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Earth Mover’s Distance

“Earth Mover’s Distance” by Fana Hagos (Visual Arts undergraduate
student, UCSD 2020)
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0 Analysis: Monge, Benamou-Brenier
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Moving mass: The Monge problem

final distribution

initial distribution g(,y)
f()

costs: c¢(z,T(x))

Move “mass” fto g

f, g are probability densities / f(x)dx = / ag(y)dy =1
Rn ]Rn

Find map T : R” — R” with mass conservation:

/g(y) dy = f(x)dx, ACR",
A T-1(A)

or equivalently g(T(x))| det(DT(x))| = f(x) for x € R"
There may be many such maps ... Find one with minimal work

Monge formulation: mTin/ c(x, T(x)) f(x) dx.
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Moving mass: The Monge problem

A

More general: Consider measures . and v
If 11 is absolutely continuous (w.r.t. Lebesgue measure), then it
has a density

w(A) = / f(x)dx, ACR"
A
o T:R" — R" with mass conservation becomes
v=Typ, Ty(A)=u(T '(A), ACR"
The Monge problem becomes

min / e(x, T(x)) ().

T:Typ=v
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Moving mass: The Monge problem

e Question 1: What cost function ¢?
— depends on the problem. Usually ¢(x, y) = ||x — y||°P,p > 1; 0or
geodesic distance d(x, y) if measures supported on manifold.

e Question 2: Existence and uniqueness of solution?
— In general: No and no. il

® Y1, Y2

« Example: The choice of cost influences uniqueness

c(x, T(x)) = |x — T(x)| vs. |x — T(x)|? (strictly convex)
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Moving mass: Brenier’'s theorem

Theorem (Brenier 1987)

Assume
e u,v be two measures on R” with ;. absolutely continuous (has
density)
« Consider the cost ¢(x, y) = ||x — y|?
Then

e there exists a unique map T with Ty, = v that solves Monge

o T is uniquely defined as the gradient of a convex function ¢,
i.e. T =V, where ¢ is the unique (up to constants) function
with (V)su = v.

o Generalizations to other cost functions; Riemannian manifolds

¢ Note that with T = V¢ the mass conservation property becomes
the Monge-Ampére equation:

9(Vo(x))| det(D?p(x))| = f(x)
Convexity of ¢ leads to D?p(x) > 0 is necessary for a solution.



Dynamic formulation

o Instead of looking for a (static) map T, we can try to
continuously move from density f to g.

o Consider a path p; with pg = f and p; = g and its velocity field v;.
Conservation of mass (continuity equation):

6tpt + diV(ptVt) =0
e Then find the pair (p:, v;) that minimizes the kinetic energy:
1
dynamic formulation = min / / | ve(x)||? dpe(x) dt
(pt:ve) Jo  Jrn

« Benamou-Brenier (2000): If Monge solution exists, then
dynamic = Monge, i.e. p; = ((1 — t)id+t T), po.
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e Geometry: Wasserstein distance, geodesics, tangent space
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Wasserstein distance

o Consider the space of (absolutely continuous) measures with
finite 2-th moment Pa(R") = {1 : [5n %1% du(x) < oo}
e The Monge/dynamic formulation define a distance on P>(R"):

W) = min{ [ = TOOIE )« T =
= min {/1 / ve(X)|12 dpe(x) dt - (py, v;) satisfy cont. equ}
0o JR”

= min {/ |x — y|I> d=(x, y) : = has marginals , 1/}
R xRR"

o This is the 2-Wasserstein distance or the
2-Monge-Kantorovich distance. Also exists for other p > 1.

e The last formulation, is the Kantorovich formulation (more later).

e P»(R™ has much more geometric structure. One can do (infinite
dimensional) Riemannian-like geometry — F. Otto.
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Geodesics

e The dynamic path p; actually defines the geodesic from pg to p1:
pe=((1—1)id+tT), po,

where T is the optimal Monge map.

e The geodesic is the “shortest path” in the sense of Riemannian
geometry. It satisfies

Wa(ps, pt) = |s — t| Wa(po, p1)

o Wasserstein vs. Euclidean path
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Geodesics

o The dynamic path p; actually defines the geodesic from pg to p1:
pr=((1—1)id+tT), po,

where T is the optimal Monge map.

e The geodesic is the “shortest path” in the sense of Riemannian
geometry. It satisfies

Wa(ps, pt) = |s — t| Wa(po, p1)

o Geodesic between shapes

»5886868
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Tangent space

« Note that the geodesic path is linear interpolation in L2(R", po)
between id and T:

pr=((1—1)id+tT), po,

e L2(R", po) is the tangent space at py. Monge maps T = Vi (or
the velocity field v) are the “tangent vectors”.

