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• Einstein’s gravity is formulated on smooth Lorentzian manifolds,
but often predicts such manifolds are geodesically incomplete.

• Due to e.g. black hole (Penrose) or big bang (Hawking) type singularities
a nonmsooth theory is highly desirable

In metric(-measure) geometry with positive signature, there are theories of

• sectional curvature bounds based on triangle comparison
(Aleksandrov. . . )

• pointed Gromov-Hausdorff limits of manifolds under lower Ricci and
upper dimensional bounds (Fukaya, Gromov, Cheeger-Colding, . . . )

• Ricci lower bounds via displacement convexity of entropy (Bakry-Emery,
Lott-Sturm-Villani, Ambrosio-Gigli-Savare, . . . )

Can something similar be done in Lorentzian geometry?

• tidal forces (Kunzinger-Sämann ’18)

• convergence of spaces (Müeller 22+, Minguzzi-Suhr 22+)

• Einstein equation (M. 20, Mondino-Suhr 18+, Cavalletti-Mondino 20+,
Braun 22+, ...)
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Definition (Time-separation function)

On a set M of events, a time-separation function refers to
` : M ×M −→ {−∞} ∪ [0,∞) satisfying the reverse triangle inequality
and antisymmetry: ∀x , y , z ∈ M

`(x , y) ≥ `(x , z) + `(z , y) (1)

min{`(x , y), `(y , x)} > −∞⇔ x = y . (2)

Remark: (1) + (2) ⇒ `(x , x) = 0; (2) gives the arrow of time

Example (Minkowski space)

M = R1,3 with `(x , y) = L(y − x) where

L(v) =

{
|g(v , v)|1/2 if v is future-directed

−∞ else.

Notice L(v) is concave (as is L(v)q for any 0 < q ≤ 1 if (−∞)q := −∞).
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Example (Causal spaces)

A time-separation function induces M2
≤ = {(x , y) ∈ M2 | `(x , y) ≥ 0} a

partial order and M2
� = {(x , y) ∈ M2 | `(x , y) > 0} a preorder. The triple

(M,≤,�) is a special example of what Kronheimer and Penrose ’67 call a
causal space.

Definition (Causal and timelike futures)

We say y lies in the causal future of x and write x ≤ y if `(x , y) ≥ 0; we
say y lies in the timelike future of x and write x � y if `(x , y) > 0. Also

J+(x) = {y ∈ M | `(x , y) ≥ 0} J+(X ) = ∪x∈X J(x)

J−(y) = {x ∈ M | `(x , y) ≥ 0} J−(Y ) = ∪y∈Y J(y)

J(x , y) = J+(x) ∩ J−(y) J(X ,Y ) = J+(X ) ∩ J−(Y )

and similarly I±(z) and I (X ,Y ) but with strict inequalities ` > 0.
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Definition (Causal and timelike paths)

A path s 7→ σ(s) ∈ M is called causal if and only if `(σ(s), σ(t)) ≥ 0 for
all s ≤ t, and timelike if and only if `(σ(s), σ(t)) > 0 for all s < t.

Definition (Lorentzian length of a causal path)

The (negative) `-length of a causal path σ : [a, b] −→ M is defined by

L−`(σ) : = sup
k∈N

sup
a=t0≤t1≤···≤tk=b

−
k∑

i=1

`(σ(ti−1), σ(ti ))

≥ −`(σ(a), σ(b))

by the triangle inequality.
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Definition (`-path)

A path σ : [0, 1] −→ M is called an `-path if and only if

`(σ(s), σ(t)) = (t − s)`(σ(0), σ(1))> 0 ∀0 ≤ s < t ≤ 1.

We denote the set of `-paths by TPath`(M).

• the above shows each `-path minimizes L−` relative to its endpoints

• not all such L−` minimizers are `-paths however, if only because
`-paths are by definition timelike and affinely parameterized

Definition

We call (M, `) a timelike `-path space if each timelike related pair of
events x � y are connected by an `-path.

