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Generative models

Stable diffusion
Molecular generation

Hoogeboom et al. 2022
Sora

Prompt: Drone view of waves crashing against the rugged cliffs along Big Sur’s 
garay point beach. The crashing blue waters create white-tipped waves, while the 
golden light of the setting sun illuminates the rocky shore. A small island with a 
lighthouse sits in the distance, and green shrubbery covers the cliff’s edge. The 
steep drop from the road down to the beach is a dramatic feat, with the cliff’s edges 
jutting out over the sea. This is a view that captures the raw beauty of the coast and 
the rugged landscape of the Pacific Coast Highway.

Goal:
❖ given samples  from some unknown distribution 
❖ generate more samples from the same measure

{xi}N
i=1 π



Diffusion-based generative models

Perturbing data to noise with a 
continuous-time stochastic process.

Generate data from noise by reversing 
the perturbation procedure.

Videos from Song Yang

A figure is a data point ,
we apply diffusion process by adding noise.
Are we reversing a heat equation?

x ∈ Rd



Score-based generative model (SGM)

Image from Song Yang

Song, Y., et al. (2021). Score-Based Generative Modeling through Stochastic Differential Equations. In International Conference on Learning Representations.

Forward SDE (data  noise)→
dx = σdW

Reverse SDE (noise  data)→
dx = − σ2𝗌dt + σdW

Example 1: Forward SDE (data  noise)
Ornstein-Uhlenbeck Process

→

Reverse SDE (noise  data)→
dx = − σ2𝗌dt + σdW

Example 2:



Score-based generative model (SGM)

❖ Reversing guided by score function ,  : probability density function.

❖ If we know the score of the distribution at each intermediate time step, we can generate samples from noise.

❖ Use neural net  is trained by minimizing a score-matching loss function.

𝗌(x, t) = ∇xlog p(x, t) p

𝗌θ : ℝd × [0,T] → ℝd

Image from Song Yang

min
θ

CESM(θ) = min
θ ∫

T

0 ∫ℝd

σ(T − s)2

2
∥𝗌θ(y, s) − ∇log η(y, s)∥2η(y, s) dy ds

min
θ

CISM(θ) = min
θ ∫

T

0 ∫ℝd

σ(T − s)2[ 1
2

∥𝗌θ(y, s)∥2 + ∇ ⋅ 𝗌θ(y, s)] η(y, s) dy ds



Fundamental mathematical nature of SGMs 

• A fundamental characterization of score-based generative models as Wasserstein 
proximal operators (WPO) of cross-entropy

• Mean-field games build a bridge to mathematically equivalent alternative 
formulations of SGM

• Yields explainable formulations of SGMs grounded in theories of information, 
optimal transport, manifold learning, and optimization

• Uncovering mathematical structure of SGMs explains memorization, and informs 
practical models to generalize better; suggests new practical models with 
interpretable mathematically-informed structure that train faster with less data.



Optimal Transport and Wasserstein metric
❖ Wasserstein metric is a distance function defined between probability distributions, 

also known as earth mover's distance 

❖ Monge: soil-transportation problem; Kantorovich: applications in plywood industry
❖ Applications: Economics, Industrial Engineering, Data Sciences, etc.
❖ By Benamou-Brenier, A computational fluid mechanics solution of the Monge-Katonrovich 

mass transfer problem

W(μ, ν)

inf
ρ,v {∫

1

0 ∫Ω

1
2

ρ(x, t)∥v(x, t)∥2dxdt}
s.t. ρt + ∇ ⋅ (ρv(x, t)) = 0, ρ(x,0) = μ(x), ρ(x,1) = ν(x)



Wasserstein proximal operator
❖ Given a probability density  , we consider the Wasserstein proximal operator (WPO) of the 

some function : 

where  is the Wasserstein-2 distance.

• Set  of a distribution , the first term is the cross-entropy of  with respect to .

,  redistribution + transport 

ρ0
V(x)

ρ := WProxτV(ρ0) := arg min
q∈𝒫2(ℝd) ∫ℝd

V(x)q(x)dx +
W(ρ0, q)2

2τ

W(ρ0, q)

V(x) = − log π(x) π π ρ

ρ0 (source) ↦ π (target)



Wasserstein proximal operator
❖ Given a probability density  , we consider the Wasserstein proximal operator (WPO) of 

the some function : 

where  is the Wasserstein-2 distance.

❖ Computing the WPO requires solving an optimization problem.

❖ Equivalent to solving the following variational problem

ρ0
V(x)

ρ := WProxτV(ρ0) := arg min
q∈𝒫2(ℝd) ∫ℝd

V(x)q(x)dx +
W(ρ0, q)2

2τ

W(ρ0, q)

inf
ρ,v {∫

1

0 ∫Ω

1
2

ρ(x, t)∥v(x, t)∥2dxdt + ∫Ω
V(x)ρ(x,1)dx}

s.t. ρt + ∇ ⋅ (ρv(x, t)) = 0, ρ(x,0) = ρ0(x) A potential mean-field game



Wasserstein proximal operator
❖ Given a probability density  , we consider the Wasserstein proximal operator (WPO) of the 

some function : 

where  is the Wasserstein-2 distance.

