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Dynamic Optimal Transport

e Dynamic optimal transport DIRECTLY finds the geodesic path p(t,s) between po(s)
and p7(s) by minimizing the kinetic energy along the path:

Given pg, p7, solve p
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min  — p(t,s)|v(t,s sdt,
v 2o Joap

s.t. Otp+ V- (pv) =0,,
p(0,-) =po, po(T,")=pT,

Dynamic Optimal Transport(Benamou2000)

Geodesic in thel\-’\-/'a%serstein space

Geodesic in the Euclidean space

Figure  : Interpolation in the optimal transport framework (left) and Euclidean space (right)
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Dynamic Optimal Transport Solver

e Reformulate it to a convex problem:

. 1,7 Im(t, 5)I?
min  J(p,m) = —/ / dsdt,
psm 2Jo Jo,12 p(t,s)

s.t. Otp+ V- (m)=0,
p(0,°) = po, p(T,")=pT-

e Discretize p on a centered grid, m on a staggered grid, then

. T
min Z m, Diag(w¢)m;
t=0,2,..T—1

st b +V-(mg)=0,¢6=0,1,2,..T 1,
where
Wl..:72 wz--:72 b: = pry1 — pe
YT pig At peisny T peig At peiga
e Solver: Proximal Splitting Methods such as the Douglas—Rachford (DR) algorithm, the
alternating direction method of multipliers (ADMM), and a primal-dual (PD) algorithm
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Dynamic Optimal Transport Variants

/ / \mtdedt
sdt,
0,12  p(t,s)

s.t. dtp+ V- (m) =0,
mc =0,
p(0,°) =po, p(T,")=pT-

when there are obstacles in the environment

Im(t, s)|? |s(t, 5)[?
/ / ——— + 7 ————dsdt
a2 p(ts) o(t,5)
s.t. Otp+ V- (m)=s,
p(0,-) =po, p(T,")=pT

unbalanced OT where [y po(s)ds # [y p7(s)ds
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Our algorithm: Solve Dynamic OT with Autoencoder
® key 1: eliminate the momentum m to make the minimization problem unconstrained

® key 2: parameterize the path p using autoencoder
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Step 1: eliminate m to make the problem unconstrained

e Fix p, we define the path energy over p as below:
J(p) = mmin Z m;r Diag(w¢)m;
t=0,1,2,..T—1

st Vo(mg)=by,t=0,1,2,..T — 1
Note that w and b are both defined using p
e This is a quadratic problem with linear constraint, and its KKT condition is given by

[ Diag(we) véT H o }:[ l?t ],t:O,l,Z,...,T*l, )

where \; is the Lagrange multiplier.
e After solving the KKT condition, we have

T—1

S b/ (v . Diag(wt)71V~T)71 be,
t=0

J(p)

Path energy function
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Step 2: parameterize the path variable p using autoencoder

An compressed low dimensional 1
representation of the input.

T-1 .

J(p) = Z th (V - Diag(wt)_IVT) by, 3 IZI v £
t=0

Path energy function

o . Autoencoder
e Motivation: use generator to produce p to achieve smooth transitions along p(t)

e We adopted the decoder of the autoencoder, denoted as D, as the generator:
p(t)=D(tzo+ (1 —t)z), 0<t<1,
where zp, z; are the latent code of input po, p1.
e Denote the autoencoder parameter as 6, then
min J(p) — mein J(po)
P

optimization problem — NN training
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Our algorithm for image interpolation

e When we have two data in the training dataset,
Step 1: train an autoencoder whose loss function is
160 = pol® + 1171 = p1l[* + ad(D(tE(p1) + (1 — H)E(p2))
Step 2: generate the interpolation between pg and py using D(t€(p1) + (1 — t)E(p2)
e When we have multiple data in the training dataset,

Step 1: train an autoencoder whose loss function is
5112
STl = &2+ a > HDis;)
i )
Step 2: generate the interpolation between p; and p; using D(tE(p;) + (1 — t)E(p;)

e Comparison with normalizing flow(NF):
® Recall 8p = =V - (p(t)v(t))

® normalizing flow use NN to generate v(t), and then push po to generate p(t) using
integration; but the target density may not be matched.

® we generate a path between po and p; directly; v is baked into the loss function.
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Experiment results

e(a) The result of our proposed method. (b) The result of the proximal splitting method
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Figure: example (1
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Experiment results

e(a) The result of our proposed method. (b) The result of the proximal splitting method
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Figure: example (1
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Figure: example when obstacles in the environment (marked pink) are present
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Experiment results
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Figure: example when obstacles in the environment (marked p|nk are present
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Summary

eOur algorithm: Solve Dynamic OT with Autoencoder

eFeature of our interpolation results:
® follow the least energy principle
® shows a smooth effect visually (a trade off of smoothness and accuracy)

® works from limited training data to large training data(in my paper)
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Exploration of the output space of our Trained Autoencoder(on going)
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Example

Our method:
® Step 1: train an autoencoder with loss function
Sillxi = &l? +a X D))

® Step 2: generate the barycenter by decoding a
convex combination of their corresponding
latent codes

D(c1z1 + ©zp + 323 + c424) , Z G = I
i

there are only four images (at the corner) in the
training dataset.

® The output space is a smooth manifold even with limited training data;
W(D(>:, ¢izi), D(3>,; ¢izi)) is small when ¢,¢ < e

® ongoing work: application on signal recovery
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Thanks!

For any further questions, feel free to contact: xffeng@ucdavis.edu
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