• Kunzinger and Sämann’s (regular) globally hyperbolic Lorentzian length
spaces provide a rich class of examples of timelike `-path spaces
• to achieve this, they need a (metrizable) topology
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a variation on Kunzinger & Sämann (hereafter K-S)

Definition (Metric spacetime)

A metric space (M, d) equipped with its metric topology and a
time-separation function ` is called a metric spacetime

Definition (Causal curve)

A nonconstant causal path is called a causal curve if it is d-Lipschitz.

Definition (Non-totally imprisoning)

A metric spacetime (M, d , `) is non-totally imprisoning if each compact
K ⊂ M admits a bound B <∞ such that all causal curves σ in K (i.e.
σ : I ⊂ R −→ K with σ(I ) ⊂ K ) have d-length Ld(σ) ≤ B.

Definition (Globally hyperbolic)

A metric spacetime (M, d , `) is globally hyperbolic if it is non-totally
imprisoning and the causal diamond J(x , y) is compact for each x , y ∈ M.
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Definition (Timelike curve-connected; Lorentzian geodesic space)

A metric spacetime is timelike curve-connected iff each x � y are
connected by a timelike curve; it is a Lorentzian geodesic space iff each
x < y are connected by a causal curve σ with L−`(σ) = −`(σ(0), σ(1)).

Without global hyperbolicity, K-S’s definition of a Lorentzian length space
(LLS) is involved. With global hyperbolicity it can be defined via:

Theorem ((M. 23+) Characterizing Lorentzian length spaces)

Assuming globally hyperbolicity, a metric spacetime (M, d , `) is an LLS iff
it is (a) a timelike curve-connected (b) Lorentzian geodesic space; (c)
I±(x) both nonempty ∀x ∈ M; (d) ` is lower semicontinuous and (e)
`+ = max{`, 0} is continuous.

• In such spaces, K-S showed that metric topology coincides with the
order topology induced by `; this implies gh LLS’s are independent of d!

• Burtscher & Garcia-Hevelling 21+ characterize global hyperbolicity of an
LLS via existence of Cauchy time functions (and surfaces)
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• Unfortunately, its not clear that all `-paths are continuous!

Definition (Regular(ly localizable))

An LLS is regular (or regularly localizable) if for any L−`-minimizing causal
curve, L−`(σ|[a,b]) = 0 with σ|[a,b] non-constant implies L−`(σ) = 0.

Lemma (M. 23+)

In a globally hyperbolic regular LLS, each `-path is continuous.

Corollary (Relation of `-paths to L−`-extremizers)

In a globally hyperbolic regularly localizable Lorentzian length space:
(a) Every `-path becomes a d-Lipschitz L−`-minimizing curve after a
continuous increasing (not necessarily Lipschitz) reparameterization.
(b) K-S: Conversely, every L−`-minimizing curve with timelike separated
endpoints becomes an `-path after a similar reparameterization.

(a) resolves an awkward gap in the literature.
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Proof of lemma:
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• For convenience, we deal only with metric spacetimes (M, d , `) which
are closed Lorentzian geodesic subsets of globally hyperbolic regular
Lorentzian length spaces (g.h.r. LLS).

Now that timelike geodesics exist:
• given a triple x � z � y of timelike related events, we can compare the
Lorentzian length of a bisector to that of the Minkowski triangle with the
same Lorentzian sidelengths

• and similarly for generalized bisectors (i.e. ratios other than 1 : 1)
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• K-S define T-sec(M, d , `) ≥ 0 if our generalized bisector is longer (and
T-sec(M, d , `) ≤ 0 if it is shorter) for all such timelike triangles

• they define ± T-sec(M, d , `) ≥ k ∈ R analogously by comparing to
timelike triangles in constant curvature Lorentzian spaces

