TCD_q^e(K, N)$  spaces is only  $wTCD_q^e(K, N)$ , Braun '22+ shows (q-essentially) timelike nonbranching  $wTCD_q^e(K, N)$ spaces are  $TCD_q^e(K, N)$ . Hence a limit of timelike nonbranching  $wTCD_q^e(K, N)$  spaces is  $wTCD_q^e(K, N)$ .

• OPEN QUESTION: unlike in positive signature, it is not known whether some version of timelike nonbranchingness survives the preceding limits

Robert J McCann (Toronto)

Nonsmooth gravity

# Positive energy $\Leftrightarrow$ displacement convexity of entropy

DEF (*N*-Bakry-Emery modified Ricci tensor; cf. Erbar-Kuwada-Sturm'15) Given  $N \neq n$  and  $V \in C^{\infty}(M^n)$  define

$$R_{ij}^{(N,V)} := R_{ij} + \nabla_i \nabla_j V - \frac{1}{N-n} (\nabla_i V) (\nabla_j V)$$

THM (M '20 Consistency) Fix  $(K, N, q) \in \mathbb{R} \times (0, \infty] \times (0, 1)$  and a smooth metric-measure spacetime  $(M^n, g)$  with  $dm = e^{-V} dvol_g$ . Then  $(M, d_{\tilde{g}}, \ell_g, m) \in (w) TCD_q^e(K, N)$  if and only if either (a) N = n, V = const and  $R_{ij}v^iv^j \ge K$  for all unit timelike  $(v, x) \in TM$ , (b) N > n and  $R_{ij}^{(N,V)}v^iv^j \ge K$  for all unit timelike vectors  $(v, x) \in TM$ .

# Positive energy $\Leftrightarrow$ displacement convexity of entropy

DEF (*N*-Bakry-Emery modified Ricci tensor; cf. Erbar-Kuwada-Sturm'15) Given  $N \neq n$  and  $V \in C^{\infty}(M^n)$  define

$$R_{ij}^{(N,V)} := R_{ij} + \nabla_i \nabla_j V - \frac{1}{N-n} (\nabla_i V) (\nabla_j V)$$

THM (M '20 Consistency) Fix  $(K, N, q) \in \mathbb{R} \times (0, \infty] \times (0, 1)$  and a smooth metric-measure spacetime  $(M^n, g)$  with  $dm = e^{-V} dvol_g$ . Then  $(M, d_{\tilde{g}}, \ell_g, m) \in (w) TCD_q^e(K, N)$  if and only if either (a) N = n, V = const and  $R_{ij}v^iv^j \ge K$  for all unit timelike  $(v, x) \in TM$ , (b) N > n and  $R_{ij}^{(N,V)}v^iv^j \ge K$  for all unit timelike vectors  $(v, x) \in TM$ .

Mondino-Suhr '18+ Use entropic convexity to say also when equality holds, giving a weak (but unstable) solution concept for Einstein field equation.

Akdemir-Cavalletti-Colinet-M.-Santarcangelo '21  $CD_p(K, N) \cap \{\text{nonbranching}\}\$  is independent of p > 1



#### Braun 22+:

•  $N = \infty$ 

• alternative definitions of  $(w)TCD_q^{(*)}(K, N)$  based on convexity properties of a power-law entropy (instead of  $H(\mu \mid m)$ ) along  $\ell_q$ -paths

$$S_N(\mu) := -N \int_M (\frac{d\mu}{dm})^{1-\frac{1}{N}} dm$$

• equivalence of most of these various definitions to  $TCD_q^e(K, N)$  assuming (*q*-essential) timelike nonbranching

Cavalletti-Mondino '22:

- asked for a synthetic formulation of the null energy condition (NEC)
- stronger physical motivation; more widely satisfied
- forms a key hypothesis in the Penrose singularity theorem for stellar collapse

#### Braun 22+:

•  $N = \infty$ 

• alternative definitions of  $(w)TCD_q^{(*)}(K, N)$  based on convexity properties of a power-law entropy (instead of  $H(\mu \mid m)$ ) along  $\ell_q$ -paths

$$S_N(\mu) := -N \int_M (\frac{d\mu}{dm})^{1-\frac{1}{N}} dm$$

• equivalence of most of these various definitions to  $TCD_q^e(K, N)$  assuming (*q*-essential) timelike nonbranching

Cavalletti-Mondino '22:

- asked for a synthetic formulation of the null energy condition (NEC)
- stronger physical motivation; more widely satisfied
- forms a key hypothesis in the Penrose singularity theorem for stellar collapse

Unlike Riemannian, geometry, in Lorentzian geometry, smoothness need not imply a local lower bound on Ricci curvature!

## Theorem (M' 23+)

Fix a smooth spacetime  $(M^n, g)$  with signature  $(+ - \cdots -)$  and symmetric 2-tensor field Q. Then

 $Q(v,v) \ge 0 \quad \forall (v,x) \in TM \text{ with } g(v,v) = 0$ 

holds if and only if each compact subdomain  $X \subset M^n$  admits a timelike lower bound  $K = K_X$  for Q, i.e.

 $Q(v,v) \ge Kg(v,v) \quad \forall (v,x) \in TX \text{ with } g(v,v) > 0$ 

Taking  $Q = \operatorname{Ric}^{(N,V)}$  (or  $Q_{ab} = 8\pi T_{ab}$  if Einstein holds) motivates

Definition (A synthetic null energy-dimension condition)

Given  $(N, q) \in (0, \infty] \times (0, 1)$ , a metric-measure spacetime  $(M, d, \ell, m)$ satisfies  $wNC_q^{(e)}(N)$  if and only if each compact subset  $X \subset M$  admits a bound  $K = K_X \in \mathbb{R}$  such that  $J(X, X) \in wTCD_q^{(e)}(K, N)$ .

- in other words, the null energy condition is equivalent to a variable lower (semicontinuous) bound k(x) on the timelike Ricci curvature
- Consistency with smooth (NC) + ( $n \le N$ ): follows from theorem above
- for (q-essentially) timelike nonbranching spaces  $wNC_q^e(N) = NC_q^*(N)$

• Consequences: many of Cavalletti & Mondino's nice properties (timelike Bishop-Gromov and Brunn-Minkowski inequalities, needle decomposition, etc) of nonsmooth  $wTCD_q^{(e)}(K, N)$  spacetimes are therefore inherited directly by  $wNC_q^{(e)}(N)$  spacetimes; c.f. Braun-M. (in progress)

• OPEN: it is natural to wonder if a Penrose singularity theorem can hold in this nonsmooth setting? (c.f. Graf '20 on  $g \in C^1$  spacetimes  $(M^n, g)$ , Ketterer '23+ entropic convexity derivation on  $g \in C^{\infty}$  spacetimes)

• (In)stability: on the other hand, any stability result appears hopeless unless we are will to assume some uniformity in j of the lower bound  $k(\cdot)$  along the sequence  $(M_j, d_j, \ell_j, m_j, x_j)$ 

Braun Nonlinear Anal. 229:113205 (2023); to appear JMPA 2206.13005 Cavalletti & Mondino, arXiv:2004.08934 and GRG 54(11):137 (2022) Ketterer arXiv:2304.01853 Kunzinger & Sämann, Glob. Anal. Geom 54 (2018) 399-447. McCann, Camb. J. Math. 8 (2020) 609-681 and arXiv 2304.14341 Minguzzi & Suhr arxiv.org/2209.14384 Mondino & Suhr, J. Euro. Math. Soc. (JEMS) 25 (2023) 933–994. Mueller arxiv.org/2209.12736

## THANK YOU!