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Problem: Signed Signal Comparison

Given two signals fo, f;, we view them as functions in L?(0,1).
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Problem: Signed Signal Comparison

Given two signals fo, f1, we view them as functions in L2(0, 1).
"Good” metric for comparison?
Metric Candidate, L2 distance: ([ |fo(x) — f1 (x)|2dx)z
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Problem: Signed Signal Comparison

Metric Candidate, Wasserstein distance: horizontal

deformation
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W, distance is small, but L* distance is large.



Want: Horizontal and Vertical Deformation
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The computed geodesic in the space of signals based on the HV geometry.



New Metric: H(orizontal)V(ertical)
Geometry



Revisit the Benamou-Brenier formulation for W,

The so-called dynamic formulation of optimal transport:

1 1
W(fo. 1) = min/ / VA dxdt.
(v.f) Jo Jo
subject to the constraints for all admissible paths

af = —div(f v)
f(-,t=0)=fo, f(-,t=1)="fu.

Requires [ fodx = [ fadx and fo,f1 > 0.

(1)

[Benamou-Brenier, 2000] 4



A Metric Induced by the HV Geometry

Given a finite interval, e.g., [0, 1], consider fo, f; € L?(0,1) with
all the admissible paths satisfying

of =[-0f v +z onfo,1] x[0,1],

V(O,-):V(‘I,-):O, f('ao):fm f('71):fl-

[Ambrosio and Crippa, 2014]



A Metric Induced by the HV Geometry

Given a finite interval, e.g., [0, 1], consider fo, f; € L?(0,1) with
all the admissible paths satisfying

of =[-0f v +z onfo,1] x[0,1],
V(O,-):V(‘I,-):O, f('ao):fo, f('71):fl-
t

f(P(x,1),t) = fo(x) +/ z(®(x,s),s)ds
(0]
where ¢ is the flow of the vector field v:

od(x,t) = v(P(x,1),t), P(x,0) =x.
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A Metric Induced by the HV Geometry

Given a finite interval, e.g., [0, 1], consider fo, f; € L?(0,1) with
all the admissible paths satisfying

of =|-0f -v|] +z onfo,1] x[0,1], .
V(O,'):V(17~):O, f('?o):fm f('v1):fl-

Define

A(fo, f1) == {(f, v, 2) satisfies (2)}.

[Miller-Younes, 2001], [Trouvé-Younes, 2005], [H., SlepCev and Yang, 2023]



A Metric Induced by the HV Geometry

Given a finite interval, e.g., [0, 1], consider fo, f; € L?(0,1) with
all the admissible paths satisfying

of =|-0f -v|] +z onfo,1] x[0,1], .
V(O,'):V(17~):O, f('?o):fm f('v1):fl-

Define

A(fo, f1) == {(f, v, 2) satisfies (2)}.

For x > 0, A > 0, € > 0, define:

dyy(s. Ji) = inf A.r:(f,v,2), where
HV(r\e) (fo, fr) o 2e(f,v,2)

Acre(f,v,2) // KVZ + AV + eV + 2%) dxdt.

[Miller-Younes, 2001], [Trouvé-Younes, 2005], [H., SlepCev and Yang, 2023]



Degeneracy Without the Second Derivatives

But why not more naturally take

A v,2) = // KVZ 4+ Avg + 22) dxdt.

[H., SlepCev and Yang, 2023] 7



Degeneracy Without the Second Derivatives

But why not more naturally take

A(f,v,2) = // (kV? + Avg + Z°) dxdt.

Proposition _
If e = 0, there exists H > 0 such that there is no path between

fo = 0 and f; = H minimizing the action.

[H., SlepCev and Yang, 2023] 7



Properties of d,,

duy is complete on L?(0,1) and admits geodesics.

[H., SlepCev and Yang, 2023] 8
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Properties of d,,

duy is complete on L?(0,1) and admits geodesics.

1. Let {fn}nen C L2(0,1). If f5 — f indpy, then f; — fin L2
2. (Regularity) If fo, f; € H', then any action minimizing path
f € L>°(0,1,H'(0,1)).
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Properties of d,,

duy is complete on L?(0,1) and admits geodesics.

1. Let {fn}nen C L2(0,1). If f5 — f indpy, then f; — fin L2
2. (Regularity) If fo, f; € H', then any action minimizing path
f € L>°(0,1,H'(0,1)).