• they also give causal sectional curvature bounds and show such bounds
prevent branching of `-geodesics:

Definition (timelike nonbranching)

(M, `) timelike nonbranching if for all σ̃, σ ∈ TPath` with σ|[ 1
3
, 2

3
] = σ̃|[ 1

3
, 2

3
]

then σ̃ = σ;

• Alexander-Bishop ’08 shows consistency of these definitions with smooth
timelike sectional curvature bounds on Lorentzian manifolds

• Minguzzi-Suhr ’22+ show stability of a similar bound

• Beran-Ohanyan-Rott-Solis ’22+: T-sec(M, d , `) ≥ 0 and existence of a
timelike line implies geometric splitting of (M, d , `)
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To pass from sectional to Ricci curvature / Einstein eq requires averaging:
Definition (Optimal transport distance between measures)

• Given metric spaces (M±, d±), let P(M) denote the Borel probability
measures on M and Pc(M) those with compact support.

• Push-forward: given G : M− −→ M+ Borel and µ− ∈ P(M−), define
µ+ = G#µ

− ∈ P(M+) by µ+(B) = µ−(G−1(B)) for all B ⊂ M+.

• Letting π∓(x−, x+) = x∓ denote the projection from M− ×M+ onto its
left and right factors, set Γ(µ−, µ+) = {γ ∈ P(M− ×M+) | π±#γ = µ±}.

• Given p ∈ [1,∞) and M = M±, the p-Kantorovich-Rubinstein-
Wasserstein distance dp between µ± ∈ P(M) defined by

dp(µ−, µ+) := inf
γ∈Γ(µ+,µ−)

(∫
M2

d(x , y)pdγ(x , y)

)1/p

(3)

is well-known to metrize convergence against functions growing no faster
than d(x , ·)p provided (M, d) is Polish (i.e. complete and separable), in
which case the inf is attained.
• If (M, d) is a geodesic space so is (Pc(M), dp).
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Definition (Causal and timelike measures)

In a Polish g.h.r LLS (M, d , `), given µ, ν ∈ P(M) and q ∈ (0, 1] set

Γ≤(µ, ν) := {γ ∈ Γ(µ, ν) | γ[M2
≤] = 1} = {causal measures}

Γ�(µ, ν) := { ” | γ[M2
�] = 1} = {timelike measures}

Lemma (Lift time-separation from events to measures)

`q(µ, ν) := max
γ∈Γ≤(µ,ν)

(∫
M2

`(x , y)qdγ(x , y)

)1/q

(4)

makes (Pc(M), `q) into a timelike `q-path space. Not all such `q-paths are
d1-continuous;

one will be if (µ, ν) is timelike q-dualizable:

Definition (timelike q-dualizability)

Let Γq = Γq(µ, ν) denote the set of maximizers. Then
• (µ, ν) are timelike q-dualizable if Γq

� := Γq ∩ Γ�(µ, ν) is non-empty and
∃u ⊕ v ∈ L1(µ× ν) which dominates `q on spt(µ× ν) ∩M2

≤.
• (µ, ν) are strongly timelike q-dualizable if, in addition, Γq ⊂ Γ�(µ, ν)
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Definition (Polish / proper metric-measure spacetime)

A metric-measure spacetime refers to a Lorentzian geodesic closed subset
(M, d , `) of a g.h.r. LLS, equipped with a Borel measure m ≥ 0, finite on
bounded sets, satisfying M = sptm. It’s called Polish if complete and
separable, and proper if all bounded subsets X ⊂ M are compact.

