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Motivation

Setup: Let ρ̃ be a probability measure on Euclidean space Rd .

Goal: We seek {xi}n
i=1 ⊂ Rd such that the empirical measure 1

n

n∑
i=1

δxi converges to ρ̃

as n → ∞.

Our definition of “convergence" depends on the context of the problem. For
example, we may define convergence in terms of the 2-Wasserstein metric.
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Classical Approach: Langevin Dynamics

Assumption: The target measure ρ̃ is strongly log-concave, i.e. ρ̃ = e−V (x)dx for a
λ-convex function V : Rd → R, λ > 0.

For any initialization {xi,0}n
i=1, evolving particles by the stochastic differential equation{

dxi (t) = ∇ log(ρ̃(xi ))dt + dWi

xi (0) = xi,0.

ensures that lim
t→∞

lim
n→∞

1
n

n∑
i=1

δxi (t) = ρ̃.

Remark (Continuum Perspective)

At time t , the particles approximate ρ(t , x), the solution to the Fokker-Planck
equation: {

∂tρ+∇ · (ρ∇ log(ρ̃)) = ∆ρ t ≥ 0
ρ(0, x) = ρ0(x).

ρ(t , x) converges to ρ̃ as t → ∞.
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The Nonlinear Diffusion Equation

A drawback of Langevin dynamics is that the target measure ρ̃ must be strongly log-
concave, i.e. ρ̃ = e−V (x)dx for a λ-convex function V .

A new approach allows us to consider target measures of the form

ρ̃ = ((f ′)−1(Z − V (x)))+dx ,

where

Z is a normalizing constant.

V : Rd → R and f : [0,∞) → R are smooth.

V is λ-convex for some λ > 0.

f is convex and s 7→ sd f (s−d ) is convex and nonincreasing on (0,∞).

Key idea: If ρ(t , x) is a solution to the Generalized Fokker-Planck equation:{
∂tρ−∇ · (ρ∇V ) = ∇ · (ρ∇f ′(ρ)) t ≥ 0
ρ(0, x) = ρ0(x),

then ρ(t , x) still converges to ρ̃ as t → ∞.
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Sampling via Nonlinear Diffusion Equations

Goal: Develop a stochastic particle method to approximate ρ(t , x), the solution to the
Generalized Fokker-Planck equation.

Preliminary results:

Trouble case:
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A Particle Method for Generalized Fokker-Planck Equation

For simplicity, assume that f is of the form

f (x) =

{
xm

m−1 m > 1
x log(x) m = 1.

This function is associated with the diffusion equation.
Then our particles flow according to the following ODE:
∂t xi (t) = −∇V (xi (t))−

n∑
j=1

(( n∑
k=1

(∇φ(xk − xj )mk
)m−2

+ (
n∑

k=1
φ(xi − xk )mk )

m−2
)

∇φ(xj − xi )mj .

xi (0) = x0
i .

Here, {mi}n
i=1 are defined by mi =

ρ0(xi )

nd . φ is a mollifier.
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