3. (Stability) Assume fJ.f!" € L2(0,1) forall n € N,

& —fo, f — frinL?(0,1)as n — cc.

Let (f",v",2") € A(fJ,f7) be action minimizing paths. Then
there exists (f, v, z) such that along a subsequence

n

f"—=f, "=z Vv =v

Furthermore, (f, v,Zz) is an action minimizing path between f,
and f;.

[H., SlepCev and Yang, 2023] 8



Numerical Scheme: Iterating Between Two Steps

From (foid; Void; Zotd) 10 (fnew, Vnew, Znew)

[H., SlepCev and Yang, 2023] 9



Numerical Scheme: Iterating Between Two Steps

From (foid; Void; Zotd) 10 (fnew, Vnew, Znew)
Step 1: (fnew, 2) = Ga(Voiq), from v to (f, z).
minimizing the objective functional:

mm//z dxdt, st (f,v,z) € A

(f,z) has analytic formulation given v.

[H., SlepCev and Yang, 2023] 9



Step 2: (Vnew; Znew) = Ga(fnew), from f to (v, z)
minimizing the functional:

m|n///£v + AV +evi, +Z22dxdt, st (f,v,z) € A

[H., Slepcev and Yang, 2023]

10



Step 2: (Vnew; Znew) = Ga(fnew), from f to (v, z)
minimizing the functional:

m|n///£v + AV +evi, +Z22dxdt, st (f,v,z) € A

v obtained by solving a fourth order boundary value problem,

EVxax — AVxx + KV + Zfx = 0 on (0,1)?
v=0 and vy =0 on {0,1} x [0,1]

Z = f; + vfx given by constraint.

[H., Slepcev and Yang, 2023]

10



Step 2: (Vnew; Znew) = Ga(fnew), from f to (v, z)
minimizing the functional:

mln//mv + AV +evi, +Z22dxdt, st (f,v,z) € A

v obtained by solving a fourth order boundary value problem,

EVxax — AVxx + KV + Zfx = 0 on (0,1)?
v=0 and vy =0 on {0,1} x [0,1]

Z = f; + vfx given by constraint.

Remark: (v,z) can be viewed as “tangent vector”.

[H., Slepcev and Yang, 2023] 10



Iterating Between These Two Steps

Ao (F1EW ynew Zhewy < Acre(f, v 2)

~—~—
(vnew znew) — g, (f), frew—f
ld ld ld
< AI{,)\7€(fO ; VO ’ZO )7

(f,2) = Gi(v?)

[H., SlepCev and Yang, 2023] 1



Iterating Between These Two Steps

14&)\7[_:(]¢rn13w7 vnew’ anW) < An,A,a (f, Vold 7 Z)

~—~—
(vnew znew) — g, (f), frew—f
ld ld ld
< AI{,)\7€(fO ; Vo ’ZO )7

(f,2) = Gi(v?)

1: Given (f(©,v(® z(9)) ¢ A, max iterations N, tolerance § > o.
2: forn=1to N do
3 Compute (f,2) = G,(v(M) with G, and set f("*") = f,

ko Set (vt ZmH)) = G, (FM)) with G,

5. 0f A (FOTD) v Z(0) AL (F v(M Z(M)] < 5 then
6: Return (f(1+1), z(n+1) v(n+1); Break.

7 end if

8: end for

[H., SlepCev and Yang, 2023] 1



Initialization Selection

We propose two different types of initial guesses.
1. Zero-velocity initialization. Set v(°)(x, t) = o, and

= fO0t) = (1= Ofe(x) + th(x), 2 (x.t) = fi(x) — fo(x)

[H., SlepCev and Yang, 2023] 12



Initialization Selection

We propose two different types of initial guesses.
1. Zero-velocity initialization. Set v(°)(x, t) = o, and

= fO0t) = (1= Ofe(x) + th(x), 2 (x.t) = fi(x) — fo(x)
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[H., SlepCev and Yang, 2023] 12



Initialization Selection

2. Prominence-matching initialization.
Let k be a positive integer. For the given f, and f;, we each
select k local maxima with the largest k prominence.