Example (Smooth metric-measure spacetimes)

Any smooth, connected, Hausdorff, time-oriented, n-dimensional
Lorentzian manifold (Mn, g) of signature (+− . . .−) is second-countable
(Ozeki-Nomizu ’61) and its topology comes from a complete Riemannian
metric g̃ (Geroch ’68). With the distance dg̃ and time-separation function
`g induced by g̃ and g respectively, is a proper g.h.r. LLS provided it has
no closed causal curves and causal diamonds J(x , y) are compact. Letting
V ∈ C∞(M) and volg denote its Lorentzian volume, setting
dm = e−V dvolg makes it a proper metric-measure spacetime. We call
such spaces smooth metric-measure spacetimes.
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Synthetic timelike Ricci bounds

Desiderata:
• consistency (with the analogous smooth bounds)
• stability (preservation under suitable limits)
• consequences (e.g. Hawking-type singularity theorem)

Definition (Entropy)

We define the relative entropy by

H(µ | m) :=

{ ∫
M ρ log ρdm if µ ∈ Pac

c (M) and ρ := dµ
dm ,

+∞ if µ ∈ Pc(M) \ Pac(M).

- our sign convention is opposite to that of the physicists’ entropy
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Entropic weak timelike curvature-dimension conditions

Definition (TCD versus wTCD; e.g. K = 0 = 1/N )

For (K ,N, q) ∈ R× (0,∞]× (0, 1] write (M, d , `,m) ∈ wTCDe
q(K ,N) if

and only if every strongly timelike q-dualizable finite entropy pair
µ0, µ1 ∈ Pc(M) admit a maximizer γ ∈ Γq

� and corresponding `q-path
(µt)t∈[0,1] along which the entropy t ∈ [0, 1] 7→ h(t) := H(µt | m) is
upper-semicontinuous and distributionally solves the semiconvexity
inequality

h′′(t)≥h′(t)2

N
+ K‖`‖2

L2(γ).

Cavalletti-Mondino ’20+ prove all limits of TCDe
q(K ,N) space in a

suitable (pointed measured weak) sense lie in wTCDe
q(K ,N) if N <∞;

they also display remarkable similarities to smooth spacetimes (such as a
Hawking singularity theorem)

c.f. Burtscher-Ketterer-M.-Woolgar ’20 analogous sharp Riemannian
injectivity radius bound; characterizes RCD(K ,N) spaces which attain it
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Pointed measured weak convergence [Cav.-Mondino 20+]

Fixing xj ∈ Mj = sptmj where mj is a Radon measure, we say
(Mj , dj , `j ,mj , xj)→pmGL (M∞, d∞, `∞,m∞, x∞) iff all (Mj , dj , `j ,mj , xj)
embed d-continuously and `-isometrically into a single proper g.h.r. LLS
(X , d , `) and after this embedding, d(xj , x∞)→ 0 and the measures
mj → m∞ converge weakly against continuous compactly supported test
functions: i.e.

lim
j→∞

∫
X
φdmj =

∫
X
φdm∞ ∀φ ∈ Cc(X ).

• although the limit of TCDe
q(K ,N) spaces is only wTCDe

q(K ,N),
Braun ’22+ shows (q-essentially) timelike nonbranching wTCDe

q(K ,N)
spaces are TCDe

q(K ,N). Hence a limit of timelike nonbranching
wTCDe

q(K ,N) spaces is wTCDe
q(K ,N).

• OPEN QUESTION: unlike in positive signature, it is not known whether
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Pointed measured weak convergence [Cav.-Mondino 20+]

Fixing xj ∈ Mj = sptmj where mj is a Radon measure, we say
(Mj , dj , `j ,mj , xj)→pmGL (M∞, d∞, `∞,m∞, x∞) iff all (Mj , dj , `j ,mj , xj)
embed d-continuously and `-isometrically into a single proper g.h.r. LLS
(X , d , `) and after this embedding, d(xj , x∞)→ 0 and the measures
mj → m∞ converge weakly against continuous compactly supported test
functions: i.e.

lim
j→∞

∫
X
φdmj =

∫
X
φdm∞ ∀φ ∈ Cc(X ).
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Positive energy ⇔ displacement convexity of entropy