ρ0
V(x)

ρ := WProxτV(ρ0) := arg min
q∈𝒫2(ℝd) ∫ℝd

V(x)q(x)dx +
W(ρ0, q)2

2τ

W(ρ0, q)

inf
ρ,v {∫

1

0 ∫Ω

1
2

ρ(x, t)∥v(x, t)∥2dxdt + ∫Ω
V(x)ρ(x,1)dx}

s.t. ρt + ∇ ⋅ (ρv(x, t)) = 0, ρ(x,0) = ρ0(x)
Optimality condition



 Regularized WPO
❖ The regularization via adding viscosity  through the dynamic formulation of the Optimal 

Transport.

❖ Regularized WPO:

❖ We obtain a closed-form formulation, which allows fast computation of the WPO.

βΔρ

inf
ρ,v {∫

1

0 ∫Ω

1
2

ρ(x, t)∥v(x, t)∥2dxdt + ∫Ω
V(x)ρ(x,1)dx}

s.t. ρt + ∇ ⋅ (ρv(x, t)) = βΔρ, ρ(x,0) = ρ0(x)

ρ := WProxτV,β(ρ0) := arg min
q∈𝒫2(ℝd) ∫ℝd

V(x)q(x)dx +
Wβ(ρ0, q)2

2τ
.

Wuchen Li, Siting Liu and Stanley Osher, “A kernel formula for regularized Wasserstein proximal operators.”
Research in the Mathematical Sciences



 Regularized WPO
❖ Regularized WPO:

ρ := WProxτV,β(ρ0) := arg min
q∈𝒫2(ℝd) ∫ℝd

V(x)q(x)dx +
Wβ(ρ0, q)2

2τ
.

Optimality condition

With Cole-Hopf transform (log-transform), heat kernel.G :



Deriving SGM from regularized WPO

❖
The cross-entropy of a distribution  with respect to  is 

❖
Set   in WPO 

π μ H(μ, π) := − ∫Rd

μ(x)logπ(x)dx .

V(x) = − log π(x) min
q∈𝒫2(ℝd) ∫ℝd

V(x)q(x)dx +
Wβ(ρ0, q)2

2τ
.

❖ Via Cole-Hopf transform (log-transform) with a time reparametrization, we obtain the system: 

Score!Forward SDE (data  noise)→
dx = σdW

Reverse SDE (noise  data)→
dx = σ2𝗌dt + σdW



SGMs are WPOs of cross-entropy

where samples  drawn from distribution , the empirical distribution 

❖ Reveals forward-backward/noising-denoising nature of SGMs.

❖ It gives the exact score function:

{Zi}N
i=1 π π( ⋅ ) ≈ ̂π( ⋅ ) =

1
N

N

∑
i=1

δZi
( ⋅ )

 is the heat kernel.Gt(y, y′￼)

But overfit! We don’t get new samples

forwardbackward



A kernel model that generalizes

❖ Consider a generalization of the empirical distribution by Gaussian kernels.

❖ Learn local covariance matrix  near each kernel center use neural networks.

❖ Enforce the terminal condition of HJ equation, which is equivalent to implicit score-
matching.

❖ Learning local covariance matrix is akin to manifold learning, which is something 
SGM has been empirically observed to do.[J. Pidstrigach 2022]

Γθ

Basic surfaces that are manifolds.
Figures from Medium- Manifolds in Data Science



Naïve kernel model WPO-informed kernel model

Exact kernel formula overfits Learning local covariance 
matrices generalizes

We directly learn a lower-dimensional representational space by enforcing the proper 
terminal condition of the HJ equation in one-step!

π( ⋅ ) ≈ ̂π( ⋅ ) =
1
N

N

∑
i=1

δZi
( ⋅ )

Reverse diffusive process with  ̂𝗌( ⋅ , t) =
(∇yGt * ̂π)( ⋅ )

(Gt * ̂π)( ⋅ )

Gt,θ(Z, x) =
det ΓT−t,θ(Zi)

(2π)d/2
exp (−(x − Z)⊤ΓT−t,θ(Z)(x − Z))

π( ⋅ ) ≈ ̂πθ(x; θ, {Zi}N
i=1) =

1
N

N

∑
i=1

Gt,θ(Zi, ⋅ )

 is the learnt local covariance matrix informed by WPO.Γt,θ( ⋅ )

Reverse diffusive process with  ̂𝗌θ( ⋅ , t) =
(∇yGs * ̂πθ)( ⋅ )

(Gs * ̂πθ)( ⋅ )

Satisfies HJB alone Also enforces terminal condition

memorize and resample! 



Illustrative examples: Deconstructing SGM
Truth

Denoising score matching with 50k epochs

Our approach with 50k epochs

An informed mathematical structure learns score models faster

Denoising score matching with 1000k epochs



Illustrative examples: Deconstructing SGM
Truth Our approach

Six dimensional example: 3D swissroll noisily embedded in a 6D space.



Learning the data manifold

• Red ellipses denote local covariance matrices


• Set of local covariance matrices define Riemannian metric, and therefore a manifold



● Faster training with less data due to mathematically-informed 
structure of the kernel model, resolving memorization


○ Proper choice of kernel (solves HJB equation)


○ Manifold learning (terminal condition of HJB, proximal interpretation)


● REQUIRES NO SIMULATION OF SDEs

○ Kernel model can be sampled from directly


● Formulation provides new ideas of implementations

○ New bespoke neural nets for score-based models for scalable 

implementations

○ Tensors instead of neural networks in manifold learning

Takeaways



Thank you very much for the attention!