Topographic isolation and prominence of the summit "B"

A

Isolation

B\ Prominence

[H., SlepCev and Yang, 2023], [Wikipedia] 13
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select k local maxima with the largest k prominence.

Topographic isolation and prominence of the summit "B"

B\ Prominence

The location of the local maxima are denoted by {x;} and {y;},
1 < i < R, respectively.
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Initialization Selection

2. Prominence-matching initialization.
Let k be a positive integer. For the given f, and f;, we each
select k local maxima with the largest k prominence.

Topographic isolation and prominence of the summit "B"

B\ Prominence

The location of the local maxima are denoted by {x;} and {y;},
1 < i < R, respectively.
Construct a piecewise linear map T such that T(x;) = y;,
T(0)=0,T(1) =1.
[H., SlepCev and Yang, 2023], [Wikipedia] 13



signal value

Example using prominence-matching initialization

[H., Slepcev and Yang, 2023]
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Numerical Results: Non-Uniqueness of the Minimizing Path

2 03 04 05

For appropriate ratio of bump heights, both dominant transport
mechanisms produce the same action.

[H., SlepCev and Yang, 2023] 15



Numerical Results: Non

signal value

Algorithm allows for non-smooth data.

[H., SlepCev and Yang, 2023] 16



Numerical Results: Electrocardiography (ECG) Signals
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The large features (peaks) are matched via horizontal transport.

[H., SlepCev and Yang, 2023] 17



Numerical Results: Seismic Signals
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Degeneracy Without the Second Derivatives

Ac(f,v,z) = // (kv + Avg + 2°) dxdt.

Proposition ‘
If e = 0, there exists H > 0 such that there is no path between

fo = 0 and f; = H minimizing the action.

[H., SlepCev and Yang, 2023]
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A(f,v,2) = // (kv + Avg + 2°) dxdt.

Proposition ‘
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fo = 0 and f; = H minimizing the action.

Lemma )
If e = 0, then for all X € [0, ) there exists H € R such that the
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The optimal path has v # o.
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Degeneracy Without the Second Derivatives

A(f,v,2) = // (kv + Avg + 2°) dxdt.

Proposition ‘
If e = 0, there exists H > 0 such that there is no path between

fo = 0 and f; = H minimizing the action.

Lemma )

If e = 0, then for all X € [0, ) there exists H € R such that the
linear interpolation between f, = 0 and f; = H is not optimal.

The optimal path has v # o.

If there existed an optimizing path (f, v, z), one could
construct path of lower action by creating two copies of f
shrank to interval 3. The velocity is reduced to one-half.

[H., SlepCev and Yang, 2023]



Stability of d,,: Precise statement

(Stability) Let fo, f; € L2(0,1).

Assume fJ.fl € L?(0,1) foralln e N, f§l — fo, fi' = f1in
L2(0,1) as n — .

Let (f",v",2") € A(fJ,f7") be action minimizing paths. Then
there exists (f, v, z) € A(fo, f1) such that along a subsequence

f"=f inL>((0,1),L%(0,1))

f" = f inC((0,1),(L%(0,1),dny))
Z" —~z inL*((0,1),L%(0,1))

v —~v in L%([0,1]; H*(0,1)).

Furthermore (f, v, z) is an action minimizing path between f,
and f;.

[H., SlepCev and Yang, 2023]



Parameter Selection

We suggest

H2
K =001, A =0.02H?, and &= 0.2H*W>.
where
H is the average vertical variation in the data;
W is the typical width of features in the data;

L is the maximum horizontal distance between the features to
be matched.

A suggestion for H is the L? distance between the signals.

[H., SlepCev and Yang, 2023]



Scaling Properties of d,,

Proposition
Consider fo, f1 € L2(0,1). Let ¢ > 0. Then
(I) dHV(fO + Caf'l + C) = dHV(f07f1)
(ii) duv(er,erce)(Cfo, ¢fi) = cdpy(nne)(fo, f1)

To indicate the behavior of the action with respect to rescaling
the space extend f, and f, periodically to R. Likewise, given a
path (f,v, z) consider it extended periodically to R. Then for
LeN,

(”’) ALG,)\,E/Lz(f(L N )7 V(L N )7Z(L Tyt )) = Afi,>\,€(f7 v, 2)7 where
the action is considered only on [0, 1], as usual.

[H., SlepCev and Yang, 2023]
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