DEF (N-Bakry-Emery modified Ricci tensor; cf. Erbar-Kuwada-Sturm’15)
Given N 6= n and V ∈ C∞(Mn) define

R
(N,V )
ij := Rij +∇i∇jV −

1

N − n
(∇iV )(∇jV )

THM (M ’20 Consistency) Fix (K ,N, q) ∈ R× (0,∞]× (0, 1) and a
smooth metric-measure spacetime (Mn, g) with dm = e−V dvolg . Then
(M, dg̃ , `g ,m) ∈ (w)TCDe

q(K ,N) if and only if either

(a) N = n, V = const and Rijv
iv j ≥ K for all unit timelike (v , x) ∈ TM,

(b) N > n and R
(N,V )
ij v iv j ≥ K for all unit timelike vectors (v , x) ∈ TM.

Mondino-Suhr ’18+ Use entropic convexity to say also when equality holds,
giving a weak (but unstable) solution concept for Einstein field equation.

Akdemir-Cavalletti-Colinet-M.-Santarcangelo ’21
CDp(K ,N) ∩ {nonbranching} is independent of p > 1
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Braun 22+:
• N =∞
• alternative definitions of (w)TCD

(∗)
q (K ,N) based on convexity

properties of a power-law entropy (instead of H(µ | m)) along `q-paths

SN(µ) := −N
∫
M

(
dµ

dm
)1− 1

N dm

• equivalence of most of these various definitions to TCDe
q(K ,N)

assuming (q-essential) timelike nonbranching

Cavalletti-Mondino ’22:
• asked for a synthetic formulation of the null energy condition (NEC)
• stronger physical motivation; more widely satisfied
• forms a key hypothesis in the Penrose singularity theorem for stellar
collapse

Unlike Riemannian, geometry, in Lorentzian geometry, smoothness need
not imply a local lower bound on Ricci curvature!
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Theorem (M’ 23+)

Fix a smooth spacetime (Mn, g) with signature (+− · · ·−) and symmetric
2-tensor field Q. Then

Q(v , v) ≥ 0 ∀(v , x) ∈ TM with g(v , v) = 0

holds if and only if each compact subdomain X ⊂ Mn admits a timelike
lower bound K = KX for Q, i.e.

Q(v , v) ≥ Kg(v , v) ∀(v , x) ∈ TX with g(v , v) > 0

Taking Q = Ric(N,V ) (or Qab = 8πTab if Einstein holds) motivates

Definition (A synthetic null energy-dimension condition)

Given (N, q) ∈ (0,∞]× (0, 1), a metric-measure spacetime (M, d , `,m)

satisfies wNC
(e)
q (N) if and only if each compact subset X ⊂ M admits a

bound K = KX ∈ R such that J(X ,X ) ∈ wTCD
(e)
q (K ,N).
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• in other words, the null energy condition is equivalent to a variable lower
(semicontinuous) bound k(x) on the timelike Ricci curvature

• Consistency with smooth (NC) + (n ≤ N): follows from theorem above

• for (q-essentially) timelike nonbranching spaces wNC e
q (N) = NC ∗q (N)

• Consequences: many of Cavalletti & Mondino’s nice properties (timelike
Bishop-Gromov and Brunn-Minkowski inequalities, needle decomposition,

etc) of nonsmooth wTCD
(e)
q (K ,N) spacetimes are therefore inherited

directly by wNC
(e)
q (N) spacetimes; c.f. Braun-M. (in progress)

• OPEN: it is natural to wonder if a Penrose singularity theorem can hold
in this nonsmooth setting? (c.f. Graf ’20 on g ∈ C 1 spacetimes (Mn, g),
Ketterer ’23+ entropic convexity derivation on g ∈ C∞ spacetimes)

• (In)stability: on the other hand, any stability result appears hopeless
unless we are will to assume some uniformity in j of the lower bound k(·)
along the sequence (Mj , dj , `j ,mj , xj)
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