Ty

o We will use the tangent space later for linearized OT
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e Data science/ML: Discrete Kantorovich, Sinkhorn, linearized OT
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Data as point-clouds, histograms, densities

Bag-of-words Gene expression data Images
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o Data: Measures ux, k = 1,..., N or points sampled from p (point-cloud)

o Compare and classify: e.g. “Cancer” vs. “Healthy”
o Supervised: Training data (u«, y«), with classes yx € C

Learn a function

» Unsupervised: Use Wy (u«, 1) — computational issues



Discrete measures: Kantorovich formulation

« Point-clouds/discrete measures: p = Y.y @idx, v = > " bjy,:

XX I)
P

with @;,b; > 0, >~ a; = > b; = 1 (probability vectors)
« Look for coupling matrix P € R*™, where Pj is the amount of
mass moved from x; to y;. Mass can split!

« Mass conservation: P1 =a, P71 =b.
¢ Kantorovich: Find coupling matrix that minimizes work with

given cost Cj:

; P — mi
min ,Z] CiiPj min (C, P)

Note this is a linear problem with linear constraints.
e Cost: Usually Cj = ||x; — y;||°
« Existence, Uniqueness: Yes and no. P = ab’ is feasible.
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Discrete measures: Kantorovich formulation

o Kantorovich can also be formulated in continuous setting
o Kantorovich recovers Monge function in case it exists

L]
L] ° »
%2
o

s
...: .

o Computation: mPin (C, P) is a linear program. Cost: O(n® log(n)).

— may be too slow for large data science problems.
« Regularized version: Provides approximate coupling & distance

mPin (C,P) —eH(P)

with H(P) = — " Pj(log(Pj) — 1) the entropy of P. This has a
unique solution and can be solved in O(n? log(n)) matrix

scaling algorithms (Sinkhorn).

19/27



Supervised learning: Linear optimal transport (LOT)

Think of transport coupling as a new set of features.
o LOT embedding: Pick a reference measure o:

F,: PR") = L3(R",0)
o TZ

o Distance: WO (u,v)? = [, | TH(x) — TZ(x)||? do(x)

Wy (u,v)

TY u
e Learning: Wy (u,v)

f.. P(R") —C
ps f(TH)  forf: L2(R",0) = C

Learn a linear classifier in embedding space
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Numerical example on MNIST

MNIST Classification Between 7’s and 9’s
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Learning in LOT embedding space

Theorem (Supervised learning in LOT (M., Cloninger 2023))

Let o, 74, 2 absolutely continuous in P(R"), H convex set of
e-perturbations of elementary transformations. If

e Hyry, Hymo compact, and
o minimal distance Wa(hy 471, hoyo) > 0,
then F,(Hym) and F,(H;7) are linearly separable in L2(R?, o).

o Elementary transformations: Shifts, scalings, certain shearings

e ¢ can be given explicitly based on o, 74, 72, &.

First version of this result by Rohde et. al. 2018 for d = 1 and

e =0 (6 = 0 in this case).

o Uses Hahn-Banach theorem. Key proof ingredient: Convexity of
‘H is preserved via LOT.
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o Application: Inferring cell trajectories
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Inferring cell trajectories

¢ Single cells are modeled as point-clouds in gene-expression
space. Their “development” over time can be interpreted as a
curve in Wasserstein space.

Graphical Abstract

T, 7 T, ewaaw Ty

e Interpolate to e.g. understand development into certain cell types
and identify responsible genes (reprogramming)
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Inferring cell trajectories

e Schiebinger et. al. original paper (2019): use linear
interpolation

3 Time
Descendants Ancestors Shared ancestry

o To infer smoother trajectories, spline methods have been
proposed.

« New method: spline-like, smooth, fast, intrinsic, and can deal
with non-uniform mass and trajectory splitting (on arXiv soon!)
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New method examples
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Thank you! - Questions?

OT papers

o G. Schiebinger et al. Optimal-Transport Analysis of Single-Cell Gene Expression
Identifies Developmental Trajectories in Reprogramming, Cell 2019.

e M. Cuturi, G. Peyre Computational optimal transport, Foundations and Trends in
Machine Learning, 2019.

o J. Solomon et. al. Convolutional Wasserstein Distances: Efficient Optimal
Transportation on Geometric Domains, ACM Transactions on Graphics 2015.

o S. Kolouri et al. Optimal Mass Transport: Signal processing and
machine-learning applications. |[EEE signal process Mag 2017.

e M. Thorpe, Introduction to Optimal Transport, lecture notes 2018.
Our recent papers

o V. Khurana, H. Kannan, A. Cloninger, C. Moosmiiller. Learning sheared
distributions using linearized optimal transport, Sampling Theory, Signal
Processing, and Data Analysis, 2023.

o A. Cloninger, K. Hamm, V. Khurana, C. Moosmilller, Linearized Wasserstein
dimensionality reduction with approximation guarantees, arXiv 2023.

e C. Moosmilller, A. Cloninger. Linear optimal transport embedding: Provable
Wasserstein classification for certain rigid transformations and perturbations,
Information and Inference: A Journal of the IMA, 2023.

e S. Li, C. Moosmdiller, Measure transfer via stochastic slicing and matching, arXiv
2023.
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